Skip to main content
Log in

Determining the Composition and Particle Size of Coal Dust by Dynamic Light Scattering

  • COAL
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

The physicochemical properties of coal dust from fine filters in the degassing system of a Kuznetsk Basin mine are studied. The dust sample is investigated by atomic-emission spectroscopy, IR spectroscopy, dynamic light scattering, and thermal analysis. The dust undergoes technical analysis and granulometric analysis; the textural characteristics of its pore structure are analyzed by adsorption. Finally the change in chemical composition of the mineral components in the dust is expressed as a function of the particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Donaldson, K., Stone, V., Gilmore, P. S., et al., Ultrafine particles: mechanisms of lung injury, Philos. Trans. R. Soc., A, 2000, vol. 358, pp. 2741–2749.

  2. Brown, D.M., Wilson, M.R., MacNee, W., et al., Sizedependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines, Toxicol. Appl. Pharmacol., 2001, vol. 175, no. 3, pp. 191–199.

    Article  CAS  Google Scholar 

  3. Tran, C.L., Buchanan, D., Cullen, R.T., et al., Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance, Inhalation Toxicol., 2000, vol. 12, no. 12, pp. 1113–1126.

    Article  CAS  Google Scholar 

  4. Dick, C.A.J., Brown, D.M., Donaldson, K., and Stone, V., The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types, Inhalation Toxicol., 2003, vol. 15, no. 1, pp. 39–52.

    Article  CAS  Google Scholar 

  5. Dockery, D.W., Speizer, F.E., Stram, D.O., et al., Effects of inhalable particles on respiratory health of children, Ann. Allergy, 1989, vol. 139, pp. 587–594.

    CAS  Google Scholar 

  6. Pope, C.A.I., Dockery, D.W., Spengler, J.D., and Raizenne, M.E., Respiratory health and PM10 pollution: a daily time series analysis, Am. Rev. Respir. Dis., 1991, vol. 144, pp. 668–674.

    Article  Google Scholar 

  7. Schwartz, J., Spix, C., Wichmann, H.E., and Malin, E., Air pollution and acute respiratory illness in five German communities, Environ. Res., 1991, vol. 56, pp. 1–4.

    Article  CAS  Google Scholar 

  8. Dockery, D.W., Pope, C.A., Xu, X., et al., An association between air pollution and mortality in six U.S. cities, N. Engl. J. Med., 1993, vol. 329, no. 24, pp. 1753–1759.

    Article  CAS  Google Scholar 

  9. Kutikhin, A.G., Efimova, O.S., and Barbarash, O.L., Effect of dust pollution of coal and coal chemical industries on the risk of developing heart diseases, Chem. Sustainable Dev., 2018, vol. 26, no. 6, pp. 647–654.

    CAS  Google Scholar 

  10. Chezganova, E.A., Efimova, O.S., Sakharova, V.M., et al., The additional reservoir of hospital environment microorganisms at healthcare facilities, Zh. Mikrobiol., Epidemiol. Immunobiol., 2021, vol. 98, no. 3, pp. 266–275.

    Article  Google Scholar 

  11. Chezganova, E., Efimova, O., Sakharova, V., et al., The role of dust in the development of a reservoir for multi-resistant hospital microorganism strains in surgical departments, Fundam. Klin. Med., 2020, vol. 5, no. 1, pp. 15–25.

    Article  Google Scholar 

  12. Chezganova, E., Efimova, O., Sakharova, V., et al., Ventilation-associated particulate matter is potential reservoir of multidrug-resistant organisms in health facilities, Life, 2021, vol. 11, no. 7, p. 639.

    Article  CAS  Google Scholar 

  13. Zhuravleva, N.V., Khabibulina, E.R., Ismagilov, Z.R., et al., Chemical and granulometric composition of particles of solid atmospheric aerosol including black carbon in the snow pack on the territory of the industrial zone of Novokuznetsk city, Khim. Interesakh Ustoich. Razvit., 2016, vol. 24, no. 4, pp. 509–519.

