Skip to main content
Log in

Influence of the Nature of the Al Source on the Properties of the Initial Reaction Gels for Crystallization of Molecular Sieve AlPO4-11

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The formation of the initial reaction gels using boehmite and Al isopropoxide, as well as their subsequent crystallization into AlPO4-11 molecular sieves, were studied by XRD, IR and Raman spectroscopy, SEM, TEM, and N2 adsorption-desorption methods. It was shown that the reactivity of the aluminum source significantly affects the chemical and phase compositions of the initial gels. The influence of the properties of the reaction gels on the phase composition of the crystallization products, morphology, and secondary pore structure of AlPO4-11 molecular sieves was demonstrated. Ways to control their morphology and secondary pore structure were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Martinez, C. and Corma, A., Coord. Chem. Rev., 2011, vol. 255, nos. 13–14, pp. 1558–1580. https://doi.org/10.1016/j.ccr.2011.03.014

    Article  CAS  Google Scholar 

  2. Vermeiren, W. and Gilson, J.-P., Top. Catal., 2009, vol. 52, pp. 1131–1161. https://doi.org/10.1007/s11244-009-9271-8

    Article  CAS  Google Scholar 

  3. Rabo, J.A., Poutsma, M.L., and Skeels, G.W., Proc. 5th Int. Congr. on Catalysis, Miami Beach, 1972, vol. 2, p. 1353.

  4. US Patent 4440871, 1984.

  5. Flanigen, E.M., Lok, B.M., Patton, R.L., and Wilson, S.T., Stud. Surf. Sci. Catal., 1986, vol. 28, pp. 103–112. https://doi.org/10.1016/s0167-2991(09)60862-4

    Article  CAS  Google Scholar 

  6. Wilson, S.T., Lok, B.M., Messina, C.A., Cannan, T.R., and Flanigen, E.M., J. Am. Chem. Soc., 1982, vol. 104, no. 4, pp. 1146–1147. https://doi.org/10.1021/ja00368a062

    Article  CAS  Google Scholar 

  7. Baerlocher, C., Meier, W.M., and Olson, D.H., Atlas of Zeolite Framework Types, Amsterdam: Elsevier, 6th ed., 2007.

  8. Yang, M., Fan, D., Wei, Y., Tian, P., and Liu, Z., Adv. Mater., 2019, article 1902181. https://doi.org/10.1002/adma.2019021

  9. Miller, S.J., Micropor. Mater., 1994, vol. 2, no. 5, pp. 439–449. https://doi.org/10.1016/0927-6513(94)00016-6

    Article  CAS  Google Scholar 

  10. Miller, S.J., Stud. Surf. Sci. Catal., 1994, vol. 84, pp. 2319–2326. https://doi.org/10.1016/S0167-2991(08)63796-9

    Article  CAS  Google Scholar 

  11. Liquid Phase Oxidation via Heterogeneous Catalysis: Organic Synthesis and Industrial Applications, Clerici, M.G. and Kholdeeva, O.A., Eds., Hoboken: John Wiley & Sons, 2013. https://doi.org/10.1002/9781118356760

  12. Tapp, N.J., Milestone, N.B., and Bibby, D.M., Zeolites, 1988, vol. 8, no. 3, pp. 183–188. https://doi.org/10.1016/S0144-2449(88)80305-1

    Article  CAS  Google Scholar 

  13. Agliullin, M.R., Khairullina, Z.R., Faizullin, A.V., and Kutepov, B.I., Petrol. Chem., 2019, vol. 59, pp. 349–353. https://doi.org/10.1134/S0965544119030010

    Article  CAS  Google Scholar 

  14. Agliullin, M.R., Lazarev, V.V., and Kutepov, B.I., Russ. Chem. Bull., 2021, vol. 70, pp. 47–55. https://doi.org/10.1007/s11172-021-3055-0

    Article  CAS  Google Scholar 

  15. Agliullin, M.R., Faizullin, A.V., Khazipova, A.N., and Kutepov, B.I., Kinet. Catal., 2020, vol. 61, pp. 654–662. https://doi.org/10.1134/S0023158420040011

    Article  CAS  Google Scholar 

  16. Agliullin, M.R., Kutepov, B.I., Ostroumova, V.A., and Maximov, A.L., Petrol. Chem., 2021, vol. 61, pp. 836–851. https://doi.org/10.1134/S0965544121080028

