Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical relevance of tumour-associated macrophages

An Author Correction to this article was published on 06 April 2022

This article has been updated

Abstract

In the past decade, substantial advances have been made in understanding the biology of tumour-associated macrophages (TAMs), and their clinical relevance is emerging. A particular aspect that is becoming increasingly clear is that the interaction of TAMs with cancer cells and stromal cells in the tumour microenvironment enables and sustains most of the hallmarks of cancer. Therefore, manipulation of TAMs could enable improved disease control in a substantial fraction of patients across a large number of cancer types. In this Review, we examine the diversity of TAMs in various cancer indications and how this heterogeneity is being revisited with the advent of single-cell technologies, and then explore the current knowledge on the functional roles of different TAM states and the prognostic and predictive value of TAM-related signatures. We also review agents targeting TAMs that are currently being or will soon be tested in clinical trials, and how manipulations of TAMs can improve existing anticancer treatments. Finally, we discuss how TAM-targeting approaches could be further integrated into routine clinical practice, considering a precision oncology approach and viewing TAMs as a dynamic population that can evolve under treatment pressure.

Key points

  • Tumour-associated macrophages (TAMs) are phenotypically and functionally diverse; therefore, some can promote tumour progression whereas others can exhibit antitumour activity.

  • Some TAM states have prognostic value because their abundance is associated with distinct clinical outcomes, as is the case for TAM states in patients with melanoma and lung, colorectal, ovarian, pancreatic, stomach and kidney cancers.

  • Some TAM states are associated with response to treatment, or lack thereof, as demonstrated in seminal studies involving patients with breast cancer, renal cell carcinoma and melanoma.

  • Not all tumour-promoting TAMs have M2-like phenotypes, thus highlighting the importance of defining TAM states beyond the M1/M2 dichotomy.

  • The diversity of TAMs suggests different possibilities for exploiting particular subsets for therapeutic purposes; as a result, an arsenal of macrophage-targeted agents are currently being tested in the clinic.

  • With the integration of single-cell RNA sequencing and other omics in therapeutic decision-making processes, the inclusion of TAM data in precision oncology molecular tumour boards could become routine practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prognostic and predictive value of TAM states.
Fig. 2: TAM-targeting agents and engineered macrophages for the treatment of solid tumours.
Fig. 3: Proposed integration of TAM-related data in precision oncology molecular tumour boards.

Similar content being viewed by others

Change history

References

  1. Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Engblom, C., Pfirschke, C. & Pittet, M. J. The role of myeloid cells in cancer therapies. Nat. Rev. Cancer 16, 447–462 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Mantovani, A. et al. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14, 399–416 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bejarano, L., Jordāo, M. J. C. & Joyce, J. A. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11, 933–959 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Yofe, I., Dahan, R. & Amit, I. Single-cell genomic approaches for developing the next generation of immunotherapies. Nat. Med. 26, 171–177 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Cohen, M. et al. Lung single-cell signaling interaction map reveals basophil role in macrophage imprinting. Cell 175, 1031–1044.e18 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Hara, T. et al. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell 39, 779–792.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Alonso-Curbelo, D. et al. A gene-environment-induced epigenetic program initiates tumorigenesis. Nature 590, 642–648 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. La Manno, G. et al. Molecular architecture of the developing mouse brain. Nature 596, 92–96 (2021).

    Article  PubMed  CAS  Google Scholar 

  10. Satpathy, A. T. et al. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat. Biotechnol. 37, 925–936 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schede, H. H. et al. Spatial tissue profiling by imaging-free molecular tomography. Nat. Biotechnol. 39, 968–977 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Wagner, D. E. & Klein, A. M. Lineage tracing meets single-cell omics: opportunities and challenges. Nat. Rev. Genet. 21, 410–427 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Evans, R. & Alexander, P. Cooperation of immune lymphoid cells with macrophages in tumour immunity. Nature 228, 620–622 (1970).

    Article  CAS  PubMed  Google Scholar 

  14. Qian, B. Z. & Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, Q. W. et al. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS ONE 7, e50946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vesely, M. D. et al. Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol. 29, 235–271 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Locati, M., Curtale, G. & Mantovani, A. Diversity, mechanisms, and significance of macrophage plasticity. Annu. Rev. Pathol. 15, 123–147 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Gabrusiewicz, K. et al. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. JCI Insight 1, 85841 (2016).

