Skip to main content
Log in

Physiochemical, Mineralogical, Thermal and Kinetic Characterisation of Selected Coals from the Benue Trough and Anambra Basin, Nigeria

  • COAL
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

This study examined the physiochemical, mineralogical, thermal, and kinetic characteristics of selected Nigerian coals, namely; Chikila (CHK), Lafia Obi (LFB) and Okaba (OKB) from the Benue Trough and Anambra Basin. Physicochemical analyses revealed significant carbon, volatile matter, fixed carbon, and higher heating values (~25–30 MJ/kg) along with low contents of moisture and ash. The deduced properties indicate subbituminous to bituminous rank coals. The morphological, microstructure and elemental analyses revealed heterogeneous sized coal particles with a glassy lustre, which are ascribed to quartz, alumina, kaolinite, hematite, and other clay or aluminosilicate minerals. Thermal analysis under oxidative conditions indicated the coal samples are highly reactive, which resulted in significant degradation as evident in the high mass losses (ML = 91.59–94.04)% and low residual masses (RM = 5.96–8.41)%, which occurred in the order LFB > OKB > CHK for ML whereas RM was CHK > OKB > LFB. Kinetic analysis values of activation energy (Ea) from 30.07 to 43.91 kJ/mol, frequency factor (A) from 1.16 × 10–02 to 6.73 × 10–02 min–1 and R2 from 0.98–0.99 based on the Coats–Redfern model. The kinetic analysis indicated the coals are highly reactive and suitable for energy recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Speight, J.G., Coal-Fired Power Generation Handbook, Hoboken, NJ: Wiley, 2013, vol. 1.

    Book  Google Scholar 

  2. Gräbner, M., Industrial Coal Gasification Technologies Covering Baseline and High-Ash Coal, Chichester: Wiley, 2014.

    Book  Google Scholar 

  3. Speight, J.G., The Chemistry and Technology of Coal, Boca Raton, FL: CRC Press, 2012, 3rd ed.

    Book  Google Scholar 

  4. Basic coal facts, in Coal Factsheet, 2017, London: World Coal Assoc., 2017.

  5. The Global Value of Coal, Paris: Int. Energy Agency, 2012, 1st ed.

  6. Countries with the biggest coal reserves, Min. Technol. Mag., 2020, Jan. 6.

  7. Miller, B.G., Clean Coal Engineering Technology, Oxford: Butterworth-Heinemann, 2016, vol. 2.

    Google Scholar 

  8. Global coal demand by forecast for 2000–2024, in Analysis and Forecasts to 2024, Paris: Int. Energy Agency, 2020.

  9. IEA-OECD, Energy Indicators, 2002, vol. 1, pp. 1–30.

    Google Scholar 

  10. IEA-CCC, Cambodia: Two coal power plants built in Preah Sihanouk, in Coal Power Projects, London: IEA Clean Coal Centre, 2020.

    Google Scholar 

  11. Nerini, F.F., Broad, O., Mentis, D., Welsch, M., Bazilian, M., and Howells, M., Energy, 2016, vol. 95, pp. 255–265.

    Article  Google Scholar 

  12. Adewuyi, O.B., Lotfy, M.E., Akinloye, B.O., Howlader, H.O.R., Senjyu, T., and Narayanan, K., Appl. Energy, 2019, vol. 245, pp. 16–30.

    Article  Google Scholar 

  13. Emodi, N.V., The energy sector in Nigeria, in Energy Policies for Sustainable Development Strategies: The Case of Nigeria, Singapore: Springer, 2016, pp. 9–67.

    Book  Google Scholar 

  14. Emodi, N.V. and Yusuf, S.D., Int. J. Energy Econ. Policy, 2015, vol. 5, pp. 335–351.

    Google Scholar 

  15. Emovon, I., Samuel, O.D., Mgbemena, C.O., and Adeyeri, M.K., Int. J. Integr. Eng., 2018, vol. 10, no. 1.

  16. Mohammed, Y., Mustafa, M., Bashir, N., and Mokhtar, A., Renewable Sustainable Energy Rev., 2013, vol. 22, pp. 257–268.

    Article  Google Scholar 

  17. Oyedepo, S.O., Renewable Sustainable Energy Rev., 2014, vol. 34, pp. 255–272.

    Article  Google Scholar 

  18. Ohimain, E.I., Int. J. Energy Power Eng., 2014, vol. 3, pp. 28–37.

    Article  Google Scholar 

  19. Oboirien, B., North, B.C., Obayopo, S., Odusote, J., and Sadiku, E., Energy Strategy Rev., 2018, vol. 20, pp. 64–70.

    Article  Google Scholar 

  20. Obaje, N.G., Geology and Mineral Resources of Nigeria, Berlin: Springer-Verlag, 2009, vol. 120.

    Book  Google Scholar 

  21. Chukwu, M., Folayan, C., Pam, G., and Obada, D., J. Combust., 2016, vol. 2016, pp.

  22. Nyakuma, B., Jauro, A., Oladokun, O., Bello, A., Alkali, H., Modibo, M., and Abba, M., Petrol. Coal, 2018, vol. 60, pp. 641–649.

