Skip to main content
Log in

Charcoals in the Middle Taiga Podzols of Western Siberia as an Indicator of Geosystem History

  • GENESIS AND GEOGRAPHY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract—

A middle-taiga iron-illuvial podzol (Glossic Endogleyic Albic Podzol) was studied on an ancient eolian dune in the Bol’shoi Yugan River basin (the Ob’ River tributary, Surgut region), near the large-scale archaeological research site. The radiocarbon age of 31 charcoals was determined, and 8 variants of the location of charcoal-containing soil zones relative to other morphological patterns were identified. It was proved that charcoal can help in dating the time of mosaic pattern formation, and the development of podzolic horizon coincided with intense wildfires in the second half of the Holocene. It was found that charcoal-containing soil zones first appeared in soils about 5 ka ago. Charcoals older than 5 ka cal. BP were not found. Pyrogenic events became twice more frequent at the beginning of the third millennium BP, with their maximum in the middle of the third millennium BP. The frequency of pyrogenic events decreased noticeably at the very end of the second millennium BP. Many peaks of pyrogenic events during the last five millennia coincided with the periods of archaeological cultures. An assumption that the continuous existence of forest environment leads to the permanent burial of charcoal due to fall of a tree accompanied by its uprooting was partially confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. N. A. Avetov, S. A. Avetyan, M. S. Marechek, and M. A. Zeits, “Analysis of structure and composition of soil cover in the Salym-Irtysh interfluve based on updated medium-scale soil map,” Moscow Univ. Soil Sci. Bull. 72, 1–6 (2017).

    Article  Google Scholar 

  2. V. N. Adaev, “Smoke over taiga and tundra: fire in the culture of northern peoples of Western Siberia as a means of environmental management,” Vestn. Arkheol., Antropol. Etnogr., No. 2 (41), 138–147 (2018).

  3. S. V. Aleksandrov, O. V. Pal’yanov, and T. M. Ponomareva, “Emergency excavations of the Nehsap I settlement in the Sredne-Ugutskoe oil field,” in Ancient Heritage of the Middle Ob on the Territory of Economic Development of RN-Yuganskneftegaz (Magellan, Yekaterinburg, 2013), pp. 287–297.

    Google Scholar 

  4. A. L. Aleksandrovskii, E. G. Ershova, E. V. Ponomarenko, N. A. Krenke, and V. V. Skripkin, “Natural and anthropogenic changes in the soils and environment of the Moskva river floodplain in the Holocene: pedogenic, palynological, and anthracological evidences,” Eurasian Soil Sci. 51, 613–627 (2018).

    Article  Google Scholar 

  5. T. G. Antipina and N. K. Panova, “Genesis and paleoecology of bogs in the Holocene in the northwest of the Kondinskaya Lowland (Western Siberia, Russia),” in Proceedings of the Fourth International Field Symp. “Peatlands of Western Siberia and Carbon Cycle: Past and Present,” Novosibirsk, August 4–17, 2014 (Tomsk State Univ., Tomsk, 2014), pp. 260–262.

  6. T. G. Antipina, Yu. I. Preis, and V. N. Zenin, “Dynamics of forest vegetation and climate in the southern taiga of Western Siberia in the Late Holocene according to spore–pollen analysis and AMS dating of the peat bog,” Russ. J. Ecol. 50, 445–452 (2019).

    Article  Google Scholar 

  7. V. E. Benkova and F. H. Schweingruber, Anatomy of Russian Woods an Atlas for the Identification of Trees, Shrubs, Dwarf Shrubs and Woody Lianas from Russia (Haupt Verlag, Bern, 2004).

    Google Scholar 

  8. M. V. Bobrovskii, Forest Soils of European Russia: Biotic and Anthropogenic Factors of Development, Ed. by A. S. Komarov (KMK, Moscow, 2010) [in Russian].

    Google Scholar 

  9. I. I. Vasenev and V. O. Targulian, Windfall and Pedogenesis in Taiga: Modes, Processes, and Morphogenesis of Soil Successions (Nauka, Moscow, 1995) [in Russian].