    CAS  Google Scholar 

  14. Mironov, K.V., Spravochnik geologa-ugol’shchika (Handbook of Coal Geologist), Moscow: Nedra, 1991.

    Google Scholar 

  15. Eremin, I.V., Artser, A.S., and Bronovets, T.M., Petrologiya i khimiko-tekhnologicheskie parametry uglei Kuzbassa (Petrology and Chemical-Technological Parameters of Kuzbass Coal), Kemerovo: Pritomskoe, 2001.

  16. GOST (State Standard) 11022-95 (ISO 1171-97) Solid Mineral Fuels. Methods for Determination of Ash, Moscow: Izd. Standartov, 1997.

  17. GOST (State Standard) 2093-82: Solid Fuel. Size Analysis, Moscow: Izd. Standartov, 1983.

  18. GOST (State Standard) R 54244-2010 (ISO 29541:2010): Solid Mineral Fuels. Instrumental Method for Determination of Carbon, Hydrogen, and Nitrogen, Moscow: Standartinform, 2012.

  19. Efimova, O.S., Khokhlova, G.P., and Patrakov, Y.F., Thermal conversion of coal-tar pitch in the presence of silicon compounds, Solid Fuel Chem., 2010, vol. 44, no. 1, pp. 5–11.

    Article  Google Scholar 

  20. Efimova, O.S., Fedorova, N.I., and Ismagilov, Z.R., Chemical and granulometric composition of coal dust of a mine degassing plant, Chem. Sustainable Dev., 2018, vol. 26, no. 6, pp. 597–601.

    CAS  Google Scholar 

  21. Rus’yanova, N.D., Uglekhimiya (Coal Chemistry), Moscow: Nauka, 2003.

    Google Scholar 

  22. Shaks, I.A. and Faizullina, E.M., Infrakrasnye spektry iskopaemogo organicheskogo veshchestva (Infrared Spectra of Fossil Organic Matter), Leningrad: Nedra, 1974.

  23. Pretsch, E., Bühlmann, P., and Affolter, C., Structure Determination of Organic Compounds: Tables of Spectral Data, Berlin: Springer, 2000.

    Book  Google Scholar 

  24. Shpirt, M.Ya., Kler, V.R., and Pertsikov, I.Z., Neorganicheskie komponenty tverdykh topliv (Inorganic components of solid fuels), Moscow: Khimiya, 1990.

  25. Shpirt, M.Ya., Bezotkhodnaya tekhnologiya. Utilizatsiya otkhodov dobychi i pererabotki tverdykh goryuchikh iskopaemykh (Wasteless Technology. Utilization of Mining Wastes and Processing of Solid Fossil Fuels), Moscow: Nedra, 1986.

  26. Koshina, M., Maglicheva, A., and Koshina, M., Change of the microcomponent composition during the grinding of coal, Khim. Tverd. Topl. (Moscow), 1980, no. 4, pp. 12–18.

  27. IUPAC Reporting physisorption data for gas/solid system, Pure Appl. Chem., 1985, vol. 57, p. 603.

  28. Brunauer, S., Deming, L.S., Deming, W.E., and Teller, E., On a theory of van der Waals adsorption of gases, J. Am. Chem. Soc., 1940, vol. 62, pp. 1723–1732.

    Article  CAS  Google Scholar 

  29. WHO Global Air Quality Guidelines: Particulate Matter (PM 2.5 and PM 10 ), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide, Geneva: World Health Org., 2021.

Download references

ACKNOWLEDGMENTS

This research made use of equipment at the Kemerovo collective-use center, based at the Federal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Sciences.

Funding

This research benefited from state support for the Institute of Coal Chemistry and Chemical Materials Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Sciences (project 121031500512-7).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. S. Efimova, R. P. Kolmykov, L. V. Panina, Yu. N. Dudnikova or Z. R. Ismagilov.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimova, O.S., Kolmykov, R.P., Panina, L.V. et al. Determining the Composition and Particle Size of Coal Dust by Dynamic Light Scattering. Coke Chem. 64, 488–495 (2021). https://doi.org/10.3103/S1068364X2111003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X2111003X

Keywords:

Navigation