    Google Scholar 

  23. Nyakuma, B.B. and Jauro, A., GeoScience Eng., 2016, vol. 62, pp. 6–11.

    Article  Google Scholar 

  24. Nyakuma, B.B. and Jauro, A., GeoScience Eng., 2016, vol. 62, pp. 1–5.

    Article  Google Scholar 

  25. Nyakuma, B., Oladokun, O., Abdullah, T., Ojoko, E., Abdullahi, M., El-Nafaty, A., and Ahmed, A., Coke Chem., 2018, vol. 61, pp. 424–432.

    Article  Google Scholar 

  26. Nyakuma, B., Oladokun, O., Akinyemi, S., Ojoko, E., Jacob, G., Abdullah, T., Alkali, H., and Al-Shatri, A., Coke Chem., 2019, vol. 62, pp. 371–378.

    Article  Google Scholar 

  27. Coats, A.W. and Redfern, J.P., Nature, 1964, vol. 201, pp. 68–69.

    Article  CAS  Google Scholar 

  28. ASTM D388-12: Standard Classification of Coals by Rank, West Conshohocken, PA: ASTM Int., 2012.

  29. Jauro, A., Chigozie, A., and Nasirudeen, M., Sci. World J., 2008, vol. 3, pp. 79–81.

    Google Scholar 

  30. Akinyemi, S.A., Nyakuma, B.B., Jauro, A., Adebayo, O.F., OlaOlorun, O.A., Adegoke, A.K., Aturamu, A.O., Adetunji, A., Gitari, W.M., and Mudzielwana, R., Energy Geosci., 2020, vol. pp. 1–7.

  31. Akinyemi, S.A., Adebayo, O.F., Nyakuma, B.B., Adegoke, A.K., Aturamu, O.A., OlaOlorun, O.A., Adetunji, A., Hower, J.C., Hood, M.M., and Jauro, A., Int. J. Coal Sci. Technol., 2020, vol. 7, pp. 26–42.

    Article  CAS  Google Scholar 

  32. Adeyinka, J.S. and Akinbode, F., Indian J. Eng. Mater. Sci., 2002, vol. 9, no. 3, pp. 177–180.

    CAS  Google Scholar 

  33. Amoo, L.M., Fuel, 2015, vol. 140, pp. 178–191.

    Article  CAS  Google Scholar 

  34. Adeleke, A., Onumanyi, P., and Ibitoye, S., Petrol. Coal, 2011, vol. 53, pp. 1–8.

    Google Scholar 

  35. JEOL-JSM IT 300 LV SEM Microscope: Brochure, Freising: JEOL, 2017.

  36. Sengupta, P., Saikia, P.C., and Borthakur, P.C., J. Sci. Res., 2008, vol. 67, pp. 812–818.

    CAS  Google Scholar 

  37. Nyakuma, B.B., Coke Chem., 2019, vol. 62, pp. 394–401.

    Article  Google Scholar 

  38. Akinyemi, S., Gitari, W., Akinlua, A., and Petrik, L., Mineralogy and geochemistry of sub-bituminous coal and its combustion products from Mpumalanga Province, South Africa, in Analytical Chemistry, London: InTechOpen, 2012, ch. 2.

  39. Querol, X., Fernández-Turiel, J., and López-Soler, A., Fuel, 1995, vol. 74, pp. 331–343.

    Article  CAS  Google Scholar 

  40. Liu, G., Vassilev, S.V., Gao, L., Zheng, L., and Peng, Z., Energy Convers. Manage., 2005, vol. 46, pp. 2001–2009.

    Article  CAS  Google Scholar 

  41. Vassileva, C.G. and Vassilev, S.V., Fuel Process. Technol., 2006, vol. 87, pp. 1095–1116.

    Article  CAS  Google Scholar 

  42. Silva, L.F., Ward, C.R., Hower, J.C., Izquierdo, M., Waanders, F., Oliveira, M.L., Li, Z., Hatch, R.S., and Querol, X., Coal Combust. Gasif. Prod., 2010, vol. 2, pp. 51–65.

    Google Scholar 

  43. Xu, Y., Liang, H., and Zhang, N., Energy Explor. Exploit., 2019, vol. 37, pp. 1162–1181.

    Article  CAS  Google Scholar 

  44. Scott, A. and Rex, G., Philos. Trans. R. Soc., B, 1985, vol. 311, pp. 123–137.

  45. DeMaris, P.J., J. Geol. Soc., 2000, vol. 157, pp. 221–228.

    Article  CAS  Google Scholar 

  46. Luo, Y., Ma, S., Zhao, Z., Wang, Z., Zheng, S., and Wang, X., Ceram. Int., 2017, vol. 43, pp. 1–11.

    Article  Google Scholar 

  47. Ibarra, J., Palacios, J., and de Andrés, A.M., Fuel, 1989, vol. 68, pp. 861–867.

    Article  CAS  Google Scholar 

  48. Barwood, H.L., Curtis, C.W., Guin, J.A., and Tarrer, A.R., Fuel, 1982, vol. 61, pp. 463–469.

    Article  CAS  Google Scholar 

  49. Akinyemi, S.A., Gitari, W.M., Petrik, L.F., Nyakuma, B.B., Hower, J.C., Ward, C.R., Oliveira, M.L.S., and Silva, L.F.O., Sci. Total Environ., 2019, vol. 663, pp. 177–188.