    Google Scholar 

  10. A. O. Vol’vakh, N. E. Vol’vakh, I. Yu. Ovchinnikov, D. G. Malikov, and S. N. Shcheglova, “Evidence of warming recorded in the loess deposits of the last glaciation, and the dynamics of loess accumulation in the Northwestern Salair region (southeast of Western Siberia),” Geosfernye Issled., No. 3, 123–143 (2020).

  11. I. P. Gavrilova and L. S. Dolgova, “Sandy soils of the middle taiga subzone of Western Siberia,” in Nature Conditions of Western Siberia (Moscow State Univ., Moscow. 1972), No. 2, pp. 34–50.

  12. G. V. Dobrovol’skii, E. D. Nikitin, and T. V. Afanas’eva, Taiga Pedogenesis in Continental Conditions (Moscow State Univ., Moscow, 1981) [in Russian].

    Google Scholar 

  13. A. A. Dudko, Report on Archaeological Excavations on the Territory of the Identified Cultural Heritage Sites “Kulunigiy 64 Group of Depressions,” Kulunigiy 66 Group of Depressions in the Surgut District of the Khanty-Mansiysk Autonomous Okrug-Yugra in 2018 (According to Open Sheet No. 773 of June 13, 2018) (Institute of Archeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2019), Vols. 1–4.

  14. A. A. Dudko and Yu. A. Vasilyeva, “The results of the rescue archaeological work of the Yugansk detachment in the Surgut region of the Khanty-Mansiysk Autonomous Okrug (Ugra) in 2019,” in Archeology, Ethnography, and Anthropology of Siberia and Adjacent Territories (Institute of Archeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2019), Vol. 25, pp. 774–777.

  15. A. A. Dudko and Yu. A. Vasilyeva, “Chronology of the Kulunigiy 64 ground burial site (Bolshoi Yugan River basin),” Proceedings of the VI (XXII) All-Russian Archeological Congr. in Samara (Samara State Social and Pedagogical University, Samara, 2020), Vol. 1, pp. 139–141.

  16. A. A. Dudko, Yu. A. Vasilyeva, and D. A. Bychkov, “Archaeological field works of the Yugansk detachment of the Institute of Archeology and Ethnography (Siberian Branch, Russian Academy of Sciences) in the Bolshoi Yugan River basin,” in Archeological Discoveries of 2018 (Institute of Archeology, Russian Academy of Sciences, Moscow, 2020), pp. 422–425.

  17. A. A. Dudko, Yu. A. Vasilyeva, and D. A. Bychkov, “Results of field archaeological works of the Yugansk detachment in the Surgut region of the Khanty-Mansiysk Autonomous Okrug (Yugra) in 2018,” in Archeology, Ethnography, and Anthropology of Siberia and Adjacent Territories (Institute of Archeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2018), Vol. 24, pp. 470–473.

  18. E. A. Zaitseva, Archeological Map of Surgut Ob Region (Institute of Archeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2013) [in Russian].

  19. A. P. Zykov, The Barsova Gora: Archeological Survey of Surgut Ob Region: Middle Ages and Modern Times (Ural’skii Rabochii, Yekaterinburg, 2012) [in Russian].

    Google Scholar 

  20. O. V. Kardash, N. M. Chairkina, E. N. Dubovtseva, and Kh. Pietsonka, “New studies of the Early Neolithic settlement Kayukovo-2 in the north of Western Siberia,” Vestn. Novosib. Gos. Univ., Ser. Istor., Filol., 19 (7), 109–124 (2020).

    Google Scholar 

  21. L. V. Karpenko and A. S. Prokushin, “Reconstruction of fires in virgin forests in Sym-Dubches interfluve in the Holocene,” Sib. Lesn. Zh., No. 5, 61–69 (2019).

  22. Classification and Diagnostics of Russian Soils (Dokuchaev Soil Science Inst., Moscow, 1997) [in Russian].

  23. D. M. Kuzmina, “Mechanisms of development of morphons in podzolic soils of northern taiga of Western Siberia,” in The Materials on Russian Soils (St. Petersburg, 2017), No. 9 (36), pp. 172–177.