    Article  PubMed  Google Scholar 

  19. Szulzewsky, F. et al. Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarisation and highly express Gpnmb and Spp1. PLoS ONE 10, e0116644 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Yang, M. et al. Diverse functions of macrophages in different tumor microenvironments. Cancer Res. 78, 5492–5503 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, Y. et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell 39, 1578–1593.e3 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarisation. Trends Immunol. 25, 677–686 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Murray, P. J. et al. Macrophage activation and polarisation: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 184, 792–809.e23 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Bi, K. et al. Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma. Cancer Cell 39, 649–661.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cassetta, L. et al. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 35, 588–602.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pombo Antunes, A. R. et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat. Neurosci. 24, 595–610 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308.e36 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Leader, A. M. et al. Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification. Cancer Cell 39, 1594–1609.e12 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Chan, J. M. et al. Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer. Cancer Cell 39, 1479–1496.e18 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, Q. et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 179, 829–845.e20 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, A. X. et al. Single-cell characterization of macrophages in glioblastoma reveals MARCO as a mesenchymal pro-tumor marker. Genome Med. 13, 88 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pelka, K. et al. Spatially organized multicellular immune hubs in human colorectal cancer. Cell 184, 4734–4752.e20 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Mujal, A. M. et al. Holistic characterization of tumor monocyte-to-macrophage differentiation integrates distinct immune phenotypes in kidney cancer. Preprint at bioRxiv https://doi.org/10.1101/2021.07.07.451502 (2021).

    Article  Google Scholar 

  37. Pucci, F. et al. SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions. Science 352, 242–246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu, J. et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat. Med. 27, 152–164 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Braun, D. A. et al. Progressive immune dysfunction with advancing disease stage in renal cell carcinoma. Cancer Cell 39, 632–648.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bassez, A. et al. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat. Med. 27, 820–832 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Yang, M. et al. CXCL13 shapes immunoactive tumor microenvironment and enhances the efficacy of PD-1 checkpoint blockade in high-grade serous ovarian cancer. J. Immunother. Cancer 9, e001136 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Krishna, C. et al. Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy. Cancer Cell 39, 662–677.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Berry, S. et al. Analysis of multispectral imaging with the AstroPath platform informs efficacy of PD-1 blockade. Science 372, eaba2609 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Ringel, A. E. et al. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell 183, 1848–1866.e26 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu, J. Y. et al. Cancer-derived succinate promotes macrophage polarisation and cancer metastasis via succinate receptor. Mol. Cell 77, 213–227.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Li, H. et al. The allergy mediator histamine confers resistanceto immunotherapy in cancer patients via activation of the macrophage histamine receptor H1. Cancer Cell 40, 36–52.e9 (2021).

    Article  PubMed  CAS  Google Scholar 

  49. Zhang, B. et al. B cell-derived GABA elicits IL-10+ macrophages to limit anti-tumour immunity. Nature 599, 471–476 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Neubert, N. J. et al. T cell-induced CSF1 promotes melanoma resistance to PD1 blockade. Sci. Transl. Med. 10, eaan3311 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Wang, X. et al. In vivo CRISPR screens identify the E3 ligase Cop1 as a modulator of macrophage infiltration and cancer immunotherapy target. Cell 184, 5357–5374.e22 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Di Conza, G. et al. Tumor-induced reshuffling of lipid composition on the endoplasmic reticulum membrane sustains macrophage survival and pro-tumorigenic activity. Nat. Immunol. 22, 1403–1415 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Kersten, K. et al. Spatiotemporal co-dependency between macrophages and exhausted CD8+ T cells in cancer. Preprint at bioRXiv https://doi.org/10.1101/2021.09.27.461866 (2021).