    Article  CAS  PubMed  Google Scholar 

  50. Akinyemi, S.A., Gitari, W.M., Thobakgale, R., Petrik, L.F., Nyakuma, B.B., Hower, J.C., Ward, C.R., Oliveira, M.L.S., and Silva, L.F.O., Environ. Geochem. Health, 2020, vol. 42, pp. 2771–2788.

    Article  CAS  PubMed  Google Scholar 

  51. Vassilev, S.V., Kitano, K., and Vassileva, C.G., Fuel, 1996, vol. 75, pp. 1537–1542.

    Article  CAS  Google Scholar 

  52. Dai, S., Li, T., Jiang, Y., Ward, C.R., Hower, J.C., Sun, J., Liu, J., Song, H., Wei, J., and Li, Q., Int. J. Coal Geol., 2015, vol. 137, pp. 92–110.

    Article  CAS  Google Scholar 

  53. Vassilev, S.V. and Vassileva, C.G., Fuel Process. Technol., 1996, vol. 47, pp. 261–280.

    Article  CAS  Google Scholar 

  54. Dai, S., Zhao, L., Peng, S., Chou, C.-L., Wang, X., Zhang, Y., Li, D., and Sun, Y., Int. J. Coal Geol., 2010, vol. 81, pp. 320–332.

    Article  CAS  Google Scholar 

  55. Liu, X., Yan, Z., Wang, H., and Luo, Y., J. Nat. Gas Chem., 2003, vol. 12, pp. 63–70.

    CAS  Google Scholar 

  56. Dill, H., Kus, J., Dohrmann, R., and Tsoy, Y., Int. J. Coal Geol., 2008, vol. 75, pp. 225–240.

    Article  CAS  Google Scholar 

  57. Zhang, W., Zhu, Z., and Cheng, C.Y., Hydrometallurgy, 2011, vol. 108, pp. 177–188.

    Article  CAS  Google Scholar 

  58. Filippou, D. and Hudon, G., JOM, 2009, vol. 61, p. 36.

    Article  CAS  Google Scholar 

  59. Vassilev, S.V. and Vassileva, C.G., Fuel Process. Technol., 1997, vol. 51, pp. 19–45.

    Article  CAS  Google Scholar 

  60. Landais, P., Muller, J.-F., Michels, R., Oudin, J.-L., and Zaugg, P., Fuel, 1989, vol. 68, pp. 1616–1619.

    Article  CAS  Google Scholar 

  61. Košina, M. and Heppner, P., Fuel, 1984, vol. 63, pp. 838–846.

    Article  Google Scholar 

  62. Zhao, Y., Hu, H., Jin, L., He, X., and Wu, B., Fuel Process. Technol., 2011, vol. 92, pp. 780–786.

    Article  CAS  Google Scholar 

  63. Xie, W., Stanger, R., Lucas, J., Wall, T., and Mahoney, M., Fuel, 2013, vol. 103, pp. 1023–1031.

    Article  CAS  Google Scholar 

  64. Sun, Q.-L., Li, W., Chen, H.-K., and Li, B.-Q., J. China Univ. Min. Technol., 2003, vol. 32, pp. 664–669.

    CAS  Google Scholar 

  65. de Lourdes Ilha Gomes, M., Osório, E., and Faria Vilela, A.C., Mater. Res., 2006, vol. 9, pp. 91–95.

    Article  Google Scholar 

  66. Kim, J., Lee, Y., Ryu, C., Park, H.Y., and Lim, H., Korean J. Chem. Eng., 2015, vol. 32, pp. 1297–1304.

    Article  CAS  Google Scholar 

  67. Basu, P., Biomass Gasification and Pyrolysis: Practical Design and Theory, Burlington, MA: Academic 2010.

    Google Scholar 

  68. Sonibare, O., Ehinola, O., Egashira, R., and KeanGiap, L., J. Appl. Sci., 2005, vol. 5, pp. 104–107.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to acknowledge the Hydrogen Fuel Cell at Universiti Teknologi Malaysia (UTM) for the TGA runs. Many thanks also accrue to Universiti Malaysia Pahang (UMP) for the technical assistance with the XRF. The surface analysis (SEM/EDX) section of the University Industrial Research Laboratory (UiRL, UTM) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bemgba B. Nyakuma.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyakuma, B.B., Akinyemi, S.A., Wong, S.L. et al. Physiochemical, Mineralogical, Thermal and Kinetic Characterisation of Selected Coals from the Benue Trough and Anambra Basin, Nigeria. Coke Chem. 64, 496–507 (2021). https://doi.org/10.3103/S1068364X21110065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X21110065

Keywords:

Navigation