Skip to main content
Log in

Uranium-Bearing Volcanic Structures: Streltsovka (Russia), Xiangshan (China), and McDermitt (United States). A Comparative Analysis of the Petrology of Felsic Volcanics and the Composition of Near-Ore Metasomatites

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract—

This article provides a comparative analysis of data on the petrology of ore-bearing felsic volcanics and low-temperature near-ore metasomatites of the Streltsovka volcanic structure in Eastern Transbaikalia, the Xiangshan structure in Southern China, and the McDermitt structure in the Western United States. The ore-bearing structures are represented by relatively large resurgent (revived) calderas (Streltsovka and McDermitt) and the Xiangshan volcanic dome with several small calderas in its apical part. The leading geodynamic mechanism of the development and functioning of the magmatic ore systems of these volcanic structures is a crustal extension setting expressed by rifting, which took place during the Late Jurassic–Early Cretaceous in Eastern Transbaikalia; the Late Cretaceous and Early Paleocene in Southern China; and the Miocene, in the McDermitt caldera within the Yellowstone hotspot. Magmatic activity produced bimodal volcanic series of basites–felsic volcanics–basites, and the host rocks of uranium mineralization, as a rule, consist of metaluminous or moderately peraluminous high-K effusive and/or subvolcanic rock types corresponding to A2-type “anorogenic granites.” Rhyolites, rhyodacites, trachyrhyolites, extrusive syenites, quartz syenites, rhyolite dikes and domes of all three volcanic structures are enriched in fluorine and display a fairly high degree of fractionation. The leading types of near-ore metasomatic alteration are preore illitization and argillization, which are succeeded by synore albitization, carbonatization, chloritization, and fluoritization, followed by postore argillization. Ore field structures are defined by the presence of delimiting (ring) faults and the proportions of intracaldera fluid conduits; and ore deposit and orebody structure, by the combination of intrastratal steeply dipping and gently dipping fault. It is demonstrated that, despite different time frames and evolutionary profiles of the structure-forming processes, these volcanic structures display numerous similarities in the evolution of magmatic and hydrothermal processes, and this accounts for their definition as “typical” ore-bearing structures in the current IAEA classification of volcanic-related uranium deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

Notes

  1. Melʼnikov, I.V., Archive of IGEM RAS, Moscow (unpublished).

REFERENCES

  1. Aksyuk, A.M., Experimentally established geofluorimeters and the fluorine regime in granite-related fluids, Petrology, 2002, vol.10, no. 6, pp. 557–569.

    Google Scholar 

  2. Aleshin, A.P., Velichkin, V.I., and Krylova, T.P., Genesis and formation conditions of deposits in the unique Strel’tsovka molybdenum–uranium ore field: new mineralogical, geochemical, and physicochemical evidence, Geol. Ore Deposits, 2007, vol. 49, pp. 392–412.

    Article  Google Scholar 

  3. Andreeva, O.V. and Golovin, V.A., Metasomatic processes at uranium deposits of Tulukuev Caldera, Eastern Transbaikal Region, Russia, Geol. Ore Deposits, 1998, vol. 40, no. 3, pp. 184–196.

    Google Scholar 

  4. Andreeva, O.V., Golovin, V.A., Gol’tsman, Yu.V., Kozlova, P.S, and Sel’tsov, B.M., Evolution of Mesozoic magmatism and ore-forming metasomatic processes in the southeastern Transbaikal Region (Russia), Geol. Ore Deposits, 1996, vol. 38, no. 2, pp. 101–113.

    Google Scholar 

  5. Andreeva, O.V., Golovin, V.A., and Petrov, V.A., Wall-rock argillic alteration and uranium mineralization of the northwestern Strel’tsovka Caldera, Geol. Ore Deposits, 2010, vol. 52, no. 1, pp. 32–45.

    Article  Google Scholar 

  6. Andreeva, O.V., Petrov, V.A., and Poluektov, V.V., Mesozoic acid magmatites of southeastern Transbaikalia: petrogeochemistry and relationship with metasomatism and ore formation, Geol. Ore Deposits, 2020, vol. 62, no. 1, pp. 69–95.