    Article  Google Scholar 

  54. Arlauckas, S. P. et al. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci. Transl. Med. 9, eaal3604 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Akkari, L. et al. Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Sci. Transl. Med. 12, eaaw7843 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Miller, M. A. et al. Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts. Sci. Transl. Med. 9, eaal0225 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Niesel, K. et al. The immune suppressive microenvironment affects efficacy of radio-immunotherapy in brain metastasis. EMBO Mol. Med. 13, e13412 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mehta, A. K. et al. Targeting immunosuppressive macrophages overcomes PARP inhibitor resistance in BRCA1-associated triple-negative breast cancer. Nat. Cancer 2, 66–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Kurdi, A. T. et al. Antibody-dependent cellular phagocytosis by macrophages is a novel mechanism of action of elotuzumab. Mol. Cancer Ther. 17, 1454–1463 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bowman, R. L. et al. Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies. Cell Rep. 17, 2445–2459 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Casanova-Acebes, M. et al. Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature 595, 578–584 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Loyher, P. L. et al. Macrophages of distinct origins contribute to tumor development in the lung. J. Exp. Med. 215, 2536–2553 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang, N. et al. LYVE1+ macrophages of murine peritoneal mesothelium promote omentum-independent ovarian tumor growth. J. Exp. Med. 218, e20210924 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Zhu, Y. et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 47, 323–338.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cortez-Retamozo, V. et al. Origins of tumor-associated macrophages and neutrophils. Proc. Natl Acad. Sci. USA 109, 2491–2496 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cortez-Retamozo, V. et al. Angiotensin II drives the production of tumor-promoting macrophages. Immunity 38, 296–308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Movahedi, K. et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 70, 5728–5739 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Qian, B. Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Friebel, E. et al. Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading leukocytes. Cell 181, 1626–1642.e20 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Guldner, I. H. et al. CNS-native myeloid cells drive immune suppression in the brain metastatic niche through Cxcl10. Cell 183, 1234–1248.e25 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Klemm, F. et al. Compensatory CSF2-driven macrophage activation promotes adaptive resistance to CSF1R inhibition in breast-to-brain metastasis. Nat. Cancer 2, 1086–1101 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Bruni, D., Angell, H. K. & Galon, J. The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 20, 662–680 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Andreatta, M. et al. Interpretation of T cell states from single-cell transcriptomics data using reference atlases. Nat. Commun. 12, 2965 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gerhard, G. M. et al. Tumor-infiltrating dendritic cell states are conserved across solid human cancers. J. Exp. Med. 218, e20200264 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Mulder, K. et al. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity 54, 1883–1900.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Luca, B. A. et al. Atlas of clinically distinct cell states and ecosystems across human solid tumors. Cell 184, 5482–5496.e28 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Lin, E. Y. et al. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med. 193, 727–740 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ries, C. H. et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25, 846–859 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Pfirschke, C. et al. Macrophage-targeted therapy unlocks antitumoral crosstalk between IFN-𝛾-secreting lymphocytes and IL-12-producing dendritic cell. Cancer Immunol. Res. 10, 40–55 (2021).

    Article  PubMed  Google Scholar 

  80. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarisation and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cassier, P. A. et al. CSF1R inhibition with emactuzumab in locally advanced diffuse-type tenosynovial giant cell tumours of the soft tissue: a dose-escalation and dose-expansion phase 1 study. Lancet Oncol. 16, 949–956 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Gomez-Roca, C. A. et al. Phase I study of emactuzumab single agent or in combination with paclitaxel in patients with advanced/metastatic solid tumors reveals depletion of immunosuppressive M2-like macrophages. Ann. Oncol. 30, 1381–1392 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. DeNardo, D. G. & Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 19, 369–382 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lin, C.-C. et al. Phase I study of BLZ945 alone and with spartalizumab (PDR001) in patients (pts) with advanced solid tumors [abstract]. Cancer Res. 80 (Suppl. 16), CT171 (2020).

    Google Scholar 

  85. Cassier, P. A. et al. MEDIPLEX: a phase 1 study of durvalumab (D) combined with pexidartinib (P) in patients (pts) with advanced pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC) [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 2579 (2019).

    Article  Google Scholar 

  86. Quail, D. F. et al. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352, aad3018 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Martin, T. D. et al. The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation. Science 373, 1327–1335 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Cassetta, L. & Pollard, J. W. Targeting macrophages: therapeutic approaches in cancer. Nat. Rev. Drug Discov. 17, 887–904 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Bonapace, L. et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature 515, 130–133 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Sandhu, S. K. et al. A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemother. Pharmacol. 71, 1041–1050 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Nywening, T. M. et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 17, 651–662 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Linehan, D. et al. Overall survival in a trial of orally administered CCR2 inhibitor CCX872 in locally advanced/metastatic pancreatic cancer: correlation with blood monocyte counts [abstract]. J. Clin. Oncol. 36 (Suppl. 5), 92 (2018).