    Article  CAS  Google Scholar 

  17. Agliullin, M.R., Kutepov, B.I., Ostroumova, V.A., and Maximov, A.L., Petrol. Chem., 2021, vol. 61, pp. 852–870. https://doi.org/10.1134/S096554412108003X

    Article  CAS  Google Scholar 

  18. Hou, H., Xie, Y., Yang, Q., Guo, Q., and Tan, C., Nanotechnology, 2005, vol. 16, pp. 741–745. https://doi.org/10.1088/0957-4484/16/6/019

    Article  CAS  Google Scholar 

  19. Zhu, Z.F., Zhang, Z.Y., Liu, H., Wang, X.F., and Du, J., J. Funct. Mater., 2012, vol. 43, pp. 163–165.

    CAS  Google Scholar 

  20. Lindblad, T., Rebenstorf, B., Yan, Z.G., and Andersson, S.L.T., Appl. Catal., A: Gen., 1994, vol. 112, pp. 187–208. https://doi.org/10.1016/0926-860X(94)80219-X

    Article  CAS  Google Scholar 

  21. Bai, J. and Piao, J., Nano-Micro Lett., 2020, vol. 15, pp. 430–432. https://doi.org/10.1049/mnl.2019.0771

    Article  CAS  Google Scholar 

  22. Zu, G., Shen, J., Wei, X., Ni, X., Zhang, Z., Wang, J., and Liu, G., J. Non-Cryst. Solids, 2011, vol. 357, pp. 2903–2906. https://doi.org/10.1016/j.jnoncrysol.2011.03.031

    Article  CAS  Google Scholar 

  23. Li, D.Y., Lin, Y.S., Li, Y.C., Shieh, D.L., and Lin, J.L., Micropor. Mesopor. Mater., 2008, vol. 108, pp. 276–282. https://doi.org/10.1016/j.micromeso.2007.04.009

    Article  CAS  Google Scholar 

  24. Wang, Q.R., Huo, J.C., Lei, Y.L., and Wei, A., Adv. Mater. Res., 2013, vol. 699, pp. 470–475. https://doi.org/10.4028/www.scientific.net/AMR.699.470

    Article  CAS  Google Scholar 

  25. Burrell, L.S., Johnston, C.T., Schulze, D., Klein, J., White, J.L., and Hem, S.L., Vaccine, 2000, vol. 19, pp. 282–287. https://doi.org/10.1016/S0264-410X(00)00162-6

    Article  CAS  PubMed  Google Scholar 

  26. Araujo, A.S., Diniz, J.C., Silva, A.O.S., and Melo, R.A.A., J. Alloys Compd., 1997, vol. 250, pp. 532–535. https://doi.org/10.1016/S0925-8388(96)02738-7

    Article  Google Scholar 

  27. Rokita, M., Handke, M., and Mozgawa, W., J. Mol. Struct., 2000, vol. 555, pp. 351–356. https://doi.org/10.1016/S0022-2860(00)00620-7

    Article  CAS  Google Scholar 

  28. Yu, Y., Xiong, G., Li, C., and Xiao, F.-Sh., Micropor. Mesopor. Mater., 2001, vol. 46, no. 1, pp. 23–34. https://doi.org/10.1016/S1387-1811(01)00271-2

    Article  CAS  Google Scholar 

  29. Holmes, A.J., Kirkby, S.J., Ozin, G.A., and Young, D., J. Phys. Chem., 1994, vol. 98, no. 17, pp. 4677–4682. https://doi.org/10.1021/j100068a032

    Article  CAS  Google Scholar 

  30. Agliullin, M.R., Khairullina, Z.R., Faizullin, A.V., Petrov, A.I., Badretdinova, A.A., Talzi, V.P., and Kutepov, B.I., Catal. Ind., 2019, vol. 11, pp. 1–6. https://doi.org/10.1134/S2070050419010021

    Article  Google Scholar 

  31. Agliullin, M.R., Khairullina, Z.R., Kuvatova, R.Z., and Kutepov, B.I., Catal. Ind., 2020, vol. 12, pp. 89–94. https://doi.org/10.1134/S2070050420020026

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (project no. 21-13-00169, https://rscf.ru/project/21-13-00169/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Agliullin.

Ethics declarations

The authors declare that there is no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agliullin, M.R., Shamanaeva, I.A., Zabirov, A.R. et al. Influence of the Nature of the Al Source on the Properties of the Initial Reaction Gels for Crystallization of Molecular Sieve AlPO4-11. Pet. Chem. 62, 291–300 (2022). https://doi.org/10.1134/S096554412203001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554412203001X

Keywords:

Navigation