    Article  Google Scholar 

  7. Badanina, E.V., Trumbull, R.B., and Dulski, Pl., The behaviour of rare-earth and lithophile trace elements in rare-metal granites: a study of fluorite, melt inclusions and host rocks from the Khangilay complex, Transbaikalia, Russia, Can. Mineral., 2006, vol. 44, pp. 667–692.

    Article  Google Scholar 

  8. Bonnetti, C., Liu, X., Mercadier, J., Cuney, M., Deloule, E., Villeneuve, J., and Wenquan, L., The genesis of granite-related hydrothermal uranium deposits in the Xiazhuang and Zhuguang ore fields, North Guangdong province, SE China: insights from mineralogical, trace elements and U-Pb isotopes signatures of U mineralization, Ore Geol. Rev., 2018, vol. 92, pp. 588–612.

    Article  Google Scholar 

  9. Bonnetti, C., Liu, X., Cuney, M., Mercadier, J., Riegler, T., and Chida, Y., Evolution of the uranium mineralization in the Zoujiashan deposit, Xiangshan ore field: implications for the genesis of volcanic-related hydrothermal U deposits in South China, Ore Geol. Rev., 2020, vol. 122, p. 103514.

    Article  Google Scholar 

  10. Browne, P.R.L. and Ellis, A.J., The Ohaki-broadlands hydrothermal area, New Zealand: mineralogy and related geochemistry, Am. J. Sci., 1970, vol. 269, pp. 97–131.

    Article  Google Scholar 

  11. Castor, S.B. and Henry, C.D., Geology, geochemistry, and origin of volcanic rock-hosted uranium deposits in northwestern Nevada and southeastern Oregon, Ore Geol. Rev., 2000, vol. 16, pp. 1–40.

    Article  Google Scholar 

  12. Castor, S.B. and Henrey, C.D., Lithium-rich claystone in the McDermitt xaldera, Nevada, USA: geologic, mineralogical, and geochemical characteristics and possible origin, Minerals, 2020, vol. 10, p. 68.

    Article  Google Scholar 

  13. Chabiron, A., Cuney, M., and Poty, B., Possible uranium sources for the largest uranium district associated with volcanism: the Streltsovka caldera (Transbaikalia, Russia), Mineral. Deposita, 2003, vol. 38, pp. 127–140.

    Article  Google Scholar 

  14. Chappell, B.W. and White, A.J.R., I- and S-type granites in the Lachlan Fold Belt, Trans. R. Soc. Edinb. Earth Sci., 1992, vol. 83, pp. 1–26.

    Google Scholar 

  15. Chernyshev, I.V. and Golubev, V.N., The Strel’tsovskoe deposit, Eastern Transbaikalia: isotope dating of mineralization in Russia’s largest uranium deposit, Geochem. Int., 1996, vol. 34, no. 10, pp. 834–846.

    Google Scholar 

  16. Chevychelov, V.Yu., Distribution of base metals between granitoid melt, fluid–salt, and fluid phases, Dokl. Ross. Akad. Nauk, 1992, vol. 325, vol. 2, pp. 378–381.

    Google Scholar 

  17. Christiansen, E.H., Sheridan, M.F., and Burt, D.M., The geology and geochemistry of Cenozoic topaz rhyolites from the Western United States, Geol. Soc. Am. Spec. Pap., 1986, vol. 205, pp. 1–89.

    Google Scholar 

  18. Cuney, M., Felsic magmatism and uranium deposits, Bull. Soc. Geol. France, 2014, vol. 185, no. 2, pp. 75–92.

    Article  Google Scholar 

  19. Dahlkamp, F.J., Uranium Deposits of the World. Asia. China Peoples Republic, Berlin: Springer, 2009.

    Book  Google Scholar 

  20. Descriptive Uranium Deposit and Mineral System Models, Vienna: IAEA, 2020.

  21. Dorzhieva, O., Krupskaya, V., Zakusin, S., Sakharov, B., and Andreeva, O., Structural features of hydrothermal illite–smectite in metasomatites at the Antei-Streltsovskoe uranium deposit (Russia), Proceedings of 55th Annual Meeting of the Clay Mineral Society, 2018, pp. 423–424.

  22. Eby, G.N., The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis, Lithos, 1990, vol. 26, pp. 115–134.

    Article  Google Scholar 

  23. Eby, G.N., Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications, Geology, 1992, vol. 20, pp. 641–644.

    Article  Google Scholar 

  24. Einaudi, M.T., Hedenquist, J.W., and Inan, E., Sulfidation state of fluids in active and extinct hydrothermal systems: transitions from porphyry to epithermal environments, Giggenbach Volume, Soc. of Econ. Geol. Geochem. Soc., Spec. Publ., 2003, vol. 10, pp. 283–313.

    Google Scholar 

  25. Geological Classification of Uranium Deposits and Description of Selected Examples, Vienna: IAEA-TECDOC SERIES-1842, 2018.

  26. Gu, Yu.J., Okeler, A., and Schultz, R., Tracking slabs beneath northwestern pacific subduction zones, Earth Planet. Sci. Lett., 2012, nos. 331–332, pp. 269–280.

  27. Guo, C.L., Mao, J.W., Bierlein, F., Chen, Z.H., Cheny, C., Li, C.B., and Zeng, Z.L., SHRIMP U-Pb (zircon), Ar-Ar (muscovite) and Re-Os (molybdenite) isotopic dating of the Taoxikeng tungsten deposit, South China Block, Ore Geol. Rev., 2011, vol. 43, no. 1, pp. 26–39.

    Article  Google Scholar 

  28. Guo, J., Li, Z., Nie, J., Huang, Z., Wang, J., and Lai, C.-K., Genesis of Pb-Zn mineralization beneath the Xiangshan uranium ore field, South China: constraints from H–O–S–Pb isotopes and Rb-Sr dating, Resour. Geol., 2018, vol. 68, pp. 275–286.

    Article  Google Scholar 

  29. Guo, Z., Li, T., Deng, M., and Qu, W., Key factors controlling volcanic-related uranium mineralization in the Xiangshan basin, Jiangxi Province, South China: a review, Ore Geol. Rev., 2020, vol. 122, p. 103517.

    Article  Google Scholar 

  30. Hemley, W.R. and Jones, J., Chemical aspects of hydrothermal alteration with emphasis on hydrogen metasomatism, Econ. Geol., 1964, no. 1.

  31. Henry, C.D., Castor, S.B., Starkel, W.F., Ellis, B.S., Wolff, J.A., Laravie, J.A., McIntosh, W.C., and Heizler, M.T., Geology and evolution of the McDermitt caldera, northern Nevada and southeastern Oregon, western USA, Geosphere, 2017, vol. 13, no. 4.

  32. Hu, R., Bi, X., Zhou, M., Peng, J., Su, W., Leu, S., and Qi, H., Uranium metallogenesis in South China and its relationship to crustal extension during the Cretaceous to Tertiary, Econ. Geol., 2008, vol. 103, pp. 583–598.

    Article  Google Scholar 

  33. Iiyama, J.T., Etude des reactions d’exchange d' ions Na–K dans la serie muscovite–paragonite, Bull. Soc. Fran. Mineral. Cristallog., 1964, vol. 87, pp. 532–541.

    Google Scholar 

  34. Inoue, A., Meunier, A., and Beaufort, D., Illite–smectite mixed-layer minerals in felsic volcaniclastic rocks from drill cores, Kakkonda, Japan, Clays Clay Miner., 2004, vol. 52, no. 1, pp. 66–84.

    Article  Google Scholar 

  35. Ishchukova L.P., Modnikov I.S., Sychev I.V., Naumov G.B., Mel’nikov I.V., and Kandinov M.N., Uranovye mestorozhdeniya Strel’tsovskogo rudnogo polya v Zabaikal’e (Uranium Deposits of the Strel’tsovka Ore field in Transbaikalia), Irkutsk: GK “Geologorazvedka”, 2007.

  36. Jiang, Y.H., Ling, H.F., Jiang, S.Y., Fan, H.H., Shen, W.Z., and Ni, P., Petrogenesis of a late Jurassic peraluminous volcanic complex and its high-Mg, potassic, quenched enclaves at Xiangshan, Southeast China, J. Petrol., 2005, vol. 46, no. 6, pp. 1121–1154.

    Article  Google Scholar 

  37. Keppler, H. and Wyllie, P.J., Role of fluids in transport and fractionation of uranium and thorium in magmatic processes, Nature, 1990, vol. 348, pp. 531–533.

    Article  Google Scholar 

  38. Kovalenko, D.V., Petrov, V.A., Poluektov, V.V., and Ageeva, O.A., Geodynamic settings of the formation of Mesozoic volcanics (Strel’tsovka Caldera, Transbaikal Region), Dokl. Earth Sci., 2014, vol. 457, no. 5, pp. 931–934.

    Article  Google Scholar 

  39. Kovalenko, D.V., Petrov, V.A., Poluektov, V.V., and Ageeva, O.A., Geodynamic position of Mesozoic mantle rocks of the Strel’tsovka Caldera (Eastern Transbaikalia), mantle domains of Central Asia and China, Vestnik KRAUNTs. Nauki o Zemle, 2015, vol. 4. No. 28, pp. 231–246.

  40. Kovalenko, N.I., Ryzhenko, B.N., Prisyagina, N.I., et al., Experimental determination of uranium (IV) speciation in HF solutions at 500°C and 1000 bar, Geochem. Int., 2012, vol. 50, no. 1, pp. 18–25.

    Article  Google Scholar 

  41. Kuzmin, M.I. and Yarmolyuk, V.V., Mantle plumes in northeastern Asia and their role in the formation of endogenous deposits, Russ. Geol. Geophys., 2014, vol. 55, no. 2, pp. 120–143.

    Article  Google Scholar 

  42. Kuzmin, M.I. and Yarmolyuk, V.V., Plate tectonics and mantle plumes as a basis of deep-seated Earth’s tectonic activity for the last 2 Ga, Russ. Geol. Geophys., 2016, vol. 57, no. 1, pp. 8–21.

    Article  Google Scholar 

  43. Laverov, N.P., Velichkin, V.I., Vlasov, B.P., Aleshin, A.P., and Petrov, V.A., Uranovye i molibden-uranovye mestorozhdeniya v oblastyakh razvitiya kontinental’nogo magmatizma: geologiya, geodinamicheskie i fiziko-khimicheskie usloviya formirovaniya (Uranium and Molybdenum–Uranium Deposits in the Development Areas of Continental Magmatism: Geology, Geodynamics, and Physicochemical Conditions of Formation), Moscow: IFZ RAN, IGEM RAN, 2012.

  44. Letnikov, F.A., Fluids in endogenic processes and problems of metallogeny, Russ. Geol. Geophys., 2006, no. 12, pp. 1271–1281.

  45. Maniar, P.D. and Piccoli, P.M., Tectonic discrimination of granitoids, Geo-Mar. Lett., 1989, vol. 101, pp. 635–43.

    Google Scholar 

  46. Marakushev, A.A., Petrogenezis (Petrogenesis), Moscow: Nedra, 1988.

    Google Scholar 

  47. Marakushev, A.A. and Shapovalov, Yu.B., Experimental study of ore concentrations in fluoride granite systems, Petrologiya, 1994, vol. 1, pp. 4–23.

    Google Scholar 

  48. Mashkovtsev, G.A., Konstantinov, A.K., Miguta, A.K., Shumilin, M.V., Shchetochkin, V.N., Uran rossiiskikh nedr (Uranium in Russian Interior), Moscow: VIMS, 2010.

  49. Masuda, A., Kawakami, O., Dohmato, Y., and Takenaka, T., Lanthanide tetrad effect in nature: two mutually opposite types, Geochem. Geol., 1987, vol. 21, pp. 110–124.

    Google Scholar 

  50. Matthews, A., Influences of kinetics and mechanism in metamorphism: a study of albite cristallization, Geochim. Cosmochim. Acta, 1980, vol. 44, no. 3, pp. 387–402.

    Article  Google Scholar 

  51. Mironov, Yu.B., Filonenko, Yu.D., Solov’ev, N.S., Petrov, V.A., Golovin, V.A., and Strel’tsov, V.A., Lead-zinc, uranium, and fluorite deposits in the Dornots volcanotectonic structure (Eastern Mongolia), Geol. Rudn. Mestorozhd., 1993, vol. 35, vol. 1, pp. 31–43.

    Google Scholar 

  52. Model’ formirovaniya uranovykh mestorozhdenii v oblastyakh kontinental’nogo vulkanizma (na primere mestorozhdenii Zabaikal’ya, MNR, Srednei Azii) (Model of Formation of Uranium Deposits in the Regions of Continental Volcanism: Evidence from Deposits of Transbaikalia, Mongolia, Central Asia), Sel’tsov, B.M. and Vishnyakov, V.E., Eds., Moscow: IGEM RAN, 1990.

  53. Modnikov, I.S. and Sychev, I.V., Conditions of formation of uranium mineralization in the volcanic subsidence depressions, Geol. Rudn. Mestorozhd., 1984, vol. 26, vol. 1, pp. 31–41.

    Google Scholar 

  54. Nash, J.T., Volcanogenic uranium deposits - geology, geochemical processes, and criteria for resource assessment, U.S. Geol. Surv. Open File Report, 2010, 2010–1001.

  55. Naumov, G.B., Osnovy fiziko-khimicheskoi modeli uranovogo mineraloobrazovaniya (Principles of Physicochemical Model of the Uranium Mineral Formation), Moscow: Atomizdat, 1978.

  56. Naumov, G.B., Strucural-geochemical approach to the solution of ore formation problems, Osnovnye problemy rudoobrazovaniya (Main Problems of Ore Formation), Moscow: Nauka, 1990, pp. 167–183.

    Google Scholar 

  57. Naumov, G.B., Uranium migration in hydrothermal solutions, Geol. Ore Deposits, 1998, vol. 40, no. 4, pp. 273–289.

    Google Scholar 

  58. Naumov, G.B., Berkeliev, T.K., and Mironova, O.F., Metasomatic nature of hydrothermal ore-forming solutions, Mineral. J. (Ukraine), 2012, vol. 34, no. 2, pp. 100–111.

    Google Scholar 

  59. Naumov, V.B., Rhyolitic melts in Eastern Transbaikalia and the North Caucasus: chemical composition, volatiles, and admixture elements (from data of study of melt inclusions in minerals), Russ. Geol. Geophys., 2011, vol. 52, no. 11. C. 1368–1377.

  60. Nockolds, S.R. and Allen, R., The geochemistry of some igneous rock series, Geochim. Cosmochim. Acta, 1953, vol. 4, pp. 105–142.

    Article  Google Scholar 

  61. Nockolds, S.R. and Allen, R., The geochemistry of some igneous rock series—I, Geochim. Cosmochim. Acta, 1954, vol. 5, pp. 245–285.

    Article  Google Scholar 

  62. Nockolds, S.R. and Allen, R., The geochemistry of some igneous rock series—II, Geochim. Cosmochim. Acta, 1956, vol. 9, pp. 34–77.

    Article  Google Scholar 

  63. Pek, A.A., Malkovsky, V.I., and Petrov, V.A., Mineral system of the Streltsovka Caldera uranium deposits (East Transbaikalia), Geol. Ore Deposits, 2020, vol. 62, no. 1, pp. 31–48.

    Article  Google Scholar 

  64. Peretyazhko, I.S. and Savina, E.A., Fluid and magmatic processes in the formation of the Ary-Bulak ongonite massif (eastern Transbaikalia), Russ. Geol. Geophys., 2010, vol. 51, no. 10, pp. 1110–1125.

    Article  Google Scholar 

  65. Peretyazhko, I.S., Zagorsky, V.E., Tsareva, E.A., et al., Immiscibility of calcium fluoride and aluminosilicate melts in ongonite from the Ary-Bulak intrusion, Eastern Transbaikal Region, Dokl. Earth Sci., 2007, vol. 413, vol. 2, pp. 315–320.

  66. Peretyazhko, I.S., Savina, E.A., Dril’, S.I., and Gerasimov, N.S., Rb-Sr isotopic system and Rb and Sr partitioning in the rocks of the Ary-Bulak ongonite massif, formed with the participation of fluoride–silicate magmatic immiscibility, Russ. Geol. Geophys., 2011, vol. 52, no. 11, pp. 1401–1411.

    Article  Google Scholar 

  67. Petrov, V.A., Poluektov, V.V., Hammer, J., and Schukin, S.I., Fault-related barriers for uranium transport, Uranium Mining and Hydrogeology, Merkel, B.J. and Hasche-Berger, A., Eds., Berlin–Heidelberg: Springer-Verlag, 2008.

  68. Petrov, V.A., Golubev, V.N., and Golovin, V.A., An unique uranium mineralization in pillow lavas, Dornot ore field, Mongolia, Proceedings of the International Conference “Uranium Geochemistry, Nancy, 2013, pp. 289–292.

  69. Petrov, V.A., Andreeva, O.V., and Poluektov, V.V., Effect of petrophysical properties and deformation on vertical zoning of metasomatic rocks in U-bearing volcanic structures: a case of the Strel’tsovka Caldera, Transbaikal Region, Geol. Ore Deposits, 2014, vol. 56, no. 2, pp. 81–100.

    Article  Google Scholar 

  70. Petrov, V.A., Andreeva, O.V., and Poluektov, V.V., Tectono-magmatic cycles and geodynamic settings of ore-bearing system formation in the Southern Cis-Argun region, Geol. Ore Deposits, 2017, vol. 59, no. 6, pp. 431–452.

    Article  Google Scholar 

  71. Peyffert, C., Chink, N.T., and Cuney, M., Uranium in granitic magmas, Geochim. Cosmochim. Acta, 1995, vol. 60, no. 9, pp. 1515–1529.

    Article  Google Scholar 

  72. Pirajno, F., The Geology and Tectonic Settings of China’s Mineral Deposits, Dordrecht-Heidelberg: Springer, 2013.

    Book  Google Scholar 

  73. Pokrovsky, B.G., Korovaya kontaminatsiya mantiinykh magm (Crustal Contamination of Mantle Magmas), Moscw: Nauka, 2000.

  74. Pokrovsky, V.A., Experimental study of equilibrium 1.5 Ab + 0.5KCl + HCl = 0.5Ms + 3Qtz + 1.5NaCl at 300–500°C and pressure of 1 kbar, Dokl. Akad. Nauk SSSR, 1982, vol. 262, vol. 2, pp. 438–441.

  75. Rafal’skii, R.P. and Osipov, B.S., Hydrothermal equilibria in the systems bearing uranium and heavy metal sulfides at 200–360°C, Geol. Rudn. Mestorozhd., 1967, vol. 9, vol. 2, pp. 44–57.

    Google Scholar 

  76. Redkin, A.F., Ivanov, I.P., and Omel’yanenko, B.I., Experimental study of solubility of uranium dioxide in acid chloride fluids at 400–600°C and 1 kbar, Dokl. Akad. Nauk SSSR, 1988, vol. 299, vol. 3, pp. 726–729.

  77. Redkin, A.F. and Velichkin, V.I., Uranium fluorides in hydrothermal–magmatic systems, Dokl. Earth Sci., 2013, vol. 450, no. 1, pp. 544–547.

    Article  Google Scholar 

  78. Redkin, A.F., Velichkin, V.I., and Shapovalov, Yu.B., Study of the behavior of uranium, niobium, and tantalum in the granite melt–fluoride fluid system at 800–950°C, 2300 Bar, Geol. Ore Deposits, 2021, vol. 63, no. 4, pp. 300–323.

    Article  Google Scholar 

  79. Rusinov, V.L., Two types of epithermal deposits and petrological causes of their differences, Dokl. Earth Sci., 2001, vol. 381, vol. 2, pp. 986–989.

  80. Shao, J.A., Extension structure of orogen and asthenosphere upwelling—a case study of the Xing’an–Mongolia orogenic belt, Chin. Sci. Bull., 1994, vol. 39, pp. 533–537.

    Google Scholar 

  81. Shapovalov, Yu.B., Halogenide extraction of ore and petrogenic elements: evidence from experimental data, Geologiya, geokhimiya i geofizika na rubezhe XX and XXI vekov (Geology and Geochemistry at the turn of 20th and 21rst Century), 2001, vol. 2, pp. 104–105.

  82. Shatkov, G.A., Berezhnaya, N.G., Lepekhina, E.N., Rodionov, R.V., Paderin, I.P., and Sergeev, S.A., U-Pb (SIMS SHRIMP II) age of volcanic rocks from the Tulukuev caldera (Streltsov uranium-ore cluster, Eastern Transbaikalia), Dokl. Earth Sci., 2010, vol. 432, no. 3, pp. 587–597.

    Article  Google Scholar 

  83. Shatkov, G.A. and Butakov, P.M., Signs of participation of uranyl-fluorides in the formation of rich uranium ores of the Streltsovskoe-type deposit, Eastern Transbaikalia, Dokl. Earth Sci., 2013, vol. 449, no. 2, pp. 455–450.

    Article  Google Scholar 

  84. Shmariovich, E.M., Agapova, G.F., Rekharskaya, V.M., et al., Experimental study of uranium leaching from diverse rocks by thermal sulfide–carbonate solutions, Geol. Ore Deposits, 1984, no. 3, pp. 87–98.

  85. Shumilin, M.A., Uranium provinces worldwide and resources of uranium potential: attempts of quantitative analysis, Otechestvennaya Geol., 2007, no. 2, pp. 48–51.

  86. Sillitoe, R., Porphyry copper systems, Econ. Geol., 2010, vol. 105, no. 1, pp. 3–41.

    Article  Google Scholar 

  87. Syritso, L.F., Badanina, E.V., Abushkevich, V.S., Volkova, E.V., and Shuklina, E.V., Volcanoplutonic association of felsic rocks in the rare-metal ore units of Transbaikalia: geochemistry of rocks and melts, age, and P-T conditions of their crystallization, Petrology, 2012, vol. 20, no. 6, pp. 567–592.

    Article  Google Scholar 

  88. Tauson L.V. Geochemistry and metallogeny of latite series, Geol. Ore Deposits, 1982, vol. 3, pp. 3–14.

    Google Scholar 

  89. Tauson L.V., Antipin V.S., Zakharov M.V., and Zubkov V.S. Geokhimiya mezozoiskikh latitov Zabaikal’ya (Geochemistry of Mesozoic Latites of Transbaikalia), Novosibirsk: Nauka, 1984.

  90. Timofeev, A., Migdisov, A.A., Williams-Jones, A.E., Roback, R., Nelson, A.T., and Hongwu, Xu., Uranium transport in acidic brines under reducing conditions, Nature Commun., 2018, vol. 9, pp. 1–7.

    Article  Google Scholar 

  91. Uranium Deposits in Volcanic Rocks. Panel Proceedings Series, Vienna: IAEA, 1985.

  92. Wan, T., The Tectonics of China: Data, Maps and Evolution, Berlin–Heidelberg: Springer-Verlag, 2010.

    Google Scholar 

  93. Whalen, J.B., Currie, K.L., and Chappel, B.W., A-type granites: geochemical characteristics, discrimination and petrogenesis, Contrib. Mineral. Petrol., 1987, vol. 95, pp. 407–419.

    Article  Google Scholar 

  94. World Uranium Geology, Exploration, Resources, and Production, Vienna: IAEA, 2020.

  95. Xu, D., Chi, G., Zhang, Y., Zhang, Z., and Sun, W., Yanshanian (Late Mesozoic) ore deposits in china - an introduction to the special issue, Ore Geol. Rev., 2017, vol. 88, pp. 481–490.

    Article  Google Scholar 

  96. Yang, S.Y., Jiang, S.Y., Jiang, Y.H., Zhao, K.D., and Fan, H.H., Zircon U-Pb geochronology, Hf isotopic composition and geological implications of the rhyodacite and rhyodacitic porphyry in the Xiangshan uranium ore field, Jiangxi Province, China, Sci. China Earth Sci., 2010, vol. 53, pp. 1411–1426.

    Article  Google Scholar 

  97. Yao, H., Lu, G., Nie, J., Zheng, G., Cao, X., Xu, P., Zhang, F., and Zhu, S., Characteristics of mineralizing alteration and hydrothermal sources in Zoujiashan uranium deposits in Xiangshan uranium ore field in Jiangxi Province, Geoscience, 2013, vol. 27, no. (2), pp. 332–338.

  98. Yarmolyuk, V.V., Nikiforov, A.V., Kozlovsky, A.M., and Kudryashova, E.A., Late Mesozoic East Asian magmatic province: structure, magmatic signature, formation conditions, Geotectonics, 2019, vol. 53, no. 4, pp. 500–516.

    Article  Google Scholar 

  99. Yarmolyuk, V.V., Kozlovsky, A.M., Savatenkov, V.M., Kudryashova, E.A., and Kuznetsov, M.V., Late Mesozoic Eastern Mongolia volcanic area: structure, magmatic associations, and sources of melts, Petrology, 2020, vol. 28, no. 6, pp. 491–514.

    Article  Google Scholar 

  100. Yu, Z.Q., Chen, W.F., Chen, P.R., Wang, K.X., Fang, Q.C., Tang, X.S., and Ling, H.F., Chemical composition and Sr isotopes of apatite in the Xiangshan A-type volcanic-intrusive complex, southeast China: new insight into petrogenesis, J. Asian Earth Sci., 2019, vol. 172, pp. 66–82.

    Article  Google Scholar 

  101. Yu, Z., Ling, H., Mavrogenes, J., Chen, P., Chen, W., and Fang, Q., Metallogeny of the Zoujiashan uranium deposit in the Mesozoic Xiangshan volcanic–intrusive complex, southeast China: insights from chemical compositions of hydrothermal apatite and metal elements of individual fluid inclusions, Ore Geol. Rev., 2019, vol. 113, p. 103085.

    Article  Google Scholar 

  102. Zaraisky,G.P., Zonal’nost’ i usloviya obrazovaniya metasomaticheskikh porod (Zoning and Conditions of Formation of Metasomatic Rocks), Moscow: Nauka, 1989

  103. Zaraisky, G.P., Conditions of formation of granitoid-related Rare-Metal deposits, Smirnovskii sbornik (Smirnov’s Collection of Papers), Moscow: Fond im. akad. V.I. Smirnova, 2004, pp. 105–192.

  104. Zaraisky, G.P., Eksperiment v reshenii problem metasomatizma (Experiment in Solution of Metasomatic Problems), Moscow: GEOS, 2007.

  105. Zhang, J.H., Gao, S., Ge, W.C., Wu, F.Y., Yang, J.H., Wilde, S.A., and Li, M., Geochronology of the Mesozoic volcanic rocks in the Great Xing’an Range, northeast China: implications for subduction-induced delamination, Chem. Geol., 2010, no. 276, pp. 144–165.

  106. Zharikov, V.A., Ivanov, I.P., Omel’yanenko, B.I., et al., Experimental study of uraninite solubility in model granite melts and solutions at high parameters, Geol. Ore Deposits, 1987, no. 4, pp. 3–12.

Download references

Funding

The study was supported under the state task “Tectonodynamic Settings and Physicochemical Formation Conditions of Mineral Systems of the Main Industrial–Genetic Types of Uranium Deposits” for the Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, Moscow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Petrov, O. V. Andreeva, V. V. Poluektov or D. V. Kovalenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Murashova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, V.A., Andreeva, O.V., Poluektov, V.V. et al. Uranium-Bearing Volcanic Structures: Streltsovka (Russia), Xiangshan (China), and McDermitt (United States). A Comparative Analysis of the Petrology of Felsic Volcanics and the Composition of Near-Ore Metasomatites. Geol. Ore Deposits 63 (Suppl 1), S1–S28 (2021). https://doi.org/10.1134/S1075701522010056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701522010056

Keywords:

Navigation