    Article  Google Scholar 

  93. Jiao, X. et al. CCR5 governs DNA damage repair and breast cancer stem cell expansion. Cancer Res. 78, 1657–1671 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Halama, N. et al. Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in cancer patients. Cancer Cell 29, 587–601 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Liu, J. et al. High expression of CCR5 in melanoma enhances epithelial-mesenchymal transition and metastasis via TGFβ1. J. Pathol. 247, 481–493 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Aldinucci, D., Borghese, C. & Casagrande, N. The CCL5/CCR5 axis in cancer progression. Cancers 12, 1765 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  97. CytoDyn. CytoDyn announces cancer update: 12-month analysis of 28 mTNBC patients receiving leronlimab suggests an increase of 3600% in 12-month OS in 75% of patients with a lower level of circulating cells after leronlimab induction or at baseline; 12-month PFS continues at near 600% increase. CytoDyn https://www.cytodyn.com/newsroom/press-releases/detail/574/cytodyn-announces-cancer-update-12-month-analysis-of-28 (2021).

  98. Guo, F. et al. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene 35, 816–826 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Hughes, R. et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res. 75, 3479–3491 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Seo, Y. D. et al. Mobilization of CD8+ T cells via CXCR4 blockade facilitates PD-1 checkpoint therapy in human pancreatic cancer. Clin. Cancer Res. 25, 3934–3945 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bockorny, B. et al. BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: the COMBAT trial. Nat. Med. 26, 878–885 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. & Thomas, R. P. et al. CXCR4 blockade at the end of irradiation to improve local control of glioblastoma (GBM) [abstract]. J. Clin. Oncol. 36 (Suppl. 15), 2019 (2018).

    Article  Google Scholar 

  103. Hidalgo, M. et al. A multi-center phase 2a trial of the CXCR4 inhibitor motixafortide (BL-8040)(M) in combination with pembrolizumab (P) and chemotherapy (C), in patients with metastatic pancreatic adenocarcinoma (mPDAC) [abstract]. Cancer Res. 81 (Suppl. 13), CT177 (2021).

    Article  Google Scholar 

  104. Feng, M. et al. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat. Rev. Cancer 19, 568–586 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chao, M. P. et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142, 699–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gholamin, S. et al. Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Sci. Transl. Med. 9, eaaf2968 (2017).

    Article  PubMed  CAS  Google Scholar 

  107. Weiskopf, K. et al. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science 341, 88–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Advani, R. et al. CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. N. Engl. J. Med. 379, 1711–1721 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sallman, D. A. et al. The first-in-class anti-CD47 antibody magrolimab (5F9) in combination with azacitidine is effective in MDS and AML patients: ongoing phase 1b results [abstract]. Blood 134 (Suppl. 1), 569 (2019).

    Article  Google Scholar 

  110. Fisher, G. A. et al. A phase Ib/II study of the anti-CD47 antibody magrolimab with cetuximab in solid tumor and colorectal cancer patients [abstract]. J. Clin. Oncol. 38 (Suppl. 4), 114 (2020).

    Article  Google Scholar 

  111. Upton, R. et al. Combining CD47 blockade with trastuzumab eliminates HER2-positive breast cancer cells and overcomes trastuzumab tolerance. Proc. Natl Acad. Sci. USA 118, e2026849118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gilead. Gilead announces partial clinical hold for studies evaluating magrolimab in combination with azacitidine. GILEAD https://www.gilead.com/news-and-press/press-room/press-releases/2022/1/gilead-announces-partial-clinical-hold-for-studies-evaluating-magrolimab-in-combination-with-azacitidine (2022).

