Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Experimental characterization techniques for plasmon-assisted chemistry

Abstract

Plasmon-assisted chemistry is the result of a complex interplay between electromagnetic near fields, heat and charge transfer on the nanoscale. The disentanglement of their roles is non-trivial. Therefore, a thorough knowledge of the chemical, structural and spectral properties of the plasmonic/molecular system being used is required. Specific techniques are needed to fully characterize optical near fields, temperature and hot carriers with spatial, energetic and/or temporal resolution. The timescales for all relevant physical and chemical processes can range from a few femtoseconds to milliseconds, which necessitates the use of time-resolved techniques for monitoring the underlying dynamics. In this Review, we focus on experimental techniques to tackle these challenges. We further outline the difficulties when going from the ensemble level to single-particle measurements. Finally, a thorough understanding of plasmon-assisted chemistry also requires a substantial joint experimental and theoretical effort.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Length scales and timescales in plasmon-assisted chemistry.
Fig. 2: Elementary steps/processes and associated timescales.
Fig. 3: Experimental techniques for probing the local electric field.
Fig. 4: Photoelectrochemical techniques to study charge-transfer processes.
Fig. 5: Solid-state techniques to measure photocurrent in plasmonic systems.
Fig. 6: Techniques to measure temperature in plasmon-assisted chemistry.
Fig. 7: Challenges and opportunities in plasmonic catalysis.

Similar content being viewed by others

References

  1. Chorkendorff, I. & Niemantsverdriet, J. W. Concepts of Modern Catalysis and Kinetics (Wiley-VCH, 2010).

  2. Ravelli, D., Dondi, D., Fagnoni, M. & Albini, A. Photocatalysis. A multi-faceted concept for green chemistry. Chem. Soc. Rev. 38, 1999–2011 (2009).

    CAS  PubMed  Google Scholar 

  3. Zhou, P., Yu, J. & Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 26, 4920–4935 (2014).

    CAS  PubMed  Google Scholar 

  4. White, J. L. et al. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem. Rev. 115, 12888–12935 (2015).

    CAS  PubMed  Google Scholar 

  5. Zhang, Z. et al. A nonmetal plasmonic Z-scheme photocatalyst with UV- to NIR-driven photocatalytic protons reduction. Adv. Mater. 29, 1606688 (2017).

    Google Scholar 

  6. Schneider, J. et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014).

    CAS  PubMed  Google Scholar 

  7. Ueno, K., Oshikiri, T., Sun, Q., Shi, X. & Misawa, H. Solid-state plasmonic solar cells. Chem. Rev. 118, 2955–2993 (2018).

    CAS  PubMed  Google Scholar 

  8. Naldoni, A., Shalaev, V. M. & Brongersma, M. L. Applying plasmonics to a sustainable future. Science 356, 908–909 (2017).

    CAS  PubMed  Google Scholar 

  9. Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011). This is a seminal review on plasmon-induced chemical energy production.

    CAS  PubMed  Google Scholar 

  10. Christopher, P., Xin, H., Marimuthu, A. & Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 11, 1044–1050 (2012).

    CAS  PubMed  Google Scholar 

  11. Linic, S., Aslam, U., Boerigter, C. & Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14, 567–576 (2015).

    CAS  PubMed  Google Scholar 

  12. Aslam, U., Chavez, S. & Linic, S. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotechnol. 12, 1000–1005 (2017).

    CAS  PubMed  Google Scholar 

  13. Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

    CAS  PubMed  Google Scholar 

  14. Cushing, S. K. & Wu, N. Progress and perspectives of plasmon-enhanced solar energy conversion. J. Phys. Chem. Lett. 7, 666–675 (2016).

    CAS  PubMed  Google Scholar 

  15. Meng, X. et al. Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis. Adv. Mater. 28, 6781–6803 (2016).

    CAS  PubMed  Google Scholar 

  16. Zhang, Y. et al. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 118, 2927–2954 (2018). This is a comprehensive review covering the latest advances in plasmonic catalysis.

    CAS  PubMed  Google Scholar 

  17. Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 8, 95–103 (2014).

    CAS  Google Scholar 

  18. Kale, M. J., Avanesian, T. & Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 4, 116–128 (2014).

    CAS  Google Scholar 

  19. Aslam, U., Rao, V. G., Chavez, S. & Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 1, 656–665 (2018).

    Google Scholar 

  20. Zhang, Z., Zhang, C., Zheng, H. & Xu, H. Plasmon-driven catalysis on molecules and nanomaterials. Acc. Chem. Res. 52, 2506–2515 (2019).

    CAS  PubMed  Google Scholar 

  21. Kim, M., Lin, M., Son, J., Xu, H. & Nam, J.-M. Hot-electron-mediated photochemical reactions: principles, recent advances, and challenges. Adv. Opt. Mater. 5, 1700004 (2017).

    Google Scholar 

  22. Xie, W. & Schlücker, S. Surface-enhanced Raman spectroscopic detection of molecular chemo- and plasmo-catalysis on noble metal nanoparticles. Chem. Commun. 54, 2326–2336 (2018).

    CAS  Google Scholar 

  23. Camargo, P. H. & Cortés, E. Plasmonic Catalysis (Wiley, 2021). This is the first book on plasmonic catalysis, covering all aspects of this emerging field.

  24. Jauffred, L., Samadi, A., Klingberg, H., Bendix, P. M. & Oddershede, L. B. Plasmonic heating of nanostructures. Chem. Rev. 119, 8087–8130 (2019).

    CAS  PubMed  Google Scholar 

  25. Baffou, G., Cichos, F. & Quidant, R. Applications and challenges of thermoplasmonics. Nat. Mater. 19, 946–958 (2020).

    CAS  PubMed  Google Scholar 

  26. Wilson, A. J. & Jain, P. K. Light-induced voltages in catalysis by plasmonic nanostructures. Acc. Chem. Res. 53, 1773–1781 (2020).

