Skip to main content
Log in

Distribution of Alloying Element Atoms between γ- and γ'-Phase Particles in a Heat-Resistant Nickel Alloy

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Results of the study of the chemical composition of contacting γ- and γ'-phase particles in a granular heat-resistant nickel alloy (HNA) VV751P (Ni–15Co–12Cr–0.7V–0.3C–0.9W–2.7Mo–3.4Ti–2.0Nb–8.3Al–0.02Hf–0.008B, at %) by atom probe tomography are analyzed. Experimental and literature data on the preferential location of alloying elements in γ- and γ'-phase particles in different heat-resistant nickel alloys are considered. A criterion for the characterization of each of elements based on the ratio K = Еv/r2 (where Еv is the number of valence electrons and r is the atomic radius of an element) is suggested. It is shown that the higher the K value, the more probable the enrichment of γ-phase particles in this element and the higher the degree of such an enriching. The lower the K value, the more probable the enrichment of γ'‑phase particles in this element and the higher the degree of such an enriching. The effect of γ- and γ'-forming elements in heat-resistant nickel alloys and other factors on the stability of the γ- and γ' phases, mechanical characteristics of disc heat-resistant nickel alloys at room temperature, and long-term strength at operating temperatures is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. H. Fecht and D. Furrer, “Processing of nickel-base superalloys for turbine engine disc applications,” Adv. Eng. Mater. 2, 777–787 (2000).

    Article  CAS  Google Scholar 

  2. E. N. Kablov, “Innovative developments of FSUE “VIAM” SSC RF for the implementation of “Strategic directions for the development of materials and technologies for their processing for the period up to 2030”,” Aviatsionnye Materialy i Tekhnologii, No. 1 (34), 3–33 (2015).

    Google Scholar 

  3. G. S. Garibov, “Future development of domestic powdered heat-resistant nickel-based disk alloys for new parts of aviation technology,” Tekhnologiya Legkikh Splavov, No. 1, 7–28 (2017).

    Google Scholar 

  4. S. V. Rogozhkin, L. B. Ber, A. A. Nikitin, A. A. Khomich, O. A. Raznitsyn, A. A. Lukyanchuk, A. S. Shutov, M. M. Karashaev, and A. G. Zaluzhny, “Atom probe tomography of the VV751P nickel-based superalloy,” Phys. Met. Metallogr. 121, No. 1, 53–64 (2020).

    Article  CAS  Google Scholar 

  5. K. Matuszevski, R. Rettig, H. Matysiak, Z. Peng, I. Povstugar, P. Choi, J. Muller, D. Raabe, E. Spiecker, K. J. Kurzydlowski, and R. F. Singer, “Effect of ruthenium on precipitation of topologically close packed phases in Ni-based superalloys of 3rd and 4th generation,” Acta Mater. 95, 274–283 (2015).

    Article  Google Scholar 

  6. E. Cadel, D. Lemarchand, S. Chamberland, and D. Blavette, “Atom Probe Tomography investigation of the microstructure of superalloys N18,” Acta Mater. 50, 957–962 (2002).

    Article  CAS  Google Scholar 

  7. P. M. Sarosi, M. K. Miller, D. Isheim, and M. Mills, “Effects of cooling rate on the microstructure of a commercial Ni-based superalloy using atom probe tomography,” Microsc. Microanal. 13, Suppl. 2, 194–195 (2007).

    Article  Google Scholar 

  8. D. Lemarchand, S. Chamberland, E. Cadel, and D. Blavette, “Investigation of grain-boundary structure-segregation relationship in an N18 nickel-based superalloy,” Philos. Mag. A 82, 1651–1669 (2002).

    Article  CAS  Google Scholar 

  9. C. J. Smithells, Metals Reference Book (Butterworths, London, 1967).

    Google Scholar 

  10. D. V. Zaitsev, S. V. Sbitneva, L. B. Ber, and A. V. Zavodov, “ Determination of the chemical composition of particles of the main phases in articles made of EP741NP granulated heat-resistant nickel alloy,” Trudy VIAM, No. 9 (45), 61–71 (2016).

    Google Scholar 

  11. G. I. Morozova, “Regularity of the formation of the chemical composition of the γ'/γ matrix of multicomponent nickel alloys,” Dokl. Akad. Nauk SSSR, No. 6, 1413–1416 (1991).

    Google Scholar 

  12. G. I. Morozova, “Alloying imbalance compensation for high-temperature nickel alloys,” Metallovedenie i Termich. Obr. Metallov., No. 12, 52–56 (2012).

  13. N. V. Petrushin and I. L. Svetlov, “Physicochemical and structural characteristics of nickel-based superalloys,” Metally, No. 2, 63–73 (2001).

    Google Scholar 

  14. Ya. S. Umanskii and Yu. A. Skakov, Physics of Metals. Atomic Composition of Metals and Alloys (Atomizdat, Moscow, 1978).

    Google Scholar 

  15. V. G. Vaks, Interatomic Interactions and Bonds in Solids (AT, Moscow, 2002) [in Russian].

  16. W. J. Boech and J. S. Slaney, “Preventing Sigma Phase Embrittelement in nickel base superalloys,” Metall. Prog. 86, 109–111 (1964).

    Google Scholar 

  17. Ch. S. Barrett, “Some industrial alloying practice and its basis,” J. Inst. Met. 100, 65–73 (1972).

    CAS  Google Scholar 

  18. M. Morinaga, N. Yucava, H. Adachi, and H. Ezaki, “New PHACOMP and its application to alloy design,” Superalloys 1984 (Fifth International Symposium). AIME, 523–532 (1984).

  19. P. A. J. Bagot, O. B. W. Silk, J. O. Douglas, S. Pedrazzini, D. J. Crudden, T. L. Martin, M. C. Hardy, M. P. Moody, and R. C. Reed, “An Atom Probe Tomography study of site preference and partitioning in a nickel-based superalloy,” Acta Mater. 125, 156–165 (2017).

    Article  CAS  Google Scholar 

  20. N. Saunders, “Phase diagram calculation for Ni-based superalloys,” in Superalloys 1996, Ed. by R. D. Kissinger (TMS, Warrendale, 1996).

    Google Scholar 

  21. A. V. Logunov, Heat Resistant Nickel Alloys for Gas Turbine Blades and Discs (OOO Izdatel’skii Dom “Gazoturbinnye Tekhnologii”, Rybinsk, 2017).

  22. A. V. Logunov, Yu. N. Shmotin, D. V. Danilov, Sh. Kh. Mukhtarov, and A. M. Mikhailov, “Development and research of a new high-temperature nickel alloy for disks of gas turbine engines and installations,” Dvigatel’, No. 4, 10–12 (2017).

  23. R. I. Zainulin, A. A. Ganeev, R. V. Shakhov, S. K. Mukhtarov, V. M. Imayev, and R. M. Imayev, “Microstructure and mechanical properties of a nickel-base superalloy heavily alloyed with substitution elements,” IOP Conf. Ser.: Mater. Sci. Eng. 1008, 012008 (2020).

  24. P. Auburtin, T. Wang, S. L. Cockcroft, and A. Mitchell, “Freckle formation in superalloys,” Metall. Mater. Trans. B 31, 801–811 (2000).

    Article  Google Scholar 

  25. Superalloys 2020. Proceedings of the 14th International Symposium on Superalloys, Ed. by S. Tin, M. Hardy et al. (TMS, Springer. 2020), p. 2008.

  26. L. B. Ber, “Temperature-time diagrams of γ-solid solution decomposition in EP741NP and VV751P granulated heat-resistant nickel alloys, their construction and use in quenching disk blanks,” Tekhnologiya Legkikh Splavov, No. 4, 5–19 (2017).

    Google Scholar 

  27. L. B. Ber and A. M. Kazberovich, “Influence of alloying and some structural factors on the complex of material characteristics of disk blanks from granulated nickel EP741NP, VV750P, VV751P, VV752P, VV753P heat-resistant alloys,” Tekhnologiya Legkikh Splavov, No. 3, 16–33 (2019).

    Google Scholar 

  28. A. M. Kazberovich, L. B. Ber, D. A. Egorov, A. A. Zhivushkin, S. B. Polyanskii, and T. A. Mukhina, “Improving the complex of characteristics of disk blanks made of EP741NP alloy granules for promising gas turbine engines,” Tekhnologiya Legkikh Splavov, No. 4, 36–46 (2020).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank A.M. Kazberovich for his assistance in preparing the manuscript and useful discussion of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Rogozhkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ber, L.B., Rogozhkin, S.V., Khomich, A.A. et al. Distribution of Alloying Element Atoms between γ- and γ'-Phase Particles in a Heat-Resistant Nickel Alloy. Phys. Metals Metallogr. 123, 163–177 (2022). https://doi.org/10.1134/S0031918X22020028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22020028

Keywords:

Navigation