  113. Deczkowska, A., Weiner, A. & Amit, I. The physiology, pathology, and potential therapeutic applications of the TREM2 signaling pathway. Cell 181, 1207–1217 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Shirotani, K. et al. Aminophospholipids are signal-transducing TREM2 ligands on apoptotic cells. Sci. Rep. 9, 7508 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Molgora, M. et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell 182, 886–900.e17 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Katzenelenbogen, Y. et al. Coupled scRNA-seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer. Cell 182, 872–885.e19 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Binnewies, M. et al. Targeting TREM2 on tumor-associated macrophages enhances immunotherapy. Cell Rep. 37, 109844 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Klesney-Tait, J., Turnbull, I. R. & Colonna, M. The TREM receptor family and signal integration. Nat. Immunol. 7, 1266–1273 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Fontana, R. et al. Nuclear receptor ligands induce TREM-1 expression on dendritic cells: analysis of their role in tumors. Oncoimmunology 8, 1554967 (2019).

    Article  PubMed  Google Scholar 

  120. Kuemmel, A. et al. Soluble triggering receptor expressed on myeloid cells 1 in lung cancer. Sci. Rep. 8, 10766 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Wu, J. et al. The proinflammatory myeloid cell receptor TREM-1 controls Kupffer cell activation and development of hepatocellular carcinoma. Cancer Res. 72, 3977–3986 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Barkal, A. A. et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572, 392–396 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Klapdor, R. et al. Characterization of a novel third-generation anti-CD24-CAR against ovarian cancer. Int. J. Mol. Sci. 20, 660 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  124. Maliar, A. et al. Redirected T cells that target pancreatic adenocarcinoma antigens eliminate tumors and metastases in mice. Gastroenterology 143, 1375–1384.e5 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. De Henau, O. et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. Nature 539, 443–447 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Kaneda, M. M. et al. PI3Kγ is a molecular switch that controls immune suppression. Nature 539, 437–442 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Furman, R. R. et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 370, 997–1007 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Vonderheide, R. H. The immune revolution: a case for priming, not checkpoint. Cancer Cell 33, 563–569 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Beatty, G. L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kashyap, A. S. et al. Optimized antiangiogenic reprogramming of the tumor microenvironment potentiates CD40 immunotherapy. Proc. Natl Acad. Sci. USA 117, 541–551 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Garris, C. S. et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity 49, 1148–1161.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Siwicki, M. et al. Resident Kupffer cells and neutrophils drive liver toxicity in cancer immunotherapy. Sci. Immunol. 6, eabi7083 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dahan, R. et al. Therapeutic activity of agonistic, human anti-CD40 monoclonal antibodies requires selective FcγR engagement. Cancer Cell 29, 820–831 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Machiels, J. P. et al. Phase Ib study of anti-CSF-1R antibody emactuzumab in combination with CD40 agonist selicrelumab in advanced solid tumor patients. J. Immunother. Cancer 8, e001153 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Grilley-Olson, J. E. et al. SEA-CD40, a non-fucosylated CD40 agonist: interim results from a phase 1 study in advanced solid tumors [abstract]. J. Clin. Oncol. 36 (Suppl. 15), 3093 (2018).

    Article  Google Scholar 

  136. O’Hara, M. H. et al. CD40 agonistic monoclonal antibody APX005M (sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: an open-label, multicentre, phase 1b study. Lancet Oncol. 22, 118–131 (2021).

    Article  PubMed  Google Scholar 

  137. Irenaeus, S. M. M. et al. First-in-human study with intratumoral administration of a CD40 agonistic antibody, ADC-1013, in advanced solid malignancies. Int. J. Cancer 145, 1189–1199 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Garris, C. S. et al. Dendritic cell targeting with Fc-enhanced CD40 antibody agonists induces durable antitumor immunity in humanized mouse models of bladder cancer. Sci. Transl. Med. 13, eabd1346 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Labiano, S. et al. CD40 agonist targeted to fibroblast activation protein α synergizes with radiotherapy in murine HPV-positive head and neck tumors. Clin. Cancer Res. 27, 4054–4065 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Rodell, C. B. et al. TLR7/8-agonist-loaded nanoparticles promote the polarisation of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2, 578–588 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Geisse, J. et al. Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: results from two phase III, randomized, vehicle-controlled studies. J. Am. Acad. Dermatol. 50, 722–733 (2004).

    Article  PubMed  Google Scholar 

  142. Hilf, N. et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240–245 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Migliorini, D. et al. Phase I/II trial testing safety and immunogenicity of the multipeptide IMA950/poly-ICLC vaccine in newly diagnosed adult malignant astrocytoma patients. Neuro Oncol. 21, 923–933 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Okada, H. et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with α-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol. 29, 330–336 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Ribas, A. et al. Overcoming PD-1 blockade resistance with CpG-A Toll-like receptor 9 agonist vidutolimod in patients with metastatic melanoma. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-21-0425 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Sun, L. et al. Activating a collaborative innate-adaptive immune response to control metastasis. Cancer Cell 39, 1361–1374.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Rodriguez-Garcia, A. et al. CAR-T cell-mediated depletion of immunosuppressive tumor-associated macrophages promotes endogenous antitumor immunity and augments adoptive immunotherapy. Nat. Commun. 12, 877 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Johnson, L. R. et al. The immunostimulatory RNA RN7SL1 enables CAR-T cells to enhance autonomous and endogenous immune function. Cell 184, 4981–4995.e14 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Spear, P. et al. Chimeric antigen receptor T cells shape myeloid cell function within the tumor microenvironment through IFN-γ and GM-CSF. J. Immunol. 188, 6389–6398 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Chmielewski, M. et al. IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res. 71, 5697–5706 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Chmielewski, M. & Abken, H. CAR T cells releasing IL-18 convert to T-bethigh FoxO1low effectors that exhibit augmented activity against advanced solid tumors. Cell Rep. 21, 3205–3219 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Kuhn, N. F. et al. CD40 ligand-modified chimeric antigen receptor T cells enhance antitumor function by eliciting an endogenous antitumor response. Cancer Cell 35, 473–488.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. De Palma, M. et al. Tumor-targeted interferon-α delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 14, 299–311 (2008).

    Article  PubMed  CAS  Google Scholar 

  154. Klichinsky, M. et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38, 947–953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. CARISMA Therapeutics. CARISMA Therapeutics announces U.S. Food and Drug Administration grants fast track designation to CT-0508 for the treatment of patients with solid tumors. CISION https://prn.to/3kvshij (2021).

  156. Zhang, W. et al. Chimeric antigen receptor macrophage therapy for breast tumours mediated by targeting the tumour extracellular matrix. Br. J. Cancer 121, 837–845 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kaczanowska, S. et al. Genetically engineered myeloid cells rebalance the core immune suppression program in metastasis. Cell 184, 2033–2052.e21 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhang, L. et al. Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions. J. Hematol. Oncol. 13, 153 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Kang, M. et al. Nanocomplex-mediated in vivo programming to chimeric antigen receptor-M1 macrophages for cancer therapy. Adv. Mater. 33, e2103258 (2021).

    Article  PubMed  CAS  Google Scholar 

  160. Sloas, C., Gill, S. & Klichinsky, M. Engineered CAR-macrophages as adoptive immunotherapies for solid tumors. Front. Immunol. 12, 783305 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Andtbacka, R. H. et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33, 2780–2788 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Ramelyte, E. et al. Oncolytic virotherapy-mediated anti-tumor response: a single-cell perspective. Cancer Cell 39, 394–406.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Chiocca, E. A. et al. Regulatable interleukin-12 gene therapy in patients with recurrent high-grade glioma: results of a phase 1 trial. Sci. Transl. Med. 11, eaaw5680 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Desjardins, A. et al. Recurrent glioblastoma treated with recombinant poliovirus. N. Engl. J. Med. 379, 150–161 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Samson, A. et al. Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade. Sci. Transl. Med. 10, eaam7577 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Cohn, D. E. et al. Randomized phase IIB evaluation of weekly paclitaxel versus weekly paclitaxel with oncolytic reovirus (Reolysin®) in recurrent ovarian, tubal, or peritoneal cancer: an NRG Oncology/Gynecologic Oncology Group study. Gynecol. Oncol. 146, 477–483 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Xu, B. et al. An oncolytic virus expressing a full-length antibody enhances antitumor innate immune response to glioblastoma. Nat. Commun. 12, 5908 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. De Palma, M. & Naldini, L. Angiopoietin-2 TIEs up macrophages in tumor angiogenesis. Clin. Cancer Res. 17, 5226–5232 (2011).

    Article  PubMed  CAS  Google Scholar 

  169. Yu, X. et al. Suppression of KSHV-induced angiopoietin-2 inhibits angiogenesis, infiltration of inflammatory cells, and tumor growth. Cell Cycle 15, 2053–2065 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Vergote, I. et al. Trebananib or placebo plus carboplatin and paclitaxel as first-line treatment for advanced ovarian cancer (TRINOVA-3/ENGOT-ov2/GOG-3001): a randomised, double-blind, phase 3 trial. Lancet Oncol. 20, 862–876 (2019).

    Article  CAS  PubMed  Google Scholar 

  171. Kloepper, J. et al. Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc. Natl Acad. Sci. USA 113, 4476–4481 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kienast, Y. et al. Ang-2-VEGF-A CrossMab, a novel bispecific human IgG1 antibody blocking VEGF-A and Ang-2 functions simultaneously, mediates potent antitumor, antiangiogenic, and antimetastatic efficacy. Clin. Cancer Res. 19, 6730–6740 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Wong, E. C. et al. Preclinical evaluation of VEGF Ang2 bispecific nanobody BI836880 in patient-derived xenograft models of nasopharyngeal carcinoma [abstract]. Cancer Res. 81 (Suppl. 13), 948 (2021).

    Article  Google Scholar 

  174. Kamber, R. A. et al. Inter-cellular CRISPR screens reveal regulators of cancer cell phagocytosis. Nature 597, 549–554 (2021).

    Article  CAS  PubMed  Google Scholar 

  175. Zhai, K. et al. Pharmacological inhibition of BACE1 suppresses glioblastoma growth by stimulating macrophage phagocytosis of tumor cells. Nat. Cancer 2, 1136–1151 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Klug, F. et al. Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24, 589–602 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. Virtakoivu, R. et al. Systemic blockade of Clever-1 elicits lymphocyte activation alongside checkpoint molecule downregulation in patients with solid tumors: results from a phase I/II clinical trial. Clin. Cancer Res. 27, 4205–4220 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Bates, S. E. Epigenetic therapies for cancer. N. Engl. J. Med. 383, 650–663 (2020).

    Article  CAS  PubMed  Google Scholar 

  179. Guerriero, J. L. et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature 543, 428–432 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Burgess, M. et al. HDAC7 is an actionable driver of therapeutic antibody resistance by macrophages from CLL patients. Oncogene 39, 5756–5767 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Georgoudaki, A. M. et al. Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell Rep. 15, 2000–2011 (2016).

    Article  CAS  PubMed  Google Scholar 

  182. Eisinger, S. et al. Targeting a scavenger receptor on tumor-associated macrophages activates tumor cell killing by natural killer cells. Proc. Natl Acad. Sci. USA 117, 32005–32016 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. La Fleur, L. et al. Targeting MARCO and IL37R on immunosuppressive macrophages in lung cancer blocks regulatory T cells and supports cytotoxic lymphocyte function. Cancer Res. 81, 956–967 (2021).

    Article  CAS  PubMed  Google Scholar 

  184. Lam, K. C. et al. Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell 184, 5338–5356.e21 (2021).

    Article  CAS  PubMed  Google Scholar 

  185. Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  187. Irmisch, A. et al. The Tumor Profiler Study: integrated, multi-omic, functional tumor profiling for clinical decision support. Cancer Cell 39, 288–293 (2021).

    Article  CAS  PubMed  Google Scholar 

  188. Maas, R. R. et al. An integrated pipeline for comprehensive analysis of immune cells in human brain tumor clinical samples. Nat. Protoc. 16, 4692–4721 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Oh, J. et al. Rapid serial immunoprofiling of the tumor immune microenvironment by fine needle sampling. Clin. Cancer Res. 27, 4781–4793 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Voabil, P. et al. An ex vivo tumor fragment platform to dissect response to PD-1 blockade in cancer. Nat. Med. 27, 1250–1261 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Wensink, G. E. et al. Patient-derived organoids as a predictive biomarker for treatment response in cancer patients. NPJ Precis. Oncol. 5, 30 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Kim, H. R. et al. Mouse-human co-clinical trials demonstrate superior anti-tumour effects of buparlisib (BKM120) and cetuximab combination in squamous cell carcinoma of head and neck. Br. J. Cancer 123, 1720–1729 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ignatiadis, M., Sledge, G. W. & Jeffrey, S. S. Liquid biopsy enters the clinic – implementation issues and future challenges. Nat. Rev. Clin. Oncol. 18, 297–312 (2021).