  24. D. A. Kupriyanov and E. Yu. Novenko, “Reconstruction of the Holocene dynamics of forest fires in the central part of Meshcherskaya Lowlands according to anthracological analysis,” Contemp. Probl. Ecol. 12, 204–212 (2019). https://doi.org/10.1134/S1995425519030065

    Article  Google Scholar 

  25. O. L. Liss, L. I. Abramova, N. A. Avetov, et al., Wetland Systems of Western Siberia and Their Role in Nature Protection (Grif i K, Tula, 2001) [in Russian].

    Google Scholar 

  26. S. V. Loiko, M. V. Bobrovskii, D. M. Kuzmina, A. G. Lim, I. V. Kritskov, and G. I. Istigechev, “The origin of “protrusions” and “pockets” in the northern taiga podzols of Western Siberia,” in Proceedings of the All-Russian Scientific Conf. with International Participation Dedicated to the International Year of Soils and 60th Anniversary of Kirov Regional Division of the Russian Geographical Society “Soil as the Mirror and Memory of Landscape,” October 8–9, 2015 (Kirov, 2015), pp. 45–51.

  27. M. G. Magur, T. A. Blyakharchuk, and P. A. Blyakharchuk, “Moisture dynamics of a large hillock peat bog in the Holocene (northern taiga of Western Siberia),” in Proceedings of the third International Scientific-Practical Conf. “Study and Use of Peat Resources of Siberia” Tomsk, Russia, September 27–October 3, 2015 (Tomsk, 2015), pp. 33–37.

  28. G. I. Makhonina and I. N. Korkina, “Development of podzolic soils on archeological monuments in the West Siberian middle taiga,” Eurasian Soil Sci. 35, 813–822 (2002).

    Google Scholar 

  29. E. Ya. Mul’diyarov, E. D. Lapshina, K. Kremenetskii, and E. V. Perevodchikov, “The history of development and structure of peat deposits of bogs in the northern taiga of Western Siberia,” in Proceedings of the Second International Field Symp. “West Siberian Peatlands and Carbon Cycle: Past and Present,” Noyabrsk, August 18–22, 2001 (Novosibirsk, 2001), pp. 41–44.

  30. Scientific-Applied Handbook on Climate of the USSR, Ser. 3: Long-Term Data, Parts 1–6, No. 17: Tyumen and Omsk Oblasts (Gidrometeoizdat, St. Petersburg, 1998) [in Russian].

  31. N. K. Panova, S. S. Trofimova, T. G. Antipina, E. V. Zinoviev, A. V. Gilev, and N. G. Erokhin, “Holocene dynamics of vegetation and ecological conditions in the southern Yamal Peninsula according to the results of comprehensive analysis of a relict peat bog deposit,” Russ. J. Ecol. 41, 20–27 (2010).

    Article  Google Scholar 

  32. D. G. Petrov, “The paths of migration of charcoal particles in the post-pyrogenic soils of the taiga and tundra depending on features of fire and environmental factors,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 105, 109–145 (2020).

    Google Scholar 

  33. O. E. Ponomareva, A. G. Gravis, T. A. Blyakharchuk, Yu. N. Bochkarev, E. V. Ustinova, N. M. Berdnikov, and N. G. Moskalenko, “Response of sporadic Western Siberia permafrost to climatic changes,” in Proceedings of the Fifth Conf. of Russian Geocryologists (Moscow, 2016), pp. 107–114.

  34. E. V. Ponomarenko, D. S. Ponomarenko, D. A. Stashenkov, and A. F. Kochkina, “Approaches to the reconstruction of dynamic of the territory occupation according to the soil signs,” Povolzh. Arkheol. 1 (11), 126–160 (2015).

    Google Scholar 

  35. M. A. Rudkovskaya, “Negusyakh settlement of the Early Iron Age,” in Ancient Heritage of the Middle Ob on the Territory of Economic Development of RN-Yuganskneftegaz (Magellan, Yekaterinburg, 2013), pp. 116–138.

    Google Scholar 

  36. E. B. Skvortsova, N. G. Ulanova, and V. F. Basevich, Ecological Role of Windfalls (Lesnaya Prom-st’, Moscow, 1983) [in Russian].

    Google Scholar 

  37. Yu. P. Chemyakin, Barsova Gora: Archeological Survey of Surgut Ob Region. Antiquity (Omskii Dom Pechati, Omsk, 2008) [in Russian].

    Google Scholar 

  38. Yu. G. Chendev, E. G. Ershova, A. L. Aleksandrovskii, E. V. Ponomarenko, A. A. Golyeva, O. S. Khokhlova, A. V. Rusakov, and A. S. Shapovalov, “Soil and botanical notes on dynamics of the environment in Yamskaya steppe in the Holocene,” Izv. Akad. Nauk SSSR, Ser. Geogr., No. 2, 75–89 (2016).

  39. L. Amon, A. Blaus, T. Alliksaar, A. Heinsalu, E. Lapshina, M. Liiv, T. Reitalu, J. Vassiljev, and S. Veski, “Postglacial flooding and vegetation history on the Ob River terrace, central Western Siberia based on the palaeoecological record from Lake Svetlenkoye,” Holocene. 30 (5), 618–631 (2020). https://doi.org/10.1177/0959683619895582

    Article  Google Scholar 

  40. A. A. Andreev, R. Pierau, I. A. Kalugin, A. V. Daryin, L. G. Smolyaninova, and B. Diekmann, “Environmental changes in the northern Altai during the last millennium documented in Lake Teletskoye pollen record,” Quat. Res. 67, 394–399 (2007). https://doi.org/10.1016/j.yqres.2006.11.004

    Article  Google Scholar 

  41. C. Barhoumi, A. A. Ali, O. Peyron, L. Dugerdil, O. Borisova, Y. Golubeva, D. Subetto, et al., “Did long-term fire control the coniferous boreal forest composition of the northern Ural region (Komi Republic, Russia)?” J. Biogeogr. 47 (11), 2426–2441 (2020). https://doi.org/10.1111/jbi.13922

    Article  Google Scholar 

  42. M. V. Bobrovsky, “The history of fires in old-growth korean pine–broadleaved forests in the middle reaches of the Bikin river (western slope of the Sykhote-Alin mountains) according to dendrochronological and pedoanthracological data,” Russ. J. Ecosyst. Ecol. 4, (2019). https://doi.org/10.21685/2500-0578-2019-1-2

  43. M. V. Bobrovsky, D. A. Kupriaynov, and L. G. Khanina, “Anthracological and morphological analysis of soils for the reconstruction of the forest ecosystem history (Meshchera Lowlands, Russia),” Quat. Int. 516, 70–82 (2019). https://doi.org/10.1016/j.quaint.2018.06.033

    Article  Google Scholar 

  44. M. V. Bobrovsky and S. V. Loyko, “Patterns of pedoturbation by tree uprooting in forest soils,” Russ. J. Ecosyst. Ecol. 1, (2016). https://doi.org/10.21685/2500-0578-2016-1-3

  45. C. Carcaillet and M. Thinon, “Pedoanthracological contribution to the study of the evolution of the upper treeline in the Maurienne Valley (North French Alps): methodology and preliminary data,” Rev. Palaeobot. Palynol. 91 (1–4), 399–416 (1996). https://doi.org/10.1016/0034-6667(95)00060-7

    Article  Google Scholar 

  46. C. Compostella, L. Trombino, and M. Caccianiga, “Late Holocene soil evolution and treeline fluctuations in the Northern Apennines,” Quat. Int. 289, 46–59 (2013). https://doi.org/10.1016/j.quaint.2012.02.011

    Article  Google Scholar 

  47. G. de Lafontaine and H. Asselin, “Soil charcoal stability over the Holocene across boreal northeastern North America,” Quat. Res. 76 (2), 196–200 (2011). https://doi.org/10.1016/j.yqres.2011.06.006

    Article  Google Scholar 

  48. K. N. Dyakonov, E. Y. Novenko, I. V. Mironenko, D. A. Kuprijanov, and M. V. Bobrovsky, “The role of fires in the Holocene landscape dynamics of the southeastern part of Meshchera Lowlands,” Dokl. Earth Sci. 477, 1336–1342 (2017). https://doi.org/10.1134/S1028334X17110125

    Article  Google Scholar 

  49. A. Feurdean, G. Florescu, I. Tanţău, B. Vannière, A.‑C. Diaconu, M. Pfeiffer, D. Warren, S. M. Hutchinson, N. Gorina, M. Gałka, and S. Kirpotin, “Recent fire regime in the southern boreal forests of western Siberia is unprecedented in the last five millennia,” Quat. Sci. Rev. 244, 106495 (2020). https://doi.org/10.1016/j.quascirev.2020.106495

    Article  Google Scholar 

  50. A. Feurdean, M. Gałka, G. Florescu, A.-C. Diaconu, I. Tanţău, S. Kirpotin, and S. M. Hutchinson, “2000 years of variability in hydroclimate and carbon accumulation in western Siberia and the relationship with large-scale atmospheric circulation: a multi-proxy peat record,” Quat. Sci. Rev. 226, 105948 (2019). https://doi.org/10.1016/j.quascirev.2019.105948

    Article  Google Scholar 

  51. A. Feurdean, B. Vannière, W. Finsinger, D. Warren, S. C. Connor, M. Forrest, J. Liakka, et al., “Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe,” Biogeosciences 17 (5), 1213–1230 (2020). https://doi.org/10.5194/bg-17-1213-2020

    Article  Google Scholar 

  52. D. G. Gavin, “Forest soil disturbance intervals inferred from soil charcoal radiocarbon dates,” Can. J. For. Res. 33 (12), 2514–2518 (2003). https://doi.org/10.1139/x03-185

    Article  Google Scholar 

  53. D. G. Gavin, L. B. Brubaker, and K. P. Lertzman, “Holocene fire history of a coastal temperate rain forest based on soil charcoal radiocarbon dates,” Ecology 84 (1), 186–201 (2003). https://doi.org/10.1890/0012-9658(2003)084[0186:HFHOAC]2.0.CO;2

    Article  Google Scholar 

  54. B. Glaser and J. J. Birk, “State of the scientific knowledge on properties and genesis of anthropogenic dark earths in Central Amazonia (Terra Preta de Índio),” Geochim. Cosmochim. Acta 82, 39–51 (2012). https://doi.org/10.1016/j.gca.2010.11.029

    Article  Google Scholar 

  55. B. Hardy, J.-T. Cornelis, D. Houben, R. Lambert, and J. E. Dufey, “The effect of pre-industrial charcoal kilns on chemical properties of forest soil of Wallonia, Belgium,” Eur. J. Soil Sci. 67 (2), 206–216 (2016). https://doi.org/10.1111/ejss.12324

    Article  Google Scholar 

  56. B. Hardy, J.-T. Cornelis, D. Houben, J. Leifeld, R. Lambert, and J. E. Dufey, “Evaluation of the long-term effect of biochar on properties of temperate agricultural soil at pre-industrial charcoal kiln sites in Wallonia, Belgium,” Eur. J. Soil Sci. 68 (1), 80–89 (2017). https://doi.org/10.1111/ejss.12395

    Article  Google Scholar 

  57. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2015).

    Google Scholar 

  58. M. Jankowski, The evidence of lateral podzolization in sandy soils of northern Poland,” Catena 112, 139–147 (2014). https://doi.org/10.1016/j.catena.2013.03.013

    Article  Google Scholar 

  59. K. Kaiser, T. Schneider, M. Küster, E. Dietze, A. Fülling, S. Heinrich, C. Kappler, et al., “Paleosols and their cover sediments of a glacial landscape in northern central Europe: spatial distribution, pedostratigraphy and evidence on landscape evolution,” Catena 193, 104647 (2020). https://doi.org/10.1016/j.catena.2020.104647

    Article  Google Scholar 

  60. C. Kappler, K. Kaiser, M. Küster, A. Nicolay, A. Fülling, O. Bens, and T. Raab, “Late Pleistocene and Holocene terrestrial geomorphodynamics and soil formation in northeastern Germany: a review of geochronological data,” Phys. Geogr. 40 (5), 405–432 (2019). https://doi.org/10.1080/02723646.2019.1573621

    Article  Google Scholar 

  61. A. Konstantinov, S. Loiko, A. Kurasova, E. Konstantinova, A. Novoselov, G. Istigechev, and S. Kulizhskiy, “First findings of buried late-glacial paleosols within the dune fields of the Tomsk Priobye region (SE western Siberia, Russia),” Geosciences 9 (2), 82 (2019). https://doi.org/10.3390/geosciences9020082

    Article  Google Scholar 

  62. D. A. Kupriyanov and E. Y. Novenko, “Reconstruction of the Holocene dynamics of forest fires in the central part of Meshcherskaya lowlands according to antracological analysis,” Contemp. Probl. Ecol. 12, 204–212 (2019). https://doi.org/10.1134/S1995425519030065

    Article  Google Scholar 

  63. A. O. Kurasova, A. O. Konstantinov, S. P. Kulizhskiy, E. Y. Konstantinova, V. Y. Khoroshavin, and S. V. Loyko, “Patterns of soil cover organization within the northern part of the Kondinskaya lowland (Western Siberia),” Vestn. Tomsk. Gos. Univ., Biol. 49, 6–24 (2020). https://doi.org/10.17223/19988591/49/1

    Article  Google Scholar 

  64. Y. Kuzyakov, I. Bogomolova, and B. Glaser, “Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis,” Soil Biol. Biochem. 70, 229–236 (2014). https://doi.org/10.1016/j.soilbio.2013.12.021

    Article  Google Scholar 

  65. M. Lamentowicz, M. Słowiński, K. Marcisz, M. Zielińska, K. Kaliszan, E. Lapshina, and D. Gilbert, et al., “Hydrological dynamics and fire history of the last 1300 years in western Siberia reconstructed from a high-resolution, ombrotrophic peat archive,” Quart. Res. 84 (3), 312–325 (2015). https://doi.org/10.1016/j.yqres.2015.09.002

    Article  Google Scholar 

  66. K. Lertzman, D. Gavin, D. Hallett, L. Brubaker, D. Lepofsky, and R. Mathewes, “Long-term fire regime estimated from soil charcoal in coastal temperate rainforests,” Ecol. Soc. 6 (2), (2002). https://doi.org/10.5751/es-00432-060205

  67. H. B. Lindskoug and E. A. Villafañez, “Fire ecology, past landscapes and human interaction: contributions from pedoanthracology, Balcosna Valley, Catamarca, North-western Argentina,” Archaeol. Anthropol. Sci. 12 (7), 154 (2020). https://doi.org/10.1007/s12520-020-01108-z

    Article  Google Scholar 

  68. G. Magne, B. Brossier, E. Gandouin, L. Paradis, I. Drobyshev, A. Kryshen, C. Hély, S. Alleaume, and A. A. Ali, “Lacustrine charcoal peaks provide an accurate record of surface wildfires in a North European boreal forest,” Holocene 30 (3), 380–388 (2020). https://doi.org/10.1177/0959683619887420

    Article  Google Scholar 

  69. J. A. Matthews and M. Seppälä, “Holocene colluvial chronology in a sub-arctic esker landscape at Kuttanen, Finnish Lapland: Kettleholes as geo-ecological archives of interactions amongst fire, vegetation, soil, climate and geomorphological instability,” Boreas 44 (2), 343–367 (2015). https://doi.org/10.1111/bor.12107

    Article  Google Scholar 

  70. J. A. Matthews, M. Seppälä, and P. Q. Dresser, “Holocene solifluction, climate variation and fire in a subarctic landscape at Pippokangas, Finnish Lapland, based on radiocarbon-dated buried charcoal,” J. Quart. Sci. 20 (6), 533–548 (2005). https://doi.org/10.1002/jqs.932

    Article  Google Scholar 

  71. Y. A. Mazei, A. N. Tsyganov, M. V. Bobrovsky, N. G. Mazei, D. A. Kupriyanov, M. Gałka, D. V. Rostanets, et al., “Peatland development, vegetation history, climate change and human activity in the Valdai uplands (Central European Russia) during the Holocene: a multi-proxy palaeoecological study,” Diversity 12, 462 (2020). https://doi.org/10.3390/d12120462

    Article  Google Scholar 

  72. N. Mergelov, D. Petrov, E. Zazovskaya, A. Dolgikh, A. Golyeva, V. Matskovsky, R. Bichurin, et al., “Soils in karst sinkholes record the Holocene history of local forest fires at the north of European Russia,” Forests 11 (12), 1268 (2020). https://doi.org/10.3390/f11121268

    Article  Google Scholar 

  73. J. Novák, V. Trotsiuk, O. Sýkora, M. Svoboda, and M. Chytrý, “Ecology of Tilia sibirica in a continental hemiboreal forest, southern Siberia: an analogue of a glacial refugium of broad-leaved temperate trees?,” Holocene 24 (8), 908–918 (2014). https://doi.org/10.1177/0959683614534744

    Article  Google Scholar 

  74. E. Y. Novenko, A. N. Tsyganov, N. G. Mazei, D. A. Kupriyanov, O. V. Rudenko, M. V. Bobrovsky, N. M. Erman, and V. A. Nizovtsev, “Palaeoecological evidence for climatic and human impacts on vegetation in the temperate deciduous forest zone of European Russia during the last 4200 years: a case study from the Kaluzhskiye Zaseki Nature Reserve,” Quat. Int. 516, 58–69 (2019). https://doi.org/10.1016/j.quaint.2018.06.028

    Article  Google Scholar 

  75. E. Y. Novenko, A. N. Tsyganov, E. M. Volkova, D. A. Kupriyanov, I. V. Mironenko, K. V. Babeshko, A. S. Utkina, V. Popov, and Y. A. Mazei, “Mid-and Late Holocene vegetation dynamics and fire history in the boreal forest of European Russia: a case study from Meshchera Lowlands,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 459, 570–584 (2016). https://doi.org/10.1016/j.palaeo.2016.08.004

    Article  Google Scholar 

  76. M. Ohlson, B. Dahlberg, T. Økland, K. J. Brown, and R. Halvorsen, “The charcoal carbon pool in boreal forest soils,” Nat. Geosci. 2 (10), 692–695 (2009). https://doi.org/10.1038/ngeo617

    Article  Google Scholar 

  77. M. Ohlson, I. Kasin, A. N. Wist, and A. E. Bjune, “Size and spatial structure of the soil and lacustrine charcoal pool across a boreal forest watershed,” Quart. Res. 80 (3), 417–424 (2013). https://doi.org/10.1016/j.yqres.2013.08.009

    Article  Google Scholar 

  78. M. Ohlson and E. Tryterud, “Interpretation of the charcoal record in forest soils: forest fires and their production and deposition of macroscopic charcoal,” Holocene 10 (4), 519–525 (2000). https://doi.org/10.1191/095968300667442551

    Article  Google Scholar 

  79. M. Philben, K. Kaiser, and R. Benner, “Biochemical evidence for minimal vegetation change in peatlands of the West Siberian Lowland during the Medieval climate anomaly and Little Ice Age,” J. Geophys. Res.: Biogeosci. 119 (5), 808–825 (2014). https://doi.org/10.1002/2013JG002396

    Article  Google Scholar 

  80. A. Pitkänen, J. Turunen, T. Tahvanainen, and K. Tolonen, “Holocene vegetation history from the Salym-Yugan Mire Area, West Siberia,” Holocene 12 (3), 353–362 (2002). https://doi.org/10.1191/0959683602hl533rp

    Article  Google Scholar 

  81. E. Ponomarenko, P.Tomson, E. Ershova, and V. Bakumenko, “A multi-proxy analysis of sandy soils in historical slash-and-burn sites: a case study from southern Estonia,” Quart. Int. 516, 190–206 (2019). https://doi.org/10.1016/j.quaint.2018.10.016

    Article  Google Scholar 

  82. E. V. Ponomarenko, E. G. Ershova, D. A. Stashenkov, D. S. Ponomarenko, and A. F. Kochkina, “Tracing land use history using a combination of soil charcoal and soil pollen analysis: an example from colluvial deposits of the Middle Volga region,” J. Archaeol. Sci.: Rep. 31, 102269 (2020). https://doi.org/10.1016/j.jasrep.2020.102269

    Article  Google Scholar 

  83. P. J. Reimer, W. E. N. Austin, E. Bard, A. Bayliss, P. G. Blackwell, C. Bronk Ramsey, M. Butzin, et al., “The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP),” Radiocarbon 62 (4), 725–757 (2020). https://doi.org/10.1017/RDC.2020.41

    Article  Google Scholar 

  84. M. Reisser, R. S. Purves, M. W. I. Schmidt, and S. Abiven, “Pyrogenic carbon in soils: a literature-based inventory and a global estimation of its content in soil organic carbon and stocks,” Front. Earth Sci. 4, 80 (2016). https://doi.org/10.3389/feart.2016.00080

    Article  Google Scholar 

  85. V. Robin and O. Nelle, “Contribution to the reconstruction of central European fire history, based on the soil charcoal analysis of study sites in northern and central Germany,” Veg. Hist. Archaeobot. 23 (1), 51–65 (2014). https://doi.org/10.1007/s00334-014-0438-2

    Article  Google Scholar 

  86. P. Šamonil, P. Daněk, R. J. Schaetzl, I. Vašíčková, and M. Valtera, “Soil mixing and genesis as affected by tree uprooting in three temperate forests,” Eur. J. Soil Sci. 66 (3), 589–603 (2015). https://doi.org/10.1111/ejss.12245

    Article  Google Scholar 

  87. P. Šamonil, R. J. Schaetzl, M. Valtera, V. Goliáš, P. Baldrian, I. Vašíčková, D. Adam, D. Janík, and L. Hort, “Crossdating of disturbances by tree uprooting: Can treethrow microtopography persist for 6000 years?” For. Ecol. Manage. 307, 123–135 (2013). https://doi.org/10.1016/j.foreco.2013.06.045

    Article  Google Scholar 

  88. P. Šamonil, M. Valtera, R. J. Schaetzl, D. Adam, I. Vašíčková, P. Daněk, D. Janík, and V. Tejnecký, “Impacts of old, comparatively stable, treethrow microtopography on soils and forest dynamics in the northern hardwoods of Michigan, USA,” Catena 140, 55–65 (2016). https://doi.org/10.1016/j.catena.2016.01.006

    Article  Google Scholar 

  89. O. Sizov, A. Konstantinov, A. Volvakh, and A. Molodkov, “Timing and sedimentary record of late quaternary fluvio-aeolian successions of the Tura-Pyshma interfluve (SW Western Siberia, Russia),” Geosciences 10 (10), 396 (2020). https://doi.org/10.3390/geosciences10100396

    Article  Google Scholar 

  90. P. E. Tarasov, J. Guiot, R. Cheddadi, A. A. Andreev, L. G. Bezusko, T. A. Blyakharchuk, N. I. Dorofeyuk, et al., “Climate in northern Eurasia 6000 years ago reconstructed from pollen data,” Earth Planet. Sci. Lett. 171 (4), 635–645 (1999). https://doi.org/10.1016/S0012-821X(99)00171-5

    Article  Google Scholar 

  91. P. Tomson, T. Kaart, and K. Sepp, “Forest soil charcoal and historical land use,” Balt. For. 27 (1), 1–8 (2021). https://doi.org/10.46490/BF478

    Article  Google Scholar 

  92. A. N. Tsyganov, E. A. Zarov, Y. A. Mazei, M. G. Kulkov, K. V. Babeshko, S. Y. Yushkovets, R. J. Payne, et al., “Key periods of peatland development and environmental changes in the middle taiga zone of Western Siberia during the Holocene,” Ambio 50, 1896–1909 (2021). https://doi.org/10.1007/s13280-021-01545-7

    Article  Google Scholar 

  93. J. Turunen, T. Tahvanainen, K. Tolonen, and A. Pitkänen, “Carbon accumulation in West Siberian mires, Russia,” Global Biogeochem. Cycles 15 (2), 285–296 (2001). https://doi.org/10.1029/2000GB001312

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Prof. M.I. Gerasimova, Faculty of Geography, Lomonosov Moscow State University, and anonymous reviewers for valuable advice on improving the article.

Funding

The research was financially supported by the Russian Foundation for Basic Research, project no. 21-54-75001-BF_Soils, as well as by the Institute of Archeology and Ethnography, Siberian Branch RAS, project no. 0264-2021-0008 “Study, preservation and museumification of archaeological and ethno-cultural heritage of Siberia”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Loiko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Eremina

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loiko, S.V., Kuz’mina, D.M., Dudko, A.A. et al. Charcoals in the Middle Taiga Podzols of Western Siberia as an Indicator of Geosystem History. Eurasian Soil Sc. 55, 154–168 (2022). https://doi.org/10.1134/S1064229322020089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229322020089

Keywords:

Navigation