    CAS  PubMed  Google Scholar 

  27. Zhou, L. et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 362, 69–72 (2018). A detailed study about the activation energy in plasmonic catalysis.

    CAS  PubMed  Google Scholar 

  28. Gargiulo, J., Berté, R., Li, Y., Maier, S. A. & Cortés, E. From optical to chemical hot spots in plasmonics. Acc. Chem. Res. 52, 2525–2535 (2019).

    CAS  PubMed  Google Scholar 

  29. Cortés, E. Activating plasmonic chemistry. Science 362, 28–29 (2018).

    PubMed  Google Scholar 

  30. Bourgeois, B. B., Swearer, D. F. & Dionne, J. A. in Plasmonic Catalysis (eds Camargo, P. H. & Cortés, E.) 37–69 (Wiley, 2021).

  31. Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011).

    CAS  PubMed  Google Scholar 

  32. Marimuthu, A., Zhang, J. & Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339, 1590–1593 (2013).

    CAS  PubMed  Google Scholar 

  33. Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013).

    CAS  PubMed  Google Scholar 

  34. Huang, Y.-F. et al. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. Angew. Chem. 53, 2353–2357 (2014).

    CAS  Google Scholar 

  35. Qian, K. et al. Surface plasmon-driven water reduction: gold nanoparticle size matters. J. Am. Chem. Soc. 136, 9842–9845 (2014).

    CAS  PubMed  Google Scholar 

  36. Zhang, P., Wang, T. & Gong, J. Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater. 27, 5328–5342 (2015).

    CAS  PubMed  Google Scholar 

  37. Yan, L., Wang, F. & Meng, S. Quantum mode selectivity of plasmon-induced water splitting on gold nanoparticles. ACS Nano 10, 5452–5458 (2016).

    CAS  PubMed  Google Scholar 

  38. Liu, B. et al. Ligand-assisted co-assembly approach toward mesoporous hybrid catalysts of transition-metal oxides and noble metals: photochemical water splitting. Angew. Chem. 54, 9061–9065 (2015).

    CAS  Google Scholar 

  39. Warren, S. C. & Thimsen, E. Plasmonic solar water splitting. Energy Environ. Sci. 5, 5133–5146 (2012).

    CAS  Google Scholar 

  40. Ueno, K., Oshikiri, T. & Misawa, H. Plasmon-induced water splitting using metallic-nanoparticle-loaded photocatalysts and photoelectrodes. ChemPhysChem 17, 199–215 (2016).

    CAS  PubMed  Google Scholar 

  41. Kim, Y., Smith, J. G. & Jain, P. K. Harvesting multiple electron–hole pairs generated through plasmonic excitation of Au nanoparticles. Nat. Chem. 10, 763–769 (2018). A demonstration of multi-electron processes assisted by plasmonic nanoparticles.

    CAS  PubMed  Google Scholar 

  42. Yu, S., Wilson, A. J., Kumari, G., Zhang, X. & Jain, P. K. Opportunities and challenges of solar-energy-driven carbon dioxide to fuel conversion with plasmonic catalysts. ACS Energy Lett. 2, 2058–2070 (2017).

    CAS  Google Scholar 

  43. Yu, S., Wilson, A. J., Heo, J. & Jain, P. K. Plasmonic control of multi-electron transfer and C–C coupling in visible-light-driven CO2 reduction on Au nanoparticles. Nano Lett. 18, 2189–2194 (2018).

    CAS  PubMed  Google Scholar 

  44. DuChene, J. S., Tagliabue, G., Welch, A. J., Cheng, W.-H. & Atwater, H. A. Hot hole collection and photoelectrochemical CO2 reduction with plasmonic Au/p-GaN photocathodes. Nano Lett. 18, 2545–2550 (2018).

    CAS  PubMed  Google Scholar 

  45. DuChene, J. S. et al. Optical excitation of a nanoparticle Cu/p-NiO photocathode improves reaction selectivity for CO2 reduction in aqueous electrolytes. Nano Lett. 20, 2348–2358 (2020).

    CAS  PubMed  Google Scholar 

  46. Creel, E. B. et al. Directing selectivity of electrochemical carbon dioxide reduction using plasmonics. ACS Energy Lett. 4, 1098–1105 (2019).

    CAS  Google Scholar 

  47. Kim, Y. et al. Surface-plasmon-assisted photoelectrochemical reduction of CO2 and NO3 on nanostructured silver electrodes. Adv. Energy Mater. 8, 1800363 (2018).

    Google Scholar 

  48. Robatjazi, H. et al. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles. Nat. Commun. 8, 27 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Kazuma, E., Jung, J., Ueba, H., Trenary, M. & Kim, Y. Direct pathway to molecular photodissociation on metal surfaces using visible light. J. Am. Chem. Soc. 139, 3115–3121 (2017).

    CAS  PubMed  Google Scholar 

  50. Sarina, S. et al. Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. J. Am. Chem. Soc. 135, 5793–5801 (2013). This article reports the use of hybrid plasmonic-catalytic materials for chemical synthesis with light.

    CAS  PubMed  Google Scholar 

  51. Xiao, Q. et al. Efficient photocatalytic Suzuki cross-coupling reactions on Au–Pd alloy nanoparticles under visible light irradiation. Green Chem. 16, 4272–4285 (2014).

    CAS  Google Scholar 

  52. Xiao, Q. et al. Alloying gold with copper makes for a highly selective visible-light photocatalyst for the reduction of nitroaromatics to anilines. ACS Catal. 6, 1744–1753 (2016).

    CAS  Google Scholar 

  53. Zhai, Y. et al. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis. Nat. Mater. 15, 889–895 (2016). A remarkable demonstration of plasmon’s role in the synthesis of nanoprisms.

    CAS  PubMed  Google Scholar 

  54. Kamarudheen, R., Kumari, G. & Baldi, A. Plasmon-driven synthesis of individual metal@semiconductor core@shell nanoparticles. Nat. Commun. 11, 3957 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Violi, I. L., Gargiulo, J., Bilderling, C., von, Cortés, E. & Stefani, F. D. Light-induced polarization-directed growth of optically printed gold nanoparticles. Nano Lett. 16, 6529–6533 (2016).

    CAS  PubMed  Google Scholar 

  56. Lindstrom, C. D. & Zhu, X.-Y. Photoinduced electron transfer at molecule–metal interfaces. Chem. Rev. 106, 4281–4300 (2006).

    CAS  PubMed  Google Scholar 

  57. Tatsuma, T., Nishi, H. & Ishida, T. Plasmon-induced charge separation: chemistry and wide applications. Chem. Sci. 8, 3325–3337 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cortés, E. Efficiency and bond selectivity in plasmon-induced photochemistry. Adv. Opt. Mater. 5, 1700191 (2017).

    Google Scholar 

  59. Bauer, C., Abid, J.-P., Fermin, D. & Girault, H. H. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles. J. Chem. Phys. 120, 9302–9315 (2004).

    CAS  PubMed  Google Scholar 

  60. Bauer, C., Abid, J.-P. & Girault, H. H. Hot adsorbate-induced retardation of the internal thermalization of nonequilibrium electrons in adsorbate-covered metal nanoparticles. J. Phys. Chem. B 110, 4519–4523 (2006).

    CAS  PubMed  Google Scholar 

  61. Douglas-Gallardo, O. A., Berdakin, M. & Sánchez, C. G. Atomistic insights into chemical interface damping of surface plasmon excitations in silver nanoclusters. J. Phys. Chem. C 120, 24389–24399 (2016).

    CAS  Google Scholar 

  62. Foerster, B. et al. Chemical interface damping depends on electrons reaching the surface. ACS Nano 11, 2886–2893 (2017).

    CAS  PubMed  Google Scholar 

  63. Foerster, B., Spata, V. A., Carter, E. A., Sönnichsen, C. & Link, S. Plasmon damping depends on the chemical nature of the nanoparticle interface. Sci. Adv. 5, eaav0704 (2019). In this article, chemical interface damping and the influence of surface chemistry is described.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kumar, P. V., Rossi, T. P., Kuisma, M., Erhart, P. & Norris, D. J. Direct hot-carrier transfer in plasmonic catalysis. Faraday Discuss. 214, 189–197 (2019).

    CAS  PubMed  Google Scholar 

  65. Seemala, B. et al. Plasmon-mediated catalytic O2 dissociation on Ag nanostructures: hot electrons or near fields? ACS Energy Lett. 4, 1803–1809 (2019).

    CAS  Google Scholar 

  66. Zhang, Y., Nelson, T., Tretiak, S., Guo, H. & Schatz, G. C. Plasmonic hot-carrier-mediated tunable photochemical reactions. ACS Nano 12, 8415–8422 (2018).

    CAS  PubMed  Google Scholar 

  67. Kale, M. J., Avanesian, T., Xin, H., Yan, J. & Christopher, P. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate–metal bonds. Nano Lett. 14, 5405–5412 (2014).

    CAS  PubMed  Google Scholar 

  68. Wu, K., Chen, J., McBride, J. R. & Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349, 632–635 (2015). A seminal paper on charge-transfer mechanisms at plasmonic interfaces.

    CAS  PubMed  Google Scholar 

  69. Boerigter, C., Campana, R., Morabito, M. & Linic, S. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nat. Commun. 7, 10545 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Boerigter, C., Aslam, U. & Linic, S. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano 10, 6108–6115 (2016).

    CAS  PubMed  Google Scholar 

  71. Kazuma, E., Lee, M., Jung, J., Trenary, M. & Kim, Y. Single-molecule study of a plasmon-induced reaction for a strongly chemisorbed molecule. Angew. Chem. 59, 7960–7966 (2020).

    CAS  Google Scholar 

  72. Baffou, G., Bordacchini, I., Baldi, A. & Quidant, R. Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics. Light Sci. Appl. 9, 108 (2020). A guideline to rule out the temperature contribution to plasmon-driven processes.

    PubMed  PubMed Central  Google Scholar 

  73. Misewich, Heinz & Newns Desorption induced by multiple electronic transitions. Phys. Rev. Lett. 68, 3737–3740 (1992).

    CAS  PubMed  Google Scholar 

  74. Kamarudheen, R., Castellanos, G. W., Kamp, L. P. J., Clercx, H. J. H. & Baldi, A. Quantifying photothermal and hot charge carrier effects in plasmon-driven nanoparticle syntheses. ACS Nano 12, 8447–8455 (2018).

    CAS  PubMed  Google Scholar 

  75. Sivan, Y., Baraban, J. H. & Dubi, Y. Experimental practices required to isolate thermal effects in plasmonic photo-catalysis: lessons from recent experiments. OSA Contin. 3, 483–497 (2020).

    Google Scholar 

  76. Hobbs, R. G. et al. Mapping photoemission and hot-electron emission from plasmonic nanoantennas. Nano Lett. 17, 6069–6076 (2017).

    CAS  PubMed  Google Scholar 

  77. Wu, C.-Y. et al. High-spatial-resolution mapping of catalytic reactions on single particles. Nature 541, 511–515 (2017).

    CAS  PubMed  Google Scholar 

  78. Zheng, Z., Tachikawa, T. & Majima, T. Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd–Au nanorods studied at the single-particle level. J. Am. Chem. Soc. 137, 948–957 (2015).

    CAS  PubMed  Google Scholar 

  79. Sambur, J. B. et al. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes. Nature 530, 77–80 (2016).

    CAS  PubMed  Google Scholar 

  80. Tachikawa, T., Yamashita, S. & Majima, T. Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. J. Am. Chem. Soc. 133, 7197–7204 (2011).