    Article  PubMed  Google Scholar 

  194. Taube, J. M. et al. The Society for Immunotherapy of Cancer statement on best practices for multiplex immunohistochemistry (IHC) and immunofluorescence (IF) staining and validation. J. Immunother. Cancer 8, e000155 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Ji, A. L. et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. Cell 182, 497–514.e22 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Rao, A. et al. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Bera, K. et al. Artificial intelligence in digital pathology – new tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 16, 703–715 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Pai, S. I. et al. New technology on the horizon: fast analytical screening technique FNA (FAST-FNA) enables rapid, multiplex biomarker analysis in head and neck cancers. Cancer Cytopathol. 128, 782–791 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).

    Article  CAS  PubMed  Google Scholar 

  200. Siwicki, M. & Pittet, M. J. Versatile neutrophil functions in cancer. Semin. Immunol. https://doi.org/10.1016/j.smim.2021.101538 (2021).

    Article  PubMed  Google Scholar 

  201. Coffelt, S. B., Wellenstein, M. D. & de Visser, K. E. Neutrophils in cancer: neutral no more. Nat. Rev. Cancer 16, 431–446 (2016).

    Article  CAS  PubMed  Google Scholar 

  202. Derakhshani, A. et al. Mast cells: a double-edged sword in cancer. Immunol. Lett. 209, 28–35 (2019).

    Article  CAS  PubMed  Google Scholar 

  203. Khazaie, K. et al. The significant role of mast cells in cancer. Cancer Metastasis Rev. 30, 45–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  204. Geirsdottir, L. et al. Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell 179, 1609–1622.e16 (2019).

    Article  CAS  PubMed  Google Scholar 

  205. Evren, E. et al. Distinct developmental pathways from blood monocytes generate human lung macrophage diversity. Immunity 54, 259–275.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  206. Rongvaux, A. et al. Development and function of human innate immune cells in a humanized mouse model. Nat. Biotechnol. 32, 364–372 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Tuveson, D. & Clevers, H. Cancer modeling meets human organoid technology. Science 364, 952–955 (2019).

    Article  CAS  PubMed  Google Scholar 

  208. Yuki, K. et al. Organoid models of tumor immunology. Trends Immunol. 41, 652–664 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Cloughesy, T. F. et al. Neoadjuvant anti- PD-1immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat. Med. 25, 477–486 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.J.P. receives support from the ISREC Foundation, Ludwig Cancer Research, and NIH grants P01-CA240239 and R01-CA218579. O.M. receives support from the ISREC Foundation, the Ludwig Cancer Research, the Swiss National Science Foundation (SNSF) 31003A_176168, the Swiss National Cancer Ligue KFS-5034-02-2020, the Swiss Personalized Health Network (SPHN), and the Personalized Health and Related Technologies (PHRT). D.M. receives support from the ISREC Foundation, Association Frédéric Fellay, Ernst and Lucie Schmidheiny Foundation, Fondation Dr Henri Dubois-Ferrière Dinu Lipatti (DFDL), Ligue Genevoise contre le cancer, Personalized Health and Related Technologies (PHRT) ETH fund, Swiss Bridge Foundation, and Swiss Innovation Agency (Innosuisse).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to all aspects of preparation of this manuscript.

Corresponding author

Correspondence to Mikael J. Pittet.

Ethics declarations

Competing interests

M.J.P. has been a consultant for Aileron Therapeutics, AstraZeneca, Cygnal Therapeutics, Elstar Therapeutics, ImmuneOncia, KSQ Therapeutics, Merck, Siamab Therapeutics, Third Rock Ventures and Tidal. O.M. has been a consultant for Amgen, BMS, GSK, MSD, Novartis, Pierre Fabre and Roche, and has received research support from Amgen, BMS, MSD, Neracare and Pierre Fabre. D.M. is an inventor on patents related to CAR T cell therapy, filed by the University of Pennsylvania and the University of Geneva, and has been a consultant for Limula Therapeutics and MPC Therapeutics.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks L. Akkari and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov/

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pittet, M.J., Michielin, O. & Migliorini, D. Clinical relevance of tumour-associated macrophages. Nat Rev Clin Oncol 19, 402–421 (2022). https://doi.org/10.1038/s41571-022-00620-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-022-00620-6

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer