Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites

Subjects

Abstract

Electrochemical reduction of carbon monoxide (CO) has recently emerged as a potential approach for obtaining high-value, multicarbon products such as acetate, while the activity and selectivity for prodution of acetate have remained low. Herein, we develop an atomically ordered copper–palladium intermetallic compound (CuPd) composed of a high density of Cu–Pd pairs that feature as catalytic sites to enrich surface *CO coverage, stabilize ethenone as a key acetate path intermediate and inhibit the hydrogen evolution reaction, thus substantially promoting acetate formation. The CuPd electrocatalyst enables a high Faradaic efficiency of 70 ± 5% for CO-to-acetate electroreduction and a high acetate partial current density of 425 mA cm−2. Under membrane electrode assembly conditions, the CuPd electrocatalyst demonstrated a 500 h CO-to-acetate conversion at 500 mA cm−2 with a stable acetate Faradaic efficiency of ~50%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural characterization.
Fig. 2: X-ray absorption spectroscopy analysis of Cu–Pd alloys.
Fig. 3: CO electroreduction performance.
Fig. 4: DFT calculations.

Similar content being viewed by others

Data availability

The atomic coordinates of the optimized computational models are provided as Supplementary Data 1 with this paper. The source data of XRD (Fig. 1a) and the electrochemical stability plot (Fig. 3f) are provided with this paper. Other data that support the findings of this study are available from the corresponding author upon request.

References

  1. Global Acetic Acid Market to Reach 24.51 Million Tons by 2025 (Expert Market Research, 2020).

  2. Dimian, A. C. & Kiss, A. A. Novel energy efficient process for acetic acid production by methanol carbonylation. Chem. Eng. Res. Des. https://doi.org/10.1016/j.cherd.2020.04.013 (2020).

  3. Jones, J. H. The CativaTM process for the manufacture of acetic acid: iridium catalyst improves productivity in an established industrial process. Platin. Met. Rev. 44, 94 (2000).

    CAS  Google Scholar 

  4. Jouny, M., Hutchings, G. S. & Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2, 1062–1070 (2019).

    Article  CAS  Google Scholar 

  5. Ripatti, D. S., Veltman, T. R. & Kanan, M. W. Carbon monoxide gas diffusion electrolysis that produces concentrated C2 products with high single-pass conversion. Joule 3, 240–256 (2019).

    Article  CAS  Google Scholar 

  6. Wang, L. et al. Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. Nat. Catal. 2, 702–708 (2019).

    Article  CAS  Google Scholar 

  7. Feng, X., Jiang, K., Fan, S. & Kanan, M. W. A direct grain-boundary-activity correlation for CO electroreduction on Cu nanoparticles. ACS Cent. Sci. 2, 169–174 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ni, F. et al. N-modulated Cu+ for efficient electrochemical carbon monoxide reduction to acetate. Sci. China Mater. 63, 2606–2612 (2020).

    Article  Google Scholar 

  9. Yang, P. et al. Overcoming immiscibility toward bimetallic catalyst library. Sci. Adv. 6, eaaz6844 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhu, P. et al. Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction. Proc. Natl Acad. Sci. USA 118, e2010868118 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Luc, W. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2, 423–430 (2019).

    Article  CAS  Google Scholar 

  12. Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    Article  CAS  Google Scholar 

  13. Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Jouny, M. et al. Formation of carbon-nitrogen bonds in carbon monoxide electrolysis. Nat. Chem. 11, 846–851 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Norskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Ma, S. et al. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 139, 47–50 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Yamauchi, M. & Tsukuda, T. Production of an ordered (B2) CuPd nanoalloy by low-temperature annealing under hydrogen atmosphere. Dalton Trans. 40, 4842–4845 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Fei, H. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 6, 8668 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Filez, M., Redekop, E. A., Poelman, H., Galvita, V. V. & Marin, G. B. Advanced elemental characterization during Pt-In catalyst formation by wavelet transformed X-ray absorption spectroscopy. Anal. Chem. 87, 3520–3526 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Li, J. et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2, 1124–1131 (2019).

    Article  CAS  Google Scholar 

  21. Hanselman, S., Koper, M. T. M. & Calle-Vallejo, F. Computational comparison of late transition metal (100) surfaces for the electrocatalytic reduction of CO to C2 Species. ACS Energy Lett. 3, 1062–1067 (2018).

    Article  CAS  Google Scholar 

  22. Yang, N. et al. Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation. Adv. Mater. 29, 1700769 (2017).

    Article  CAS  Google Scholar 

  23. Fan, J. et al. Synthesis of ultrathin wrinkle-free PdCu alloy nanosheets for modulating d-band electrons for efficient methanol oxidation. J. Mater. Chem. A 6, 8531–8536 (2018).

    Article  CAS  Google Scholar 

  24. Jouny, M., Luc, W. & Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat. Catal. 1, 748–755 (2018).

    Article  CAS  Google Scholar 

  25. Yang, X., Fugate, E. A., Mueanngern, Y. & Bakeret, L. R. Photoelectrochemical CO2 reduction to acetate on iron−copper oxide catalysts. ACS Catal. 7, 177–180 (2017).

    Article  CAS  Google Scholar 

  26. Raciti, D. et al. Low-overpotential electroreduction of carbon monoxide using copper nanowires. ACS Catal. 7, 4467–4472 (2017).

    Article  CAS  Google Scholar 

  27. Wang, Y. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 3, 98–106 (2019).

    Article  CAS  Google Scholar 

  28. Stephan, A. K. Standardized battery reporting guidelines. Joule 5, 1–2 (2021).

    Article  Google Scholar 

  29. Wen, Y.-N. & Zhang, J.-M. Surface energy calculation of the fcc metals by using the MAEAM. Solid State Commun. 144, 163–167 (2007).

    Article  CAS  Google Scholar 

  30. Mittendorfer, F., Seriani, N., Dubay, O. & Kresse, G. Morphology of mesoscopic Rh and Pd nanoparticles under oxidizing conditions. Phys. Rev. B 76, 233413 (2007).

    Article  CAS  Google Scholar 

  31. Lum, Y., Cheng, T., Goddard, W. A. 3rd & Ager, J. W. Electrochemical CO reduction builds solvent water into oxygenate products. J. Am. Chem. Soc. 140, 9337–9340 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Cheng, T., Xiao, H. & Goddard, W. A. 3rd Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc. Natl Acad. Sci. USA 114, 1795–1800 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cheng, T., Xiao, H. & Goddard, W. A. Nature of the active sites for CO reduction on copper nanoparticles; suggestions for optimizing performance. J. Am. Chem. Soc. 139, 11642–11645 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Bligaard, T. et al. The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224, 206–217 (2004).

    Article  CAS  Google Scholar 

  35. Wang, S. et al. Universal transition state scaling relations for (de)hydrogenation over transition metals. Phys. Chem. Chem. Phys. 13, 20760–20765 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Gunathunge, C. M. et al. Spectroscopic observation of reversible surface reconstruction of copper electrodes under CO2 reduction. J. Phys. Chem. C 121, 12337–12344 (2017).

    Article  CAS  Google Scholar 

  37. Salimon, J., Hernández-Romero, R. M. & Kalaji, M. The dynamics of the conversion of linear to bridge CO on Cu. J. Electroanal. Chem. 538–539, 99–108 (2002).

    Article  Google Scholar 

  38. Chou, T. C. et al. Controlling the oxidation state of the Cu electrode and reaction intermediates for electrochemical CO2 reduction to ethylene. J. Am. Chem. Soc. 142, 2857–2867 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Jiang, T.-W. et al. Spectrometric study of electrochemical CO2 reduction on Pd and Pd-B electrodes. ACS Catal. 11, 840–848 (2021).

    Article  CAS  Google Scholar 

  40. Kruppe, C. M., Krooswyk, J. D. & Trenary, M. Polarization-dependent infrared spectroscopy of adsorbed carbon monoxide to probe the surface of a Pd/Cu(111) single-atom alloy. J. Phys. Chem. C 121, 9361–9369 (2017).

    Article  CAS  Google Scholar 

  41. Farias, M. J. S., Busó-Rogero, C., Gisbert, R., Herrero, E. & Feliu, J. M. Influence of the CO adsorption environment on its reactivity with (111) terrace sites in stepped Pt electrodes under alkaline media. J. Phys. Chem. C.118, 1925–1934 (2014).

    Article  CAS  Google Scholar 

  42. Gillespie, D. T. Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–55 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, Z. et al. Beyond mean-field microkinetics: toward accurate and efficient theoretical modeling in heterogeneous catalysis. ACS Catal. 8, 5816–5826 (2018).

    Article  CAS  Google Scholar 

  44. Luc, W., Rosen, J. & Jiao, F. An Ir-based anode for a practical CO2 electrolyzer. Catal. Today 288, 79–84 (2017).

    Article  CAS  Google Scholar 

  45. Yang, Y. et al. Infrared spectroelectrochemical study of dissociation and oxidation of methanol at a palladium electrode in alkaline solution. Langmuir 29, 1709–1716 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).

    Article  CAS  Google Scholar 

  47. Kresse, G. & Furthmüller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  48. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  49. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  CAS  Google Scholar 

  50. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  51. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  PubMed  Google Scholar 

  52. Mason, S. E., Grinberg, I. & Rappe, A. M. First-principles extrapolation method for accurate CO adsorption energies on metal surfaces. Phys. Rev. B 69, 161401 (2004).

    Article  CAS  Google Scholar 

  53. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  CAS  Google Scholar 

  54. Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    Article  CAS  Google Scholar 

  55. Calle-Vallejo, F. & Koper, M. T. M. First-principles computational electrochemistry: achievements and challenges. Electrochim. Acta 84, 3–11 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the following funding agencies for supporting this work: the National Key Research and Development Programme of China (nos. 2018YFA0209401 to G.Z. and 2018YFA0208600 to X.X.); the Natural Science Foundation of China (nos. 22025502 and 21975051 to G.Z. and 21688102 to X.X.); the Science and Technology Commission of Shanghai Municipality (nos. 21DZ1206800 and 19XD1420400 to G.Z.); and the Shanghai Municipal Education Commission (no. 2019-01-07-00-07-E00045 to G.Z.). This research used the synchrotron resources of Canadian Light Source.

Author information

Authors and Affiliations

Authors

Contributions

G.Z. and X.X. proposed, designed and supervised the project. G.Z., X.X., Y.J., Z.C. and Y.W. wrote the manuscript. Y.J. synthesized catalysts and performed electrochemistry experiments. Y.J., C.Y. and A.G. analysed electrochemical data. Z.C. and X.X. performed theoretical calculations. R.W. and Y.Y. conducted ATR–SEIRAS measurements. J.X., H.Z. and J.L. performed aberration-corrected HAADF–STEM characterizations. J.C. and T.-K.S. performed X-ray absorption spectroscopy characterizations. All authors contributed to discussion of the results and manuscript preparation.

Corresponding authors

Correspondence to Xin Xu or Gengfeng Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Yijin Kang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–46, Tables 1–21 and references.

Supplementary Data

A compressed zip file containing all optimized DFT structures (in Vienna ab initio simulation package CONTCAR format).

Source data

Source Data Fig. 1

Source data of XRD for CuPd (Fig. 1a).

Source Data Fig. 3

Source data of the stability plot (Fig. 3f).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Chen, Z., Wei, R. et al. Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. Nat Catal 5, 251–258 (2022). https://doi.org/10.1038/s41929-022-00757-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00757-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing