Skip to main content
Log in

Deep eutectic solvent inclusions for high-k composite dielectric elastomers

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Recent advances in novel electroactive devices have placed new requirements on material development. High-performance dielectric elastomers with good mechanical stretchability and high dielectric constant are under high demand. However, the current strategy for fabricating these materials suffers from high cost or low thermal stability, which greatly hinders large-scale industrial production. Herein, we have successfully developed a novel strategy for improving the dielectric constant of polymeric elastomers via deep eutectic solvent inclusion by taking advantage of the low cost, convenient and environmentally benign synthesis process and high ionic conductivity from deep eutectic solvents. The as-prepared composite elastomers showed good stretchability and a greatly enhanced dielectric constant with a negligible increase in dielectric dissipation. Moreover, we have proven the universality of our strategy by using different types of deep eutectic solvents. It is believed that low-cost, easy-synthesis and environmentally friendly deep eutectic solvents including composite elastomers are highly suitable for large-scale industrial production and can greatly broaden the application fields of dielectric elastomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shian S, Bertoldi K, Clarke D R. Dielectric elastomer based “grippers” for soft robotics. Advanced Materials, 2015, 27(43): 6814–6819

    Article  CAS  Google Scholar 

  2. Rafsanjani A, Zhang Y, Liu B, Rubinstein S M, Bertoldi K. Kirigami skins make a simple soft actuator crawl. Science Robotics, 2018, 3(15): eaar7555

    Article  Google Scholar 

  3. Duduta M, Wood R J, Clarke D R. Multilayer dielectric elastomers for fast, programmable actuation without prestretch. Advanced Materials, 2016, 28(36): 8058–8063

    Article  CAS  Google Scholar 

  4. Poulin A, Rosset S, Shea H R. Printing low-voltage dielectric elastomer actuators. Applied Physics Letters, 2015, 107(24): 244104

    Article  Google Scholar 

  5. Hajiesmaili E, Clarke D R. Reconfigurable shape-morphing dielectric elastomers using spatially varying electric fields. Nature Communications, 2019, 10(1): 1–7

    Article  CAS  Google Scholar 

  6. Shi L, Yang R, Lu S, Jia K, Xiao C, Lu T, Wang T, Wei W, Tan H, Ding S. Dielectric gels with ultra-high dielectric constant, low elastic modulus, and excellent transparency. NPG Asia Materials, 2018, 10(8): 821–826

    Article  CAS  Google Scholar 

  7. Ke Y, Chen J, Lin G, Wang S, Zhou Y, Yin J, Lee P S, Long Y. Smart windows: electro-, thermo-, mechano-, photochromics, and beyond. Advanced Energy Materials, 2019, 9(39): 1902066

    Article  CAS  Google Scholar 

  8. Kim H N, Yang S. Responsive smart windows from nanoparticle-polymer composites. Advanced Functional Materials, 2020, 30(2): 1902597

    Article  CAS  Google Scholar 

  9. Kim H N, Ge D, Lee E, Yang S. Multistate and on-demand smart windows. Advanced Materials, 2018, 30(43): 1803847

    Article  Google Scholar 

  10. Xu C, Stiubianu G T, Gorodetsky A A. Adaptive infrared-reflecting systems inspired by cephalopods. Science, 2018, 359(6383): 1495–1500

    Article  CAS  Google Scholar 

  11. Pelrine R, Kornbluh R, Pei Q, Joseph J. High-speed electrically actuated elastomers with strain greater than 100%. Science, 2000, 287(5454): 836–839

    Article  CAS  Google Scholar 

  12. Mannsfeld S C, Tee B C, Stoltenberg R M, Chen C V H, Barman S, Muir B V, Sokolov A N, Reese C, Bao Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Materials, 2010, 9(10): 859–864

    Article  CAS  Google Scholar 

  13. Carpi F, Bauer S, De Rossi D. Stretching dielectric elastomer performance. Science, 2010, 330(6012): 1759–1761

    Article  CAS  Google Scholar 

  14. Carpi F, Frediani G, Turco S, De Rossi D. Bioinspired tunable lens with muscle-like electroactive elastomers. Advanced Functional Materials, 2011, 21(21): 4152–4158

    Article  CAS  Google Scholar 

  15. Quinsaat J E Q, Alexandru M, Nüesch F A, Hofmann H, Borgschulte A, Opris D M. Highly stretchable dielectric elastomer composites containing high volume fractions of silver nanoparticles. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(28): 14675–14685

    Article  CAS  Google Scholar 

  16. Biggs J, Danielmeier K, Hitzbleck J, Krause J, Kridl T, Nowak S, Orselli E, Quan X, Schapeler D, Sutherland W, Wagner J. Electro-active polymers: developments of and perspectives for dielectric elastomers. Angewandte Chemie International Edition, 2013, 52(36): 9409–9421

    Article  CAS  Google Scholar 

  17. Sun W, Mao J, Wang S, Zhang L, Cheng Y. Review of recent advances of polymer based dielectrics for high-energy storage in electronic power devices from the perspective of target applications. Frontiers of Chemical Science and Engineering, 2021, 15(1): 18–34

    Article  CAS  Google Scholar 

  18. Li P, Wang Y, Gupta U, Liu J, Zhang L, Du D, Foo C C, Ouyang J, Zhu J. Transparent soft robots for effective camouflage. Advanced Functional Materials, 2019, 29(37): 1901908

    Article  Google Scholar 

  19. Zhalmuratova D, Chung H J. Reinforced gels and elastomers for biomedical and soft robotics applications. ACS Applied Polymer Materials, 2020, 2(3): 1073–1091

    Article  CAS  Google Scholar 

  20. Ilami M, Bagheri H, Ahmed R, Skowronek E O, Marvi H. Materials, actuators, and sensors for soft bioinspired robots. Advanced Materials, 2021, 33(19): 2003139

    Article  CAS  Google Scholar 

  21. Ning N, Ma Q, Liu S, Tian M, Zhang L, Nishi T. Tailoring dielectric and actuated properties of elastomer composites by bioinspired poly(dopamine) encapsulated graphene oxide. ACS Applied Materials & Interfaces, 2015, 7(20): 10755–10762

    Article  CAS  Google Scholar 

  22. Panahi M, Zahiri B, Noroozi M. Graphene-based composite for dielectric elastomer actuator: a comprehensive review. Sensors and Actuators. A, Physical, 2019, 293: 222–241

    Article  Google Scholar 

  23. Cakmak E, Fang X, Yildiz O, Bradford P D, Ghosh T K. Carbon nanotube sheet electrodes for anisotropic actuation of dielectric elastomers. Carbon, 2015, 89: 113–120

    Article  CAS  Google Scholar 

  24. Zhao H, Zhang L, Yang M H, Dang Z M, Bai J. Temperature-dependent electro-mechanical actuation sensitivity in stiffness-tunable BaTiO3/polydimethylsiloxane dielectric elastomer nanocomposites. Applied Physics Letters, 2015, 106(9): 092904

    Article  Google Scholar 

  25. Luo S, Yu S, Sun R, Wong C P. Nano Ag-deposited BaTiO3 hybrid particles as fillers for polymeric dielectric composites: toward high dielectric constant and suppressed loss. ACS Applied Materials & Interfaces, 2014, 6(1): 176–182

    Article  CAS  Google Scholar 

  26. Bartlett M D, Fassler A, Kazem N, Markvicka E J, Mandal P, Majidi C. Stretchable, high-k dielectric elastomers through liquid-metal inclusions. Advanced Materials, 2016, 28(19): 3726–3731

    Article  CAS  Google Scholar 

  27. Pan C, Markvicka E J, Malakooti M H, Yan J, Hu L, Matyjaszewski K, Majidi C. A liquid-metal-elastomer nanocomposite for stretchable dielectric materials. Advanced Materials, 2019, 31(23): e1900663

    Article  Google Scholar 

  28. Ankit T N, Ho F, Krisnadi F, Kulkarni M R, Nguyen L L, Koh S J A, Mathews N. High-k, ultrastretchable self-enclosed ionic liquid-elastomer composites for soft robotics and flexible electronics. ACS Applied Materials & Interfaces, 2020, 12(33): 37561–37570

    Article  CAS  Google Scholar 

  29. Shi L, Zhang C, Du Y, Zhu H, Zhang Q, Zhu S. Improving dielectric constant of polymers through liquid electrolyte inclusion. Advanced Functional Materials, 2021, 31(8): 2007863

    Article  CAS  Google Scholar 

  30. Zhong M, Tang Q F, Zhu Y W, Chen X Y, Zhang Z J. An alternative electrolyte of deep eutectic solvent by ChCl and EG for wide temperature range supercapacitors. Journal of Power Sources, 2020, 452: 227847

    Article  CAS  Google Scholar 

  31. Zhao J, Zhang J, Yang W, Chen B, Zhao Z, Qiu H, Dong S, Zhou X, Cui G, Chen L. “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy, 2019, 57: 625–634

    Article  CAS  Google Scholar 

  32. Parnham E R, Drylie E A, Wheatley P S, Slawin A M, Morris R E. Ionothermal materials synthesis using unstable deep-eutectic solvents as template-delivery agents. Angewandte Chemie International Edition, 2006, 118(30): 5084–5088

    Article  Google Scholar 

  33. García-Argüelles S, Serrano M, Gutiérrez M C, Ferrer M L, Yuste L, Rojo F, del Monte F. Deep eutectic solvent-assisted synthesis of biodegradable polyesters with antibacterial properties. Langmuir, 2013, 29(30): 9525–9534

    Article  Google Scholar 

  34. Zhang C, Ding Y, Zhang L, Wang X, Zhao Y, Zhang X, Yu G. A sustainable redox-flow battery with an aluminum-based, deep-eutectic-solvent anolyte. Angewandte Chemie International Edition, 2017, 56(26): 7454–7459

    Article  CAS  Google Scholar 

  35. Wu J, Liang Q, Yu X, Lü Q F, Ma L, Qin X, Chen G, Li B. Deep eutectic solvents for boosting electrochemical energy storage and conversion: a review and perspective. Advanced Functional Materials, 2021, 31(22): 2011102

    Article  CAS  Google Scholar 

  36. Tadros T F. Fundamental principles of emulsion rheology and their applications. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 1994, 91: 39–55

    Article  CAS  Google Scholar 

  37. Style R W, Boltyanskiy R, Allen B, Jensen K E, Foote H P, Wettlaufer J S, Dufresne E R. Stiffening solids with liquid inclusions. Nature Physics, 2015, 11(1): 82–87

    Article  CAS  Google Scholar 

  38. Nan C W, Birringer R, Clarke D R, Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. Journal of Applied Physics, 1997, 81(10): 6692–6699

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 22078276), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (Grant No. 2017ZT07C291), Shenzhen Science and Technology Program (Grant No. KQTD20170810141424366), Shenzhen Key Laboratory of Advanced Materials Product Engineering (Grant No. ZDSYS20190911164401990). Qi Zhang thanks the Presidential Fund (Grant No. PF01000949) for supporting his research at CUHK-Shenzhen. Dr. Yifeng Sheng is thanked for the advice on emulsion preparation. Prof. Xilin Wang and Ms. Jinfeng Peng from Tsinghua Shenzhen International Graduate School, Prof. Zhijun Dong and Ms. Lili Wu from Shenzhen Institute of Information Technology are thanked for their support in sample testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhang, Q. Deep eutectic solvent inclusions for high-k composite dielectric elastomers. Front. Chem. Sci. Eng. 16, 996–1002 (2022). https://doi.org/10.1007/s11705-022-2138-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2138-2

Keywords

Navigation