    CAS  PubMed  Google Scholar 

  81. Nah, S. et al. Spatially segregated free-carrier and exciton populations in individual lead halide perovskite grains. Nat. Photonics 11, 285–288 (2017).

    CAS  Google Scholar 

  82. Hamans, R. F., Kamarudheen, R. & Baldi, A. Single particle approaches to plasmon-driven catalysis. Nanomaterials 10, 2377 (2020).

    CAS  PubMed Central  Google Scholar 

  83. Simoncelli, S., Li, Y., Cortés, E. & Maier, S. A. Imaging plasmon hybridization of fano resonances via hot-electron-mediated absorption mapping. Nano Lett. 18, 3400–3406 (2018). This article reports super-resolution mapping of chemical reactions induced by plasmon decay.

    CAS  PubMed  Google Scholar 

  84. Simoncelli, S. et al. Monitoring plasmonic hot-carrier chemical reactions at the single particle level. Faraday Discuss. 214, 73–87 (2019).

    CAS  PubMed  Google Scholar 

  85. Zou, N. et al. Imaging catalytic hotspots on single plasmonic nanostructures via correlated super-resolution and electron microscopy. ACS Nano 12, 5570–5579 (2018).

    CAS  PubMed  Google Scholar 

  86. Tran, V. et al. Probing the SERS brightness of individual Au nanoparticles, hollow Au/Ag nanoshells, Au nanostars and Au core/Au satellite particles: single-particle experiments and computer simulations. Nanoscale 10, 21721–21731 (2018).

    CAS  PubMed  Google Scholar 

  87. Kirchner, S. R. et al. Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes. J. Phys. Chem. C 122, 6865–6875 (2018).

    CAS  Google Scholar 

  88. Dhiman, M. Plasmonic nanocatalysis for solar energy harvesting and sustainable chemistry. J. Mater. Chem. A 8, 10074–10095 (2020).

    CAS  Google Scholar 

  89. Gellé, A. et al. Applications of plasmon-enhanced nanocatalysis to organic transformations. Chem. Rev. 120, 986–1041 (2020).

    PubMed  Google Scholar 

  90. Huang, H. J. et al. Review of experimental setups for plasmonic photocatalytic reactions. Catalysts 10, 46 (2020).

    CAS  Google Scholar 

  91. Kamarudheen, R., Aalbers, G. J. W., Hamans, R. F., Kamp, L. P. J. & Baldi, A. Distinguishing among all possible activation mechanisms of a plasmon-driven chemical reaction. ACS Energy Lett. 5, 2605–2613 (2020). Decoding the reaction pathways in plasmon-assisted chemistry is described in this article.

    CAS  Google Scholar 

  92. Sun, Y. & Tang, Z. Photocatalytic hot-carrier chemistry. MRS Bull. 45, 20–25 (2020).

    CAS  Google Scholar 

  93. Mascaretti, L. & Naldoni, A. Hot electron and thermal effects in plasmonic photocatalysis. J. Appl. Phys. 128, 41101 (2020).

    CAS  Google Scholar 

  94. Li, S. et al. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv. Mater. 33, e2000086 (2021).

    PubMed  Google Scholar 

  95. Li, X., Everitt, H. O. & Liu, J. Synergy between thermal and nonthermal effects in plasmonic photocatalysis. Nano Res. 13, 1268–1280 (2020).

    Google Scholar 

  96. Zhan, C., Moskovits, M. & Tian, Z.-Q. Recent progress and prospects in plasmon-mediated chemical reaction. Matter 3, 42–56 (2020).

    Google Scholar 

  97. Schlögl, R. Heterogeneous catalysis. Angew. Chem. 54, 3465–3520 (2015).

    Google Scholar 

  98. Eames, C., Eames, R. & Boeke, K. Power of Ten (Pyramid Films, 1978).

  99. Gieseking, R. L., Ratner, M. A. & Schatz, G. C. in Frontiers of Plasmon Enhanced Spectroscopy Vol. 1 (eds Ozaki, Y., Schatz, G. C., Graham, D. & Itoh, T.) Vol. 1245 1–22 (American Chemical Society, 2016).

  100. Narang, P., Sundararaman, R. & Atwater, H. A. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. Nanophotonics 5, 96–111 (2016). A theoretical description of possible decay channels of excited plasmons.

    CAS  Google Scholar 

  101. Zhan, C. et al. From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nat. Rev. Chem. 2, 216–230 (2018).

    Google Scholar 

  102. Govorov, A. O., Zhang, H., Demir, H. V. & Gun’ko, Y. K. Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications. Nano Today 9, 85–101 (2014).

    CAS  Google Scholar 

  103. Hartland, G. V., Besteiro, L. V., Johns, P. & Govorov, A. O. What’s so hot about electrons in metal nanoparticles? ACS Energy Lett. 2, 1641–1653 (2017).

    CAS  Google Scholar 

  104. Hartland, G. V. Coherent excitation of vibrational modes in metallic nanoparticles. Annu. Rev. Phys. Chem. 57, 403–430 (2006).

    CAS  PubMed  Google Scholar 

  105. Ueno, K. et al. Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source. J. Am. Chem. Soc. 130, 6928–6929 (2008).

    CAS  PubMed  Google Scholar 

  106. Khurgin, J. B. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 10, 2–6 (2015). A remarkable discussion on plasmon excitation and decay.

    CAS  PubMed  Google Scholar 

  107. Furube, A., Du, L., Hara, K., Katoh, R. & Tachiya, M. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc. 129, 14852–14853 (2007).

    CAS  PubMed  Google Scholar 

  108. Harutyunyan, H. et al. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nat. Nanotechnol. 10, 770–774 (2015).

    CAS  PubMed  Google Scholar 

  109. Long, R. & Prezhdo, O. V. Instantaneous generation of charge-separated state on TiO2 surface sensitized with plasmonic nanoparticles. J. Am. Chem. Soc. 136, 4343–4354 (2014).

    CAS  PubMed  Google Scholar 

  110. Bernardi, M., Mustafa, J., Neaton, J. B. & Louie, S. G. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat. Commun. 6, 7044 (2015).

    CAS  PubMed  Google Scholar 

  111. Besteiro, L. V. et al. The fast and the furious: Ultrafast hot electrons in plasmonic metastructures. Size and structure matter. Nano Today 27, 120–145 (2019).

    CAS  Google Scholar 

  112. Cortés, E. et al. Plasmonic hot electron transport drives nano-localized chemistry. Nat. Commun. 8, 14880 (2017). A demonstration of localized reactivity in plasmonic nanostructures.

    PubMed  PubMed Central  Google Scholar 

  113. Bracco, G. & Holst, B. Surface Science Techniques (Springer, 2013).

  114. Schlücker, S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chem. 53, 4756–4795 (2014).

    Google Scholar 

  115. Langer, J. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2020).

    CAS  PubMed  Google Scholar 

  116. Albrecht, M. G. & Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977).

    CAS  Google Scholar 

  117. Jeanmaire, D. L. & van Duyne, R. P. Surface Raman spectroelectrochemistry. J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977).

    CAS  Google Scholar 

  118. Fleischmann, M., Hendra, P. J. & McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974).

    CAS  Google Scholar 

  119. Huang, Y.-F. et al. When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J. Am. Chem. Soc. 132, 9244–9246 (2010).

    CAS  PubMed  Google Scholar 

  120. Wu, D.-Y. et al. Surface catalytic coupling reaction of p-mercaptoaniline linking to silver nanostructures responsible for abnormal SERS enhancement: A DFT study. J. Phys. Chem. C 113, 18212–18222 (2009).

    CAS  Google Scholar 

  121. Zhao, L.-B., Chen, J.-L., Zhang, M., Wu, D.-Y. & Tian, Z.-Q. Theoretical study on electroreduction of p-nitrothiophenol on silver and gold electrode surfaces. J. Phys. Chem. C 119, 4949–4958 (2015).

    CAS  Google Scholar 

  122. Brandt, N. C., Keller, E. L. & Frontiera, R. R. Ultrafast surface-enhanced Raman probing of the role of hot electrons in plasmon-driven chemistry. J. Phys. Chem. Lett. 7, 3179–3185 (2016).

    CAS  PubMed  Google Scholar 

  123. Brooks, J. L., Warkentin, C. L., Saha, D., Keller, E. L. & Frontiera, R. R. Toward a mechanistic understanding of plasmon-mediated photocatalysis. Nanophotonics 7, 1697–1724 (2018).

    CAS  Google Scholar 

  124. Xie, W., Herrmann, C., Kömpe, K., Haase, M. & Schlücker, S. Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions. J. Am. Chem. Soc. 133, 19302–19305 (2011). A seminal paper on bimetallic plasmonic assemblies for catalysis and SERS.

    CAS  PubMed  Google Scholar 

  125. Joseph, V. et al. Characterizing the kinetics of nanoparticle-catalyzed reactions by surface-enhanced Raman scattering. Angew. Chem. 51, 7592–7596 (2012).

    CAS  Google Scholar 

  126. Xie, W., Grzeschik, R. & Schlücker, S. Metal nanoparticle-catalyzed reduction using borohydride in aqueous media: a kinetic analysis of the surface reaction by microfluidic SERS. Angew. Chem. 55, 13729–13733 (2016).

    CAS  Google Scholar 

  127. Bosman, M., Keast, V. J., Watanabe, M., Maaroof, A. I. & Cortie, M. B. Mapping surface plasmons at the nanometre scale with an electron beam. Nanotechnology 18, 165505 (2007).

    Google Scholar 

  128. Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348–353 (2007).

    CAS  Google Scholar 

  129. Chu, M.-W. et al. Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam. Nano Lett. 9, 399–404 (2009).

    CAS  PubMed  Google Scholar 

  130. N’Gom, M. et al. Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods. Phys. Rev. B 80, 113411 (2009).

    Google Scholar 

  131. Rossouw, D., Couillard, M., Vickery, J., Kumacheva, E. & Botton, G. A. Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe. Nano Lett. 11, 1499–1504 (2011).

    CAS  PubMed  Google Scholar 

  132. Scholl, J. A., Koh, A. L. & Dionne, J. A. Quantum plasmon resonances of individual metallic nanoparticles. Nature 483, 421–427 (2012).

    CAS  PubMed  Google Scholar 

  133. Rossouw, D. & Botton, G. A. Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding. Phys. Rev. Lett. 110, 66801 (2013).

    Google Scholar 

  134. Cherqui, C., Thakkar, N., Li, G., Camden, J. P. & Masiello, D. J. Characterizing localized surface plasmons using electron energy-loss spectroscopy. Annu. Rev. Phys. Chem. 67, 331–357 (2016).

    CAS  PubMed  Google Scholar 

  135. Wu, Y., Li, G. & Camden, J. P. Probing nanoparticle plasmons with electron energy loss spectroscopy. Chem. Rev. 118, 2994–3031 (2018).

    CAS  PubMed  Google Scholar 

  136. Stöckle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000).

    Google Scholar 

  137. Domke, K. F. & Pettinger, B. In situ discrimination between axially complexed and ligand-free co porphyrin on Au(111) with tip-enhanced Raman spectroscopy. ChemPhysChem 10, 1794–1798 (2009).

    CAS  PubMed  Google Scholar 

  138. Wang, X. et al. Tip-enhanced Raman spectroscopy for surfaces and interfaces. Chem. Soc. Rev. 46, 4020–4041 (2017).

    CAS  PubMed  Google Scholar 

  139. Huang, T.-X. et al. Rational fabrication of silver-coated AFM TERS tips with a high enhancement and long lifetime. Nanoscale 10, 4398–4405 (2018).

    CAS  PubMed  Google Scholar 

  140. Zhang, K. et al. Low-background tip-enhanced Raman spectroscopy enabled by a plasmon thin-film waveguide probe. Anal. Chem. 93, 7699–7706 (2021).

    CAS  PubMed  Google Scholar 

  141. Schmid, T., Opilik, L., Blum, C. & Zenobi, R. Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review. Angew. Chem. 52, 5940–5954 (2013).

    CAS  Google Scholar 

  142. van Schrojenstein Lantman, E. M., Deckert-Gaudig, T., Mank, A. J. G., Deckert, V. & Weckhuysen, B. M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol. 7, 583–586 (2012).

    PubMed  Google Scholar 

  143. Zhang, Z. et al. Insights into the nature of plasmon-driven catalytic reactions revealed by HV-TERS. Nanoscale 5, 3249–3252 (2013).

    CAS  PubMed  Google Scholar 

  144. Zhang, Z., Sun, M., Ruan, P., Zheng, H. & Xu, H. Electric field gradient quadrupole Raman modes observed in plasmon-driven catalytic reactions revealed by HV-TERS. Nanoscale 5, 4151–4155 (2013).

    CAS  PubMed  Google Scholar 

  145. Szczerbin´ski, J., Gyr, L., Kaeslin, J. & Zenobi, R. Plasmon-driven photocatalysis leads to products known from E-beam and X-ray-induced surface chemistry. Nano Lett. 18, 6740–6749 (2018).

    PubMed  Google Scholar 

  146. Yin, H. et al. Nanoscale surface redox chemistry triggered by plasmon-generated hot carriers. Small 15, e1903674 (2019).

    PubMed  Google Scholar 

  147. Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).

    CAS  PubMed  Google Scholar 

  148. Kazuma, E. & Kim, Y. Mechanistic studies of plasmon chemistry on metal catalysts. Angew. Chem. 58, 4800–4808 (2019).

    CAS  Google Scholar 

  149. Kazuma, E., Jung, J., Ueba, H., Trenary, M. & Kim, Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 360, 521–526 (2018).

    CAS  PubMed  Google Scholar 

  150. Centrone, A. Infrared imaging and spectroscopy beyond the diffraction limit. Annu. Rev. Anal. Chem. 8, 101–126 (2015).

    CAS  Google Scholar 

  151. Dazzi, A. & Prater, C. B. AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146–5173 (2017).

    CAS  PubMed  Google Scholar 

  152. Kurouski, D., Dazzi, A., Zenobi, R. & Centrone, A. Infrared and Raman chemical imaging and spectroscopy at the nanoscale. Chem. Soc. Rev. 49, 3315–3347 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Wilson, A. J., Devasia, D. & Jain, P. K. Nanoscale optical imaging in chemistry. Chem. Soc. Rev. 49, 6087–6112 (2020).

    CAS  Google Scholar 

  154. Bechtel, H. A., Muller, E. A., Olmon, R. L., Martin, M. C. & Raschke, M. B. Ultrabroadband infrared nanospectroscopic imaging. Proc. Natl Acad. Sci. USA 111, 7191–7196 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Rang, M. et al. Optical near-field mapping of plasmonic nanoprisms. Nano Lett. 8, 3357–3363 (2008).

    CAS  PubMed  Google Scholar 

  156. Cinchetti, M. et al. Photoemission electron microscopy as a tool for the investigation of optical near fields. Phys. Rev. Lett. 95, 47601 (2005).

    CAS  Google Scholar 

  157. Schumacher, L. et al. Precision plasmonics with monomers and dimers of spherical gold nanoparticles: nonequilibrium dynamics at the time and space limits. J. Phys. Chem. C 123, 13181–13191 (2019).

    CAS  Google Scholar 

  158. Wright, D. et al. Mechanistic study of an immobilized molecular electrocatalyst by in situ gap-plasmon-assisted spectro-electrochemistry. Nat. Catal. 4, 157–163 (2021). A mechanistic study in which molecular catalysts operating at plasmonic interfaces were monitored.

    CAS  Google Scholar 

  159. Huang, L. et al. Synergy between plasmonic and electrocatalytic activation of methanol oxidation on palladium–silver alloy nanotubes. Angew. Chem. 58, 8794–8798 (2019).

    CAS  Google Scholar 

  160. Zhang, Y., Guo, W., Zhang, Y. & Wei, W. D. Plasmonic photoelectrochemistry: in view of hot carriers. Adv. Mater. 33, 2006654 (2021).

    CAS  Google Scholar 

  161. Xie, W. & Schlücker, S. Hot electron-induced reduction of small molecules on photorecycling metal surfaces. Nat. Commun. 6, 7570 (2015). The key role of both hot electrons and hot holes in plasmonic catalysis are described here.

    PubMed  Google Scholar 

  162. Rao, V. G., Aslam, U. & Linic, S. Chemical requirement for extracting energetic charge carriers from plasmonic metal nanoparticles to perform electron-transfer reactions. J. Am. Chem. Soc. 141, 643–647 (2019).

    CAS  PubMed  Google Scholar 

  163. Rodio, M. et al. Experimental evidence for nonthermal contributions to plasmon-enhanced electrochemical oxidation reactions. ACS Catal. 10, 2345–2353 (2020).

    CAS  Google Scholar 

  164. Pensa, E. et al. Spectral screening of the energy of hot holes over a particle plasmon resonance. Nano Lett. 19, 1867–1874 (2019). The energy of the generated and extracted plasmonic hot carriers were monitored in this study.

    CAS  PubMed  Google Scholar 

  165. Hoener, B. S. et al. Plasmonic sensing and control of single-nanoparticle electrochemistry. Chem 4, 1560–1585 (2018).

    CAS  Google Scholar 

  166. Ou, W. et al. Thermal and nonthermal effects in plasmon-mediated electrochemistry at nanostructured Ag electrodes. Angew. Chem. 59, 6790–6793 (2020).

    CAS  Google Scholar 

  167. Huang, S.-C. et al. Probing nanoscale spatial distribution of plasmonically excited hot carriers. Nat. Commun. 11, 4211 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Byers, C. P. et al. Single-particle spectroscopy reveals heterogeneity in electrochemical tuning of the localized surface plasmon. J. Phys. Chem. B 118, 14047–14055 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Wonner, K., Evers, M. V. & Tschulik, K. Simultaneous opto- and spectro-electrochemistry: reactions of individual nanoparticles uncovered by dark-field microscopy. J. Am. Chem. Soc. 140, 12658–12661 (2018).

    CAS  PubMed  Google Scholar 

  170. Novo, C., Funston, A. M. & Mulvaney, P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat. Nanotechnol. 3, 598–602 (2008).

    CAS  PubMed  Google Scholar 

  171. Hu, S. et al. Observing atomic layer electrodeposition on single nanocrystals surface by dark field spectroscopy. Nat. Commun. 11, 2518 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Cortés, E. et al. Monitoring the electrochemistry of single molecules by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 132, 18034–18037 (2010).

    PubMed  Google Scholar 

  173. Cortés, E. et al. Strong correlation between molecular configurations and charge-transfer processes probed at the single-molecule level by surface-enhanced Raman scattering. J. Am. Chem. Soc. 135, 2809–2815 (2013).

    PubMed  Google Scholar 

  174. Wilson, A. J. & Willets, K. A. Visualizing site-specific redox potentials on the surface of plasmonic nanoparticle aggregates with superlocalization SERS microscopy. Nano Lett. 14, 939–945 (2014).

    CAS  PubMed  Google Scholar 

  175. Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).

    CAS  PubMed  Google Scholar 

  176. Li, J.-F., Rudnev, A., Fu, Y., Bodappa, N. & Wandlowski, T. In situ SHINERS at electrochemical single-crystal electrode/electrolyte interfaces: tuning preparation strategies and selected applications. ACS Nano 7, 8940–8952 (2013).

    CAS  PubMed  Google Scholar 

  177. Zhang, H. et al. In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat. Commun. 8, 15447 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Bodappa, N. et al. Early stages of electrochemical oxidation of Cu(111) and polycrystalline Cu surfaces revealed by in situ Raman spectroscopy. J. Am. Chem. Soc. 141, 12192–12196 (2019).

    CAS  PubMed  Google Scholar 

  179. Dong, J.-C. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2019).

    CAS  Google Scholar 

  180. Dix, S. T. & Linic, S. In-operando surface-sensitive probing of electrochemical reactions on nanoparticle electrocatalysts: Spectroscopic characterization of reaction intermediates and elementary steps of oxygen reduction reaction on Pt. J. Catal. 396, 32–39 (2021).

    CAS  Google Scholar 

  181. Martín Sabanés, N., Ohto, T., Andrienko, D., Nagata, Y. & Domke, K. F. Electrochemical TERS elucidates potential-induced molecular reorientation of adenine/Au(111). Angew. Chem. 56, 9796–9801 (2017).

    Google Scholar 

  182. Pfisterer, J. H. K., Baghernejad, M., Giuzio, G. & Domke, K. F. Reactivity mapping of nanoscale defect chemistry under electrochemical reaction conditions. Nat. Commun. 10, 5702 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Zeng, Z.-C. et al. Electrochemical tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 137, 11928–11931 (2015).

    CAS  PubMed  Google Scholar 

  184. Bao, Y.-F. et al. Atomic force microscopy based top-illumination electrochemical tip-enhanced Raman spectroscopy. Anal. Chem. 92, 12548–12555 (2020).

    CAS  PubMed  Google Scholar 

  185. Huang, S.-C. et al. Electrochemical tip-enhanced Raman spectroscopy: an in situ nanospectroscopy for electrochemistry. Annu. Rev. Phys. Chem. 72, 213–234 (2021).

    CAS  PubMed  Google Scholar 

  186. Yu, Y., Sundaresan, V. & Willets, K. A. Hot carriers versus thermal effects: resolving the enhancement mechanisms for plasmon-mediated photoelectrochemical reactions. J. Phys. Chem. C 122, 5040–5048 (2018).

    CAS  Google Scholar 

  187. Yu, Y., Wijesekara, K. D., Xi, X. & Willets, K. A. Quantifying wavelength-dependent plasmonic hot carrier energy distributions at metal/semiconductor interfaces. ACS Nano 13, 3629–3637 (2019).

    CAS  PubMed  Google Scholar 

  188. Corson, E. R. et al. In situ ATR-SEIRAS of carbon dioxide reduction at a plasmonic silver cathode. J. Am. Chem. Soc. 142, 11750–11762 (2020).

    CAS  Google Scholar 

  189. Alonso-González, P. et al. Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. Nat. Commun. 3, 684 (2012).

    PubMed  Google Scholar 

  190. Yi, J., You, E.-M., Ding, S.-Y. & Tian, Z.-Q. Unveiling the molecule–plasmon interactions in surface-enhanced infrared absorption spectroscopy. Natl Sci. Rev. 7, 1228–1238 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Liu, Z., Li, Y., Xu, Q., Wang, H. & Liu, W.-T. Coherent vibrational spectroscopy of electrochemical interfaces with plasmonic nanogratings. J. Phys. Chem. Lett. 11, 243–248 (2020).

    CAS  PubMed  Google Scholar 

  192. Liu, W.-T. & Shen, Y. R. In situ sum-frequency vibrational spectroscopy of electrochemical interfaces with surface plasmon resonance. Proc. Natl Acad. Sci. USA 111, 1293–1297 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Wallentine, S., Bandaranayake, S., Biswas, S. & Baker, L. R. Plasmon-resonant vibrational sum frequency generation of electrochemical interfaces: direct observation of carbon dioxide electroreduction on gold. J. Phys. Chem. A 124, 8057–8064 (2020).

    CAS  PubMed  Google Scholar 

  194. Weeraman, C., Yatawara, A. K., Bordenyuk, A. N. & Benderskii, A. V. Effect of nanoscale geometry on molecular conformation: vibrational sum-frequency generation of alkanethiols on gold nanoparticles. J. Am. Chem. Soc. 128, 14244–14245 (2006).

    CAS  PubMed  Google Scholar 

  195. Pluchery, O., Humbert, C., Valamanesh, M., Lacaze, E. & Busson, B. Enhanced detection of thiophenol adsorbed on gold nanoparticles by SFG and DFG nonlinear optical spectroscopy. Phys. Chem. Chem. Phys. 11, 7729–7737 (2009).

    CAS  PubMed  Google Scholar 

  196. Dalstein, L. et al. Revealing the interplay between adsorbed molecular layers and gold nanoparticles by linear and nonlinear optical properties. J. Phys. Chem. C 119, 17146–17155 (2015).

    CAS  Google Scholar 

  197. Linke, M. et al. Plasmonic effects of Au nanoparticles on the vibrational sum frequency spectrum of 4-nitrothiophenol. J. Phys. Chem. C 123, 24234–24242 (2019).

    CAS  Google Scholar 

  198. Reddy, H. et al. Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. Science 369, 423–426 (2020).

    CAS  PubMed  Google Scholar 

  199. Tung, R. T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 1, 11304 (2014).

    Google Scholar 

  200. Cushing, S. K. et al. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 134, 15033–15041 (2012).

    CAS  PubMed  Google Scholar 

  201. Li, J. et al. Ag@Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catal. 3, 47–51 (2013).

    CAS  Google Scholar 

  202. Meng, F., Cushing, S. K., Li, J., Hao, S. & Wu, N. Enhancement of solar hydrogen generation by synergistic interaction of La2Ti2O7 photocatalyst with plasmonic gold nanoparticles and reduced graphene oxide nanosheets. ACS Catal. 5, 1949–1955 (2015).

    CAS  Google Scholar 

  203. Cushing, S. K. et al. Controlling plasmon-induced resonance energy transfer and hot electron injection processes in metal@TiO2 core–shell nanoparticles. J. Phys. Chem. C 119, 16239–16244 (2015).

    CAS  Google Scholar 

  204. Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011). A seminal paper on hot-carrier extraction from plasmonic antennas.

    CAS  PubMed  Google Scholar 

  205. Zheng, B. Y. et al. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat. Commun. 6, 7797 (2015).

    PubMed  Google Scholar 

  206. Lee, H. et al. Graphene–semiconductor catalytic nanodiodes for quantitative detection of hot electrons induced by a chemical reaction. Nano Lett. 16, 1650–1656 (2016).

    CAS  PubMed  Google Scholar 

  207. Tagliabue, G. et al. Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures. Nat. Mater. 19, 1312–1318 (2020). Optimizing the extraction of carriers from plasmonic interfaces.

    CAS  PubMed  Google Scholar 

  208. Matsushita, R. & Kiguchi, M. Surface enhanced Raman scattering of a single molecular junction. Phys. Chem. Chem. Phys. 17, 21254–21260 (2015).

    CAS  PubMed  Google Scholar 

  209. Choi, H.-K. et al. Metal-catalyzed chemical reaction of single molecules directly probed by vibrational spectroscopy. J. Am. Chem. Soc. 138, 4673–4684 (2016).

    CAS  PubMed  Google Scholar 

  210. Li, G.-C., Zhang, Q., Maier, S. A. & Lei, D. Plasmonic particle-on-film nanocavities: a versatile platform for plasmon-enhanced spectroscopy and photochemistry. Nanophotonics 7, 1865–1889 (2018).

    CAS  Google Scholar 

  211. Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Nijs, Bde et al. Plasmonic tunnel junctions for single-molecule redox chemistry. Nat. Commun. 8, 994 (2017).

    PubMed  PubMed Central  Google Scholar 

  213. Cortés, E. et al. Challenges in plasmonic catalysis. ACS Nano 14, 16202–16219 (2020). A comprehensive discussion of the current challenges in the field of plasmonic catalysis.

    Google Scholar 

  214. Jain, P. K. Taking the heat off of plasmonic chemistry. J. Phys. Chem. C 123, 24347–24351 (2019).

    CAS  Google Scholar 

  215. Zhang, X. et al. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 8, 14542 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Simoncelli, S., Li, Y., Cortés, E. & Maier, S. A. Nanoscale control of molecular self-assembly induced by plasmonic hot-electron dynamics. ACS Nano 12, 2184–2192 (2018).

    CAS  PubMed  Google Scholar 

  217. Baffou, G., Quidant, R. & García de Abajo, F. J. Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4, 709–716 (2010).

    CAS  PubMed  Google Scholar 

  218. Baffou, G. Anti-Stokes thermometry in nanoplasmonics. ACS Nano 15, 5785–5792 (2021).

    CAS  PubMed  Google Scholar 

  219. Baffou, G. et al. Photoinduced heating of nanoparticle arrays. ACS Nano 7, 6478–6488 (2013).

    CAS  PubMed  Google Scholar 

  220. Govorov, A. O. et al. Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res. Lett. 1, 84 (2006).

    PubMed Central  Google Scholar 

  221. Dubi, Y., Un, I. W. & Sivan, Y. Thermal effects–an alternative mechanism for plasmon-assisted photocatalysis. Chem. Sci. 11, 5017–5027 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Di Wang et al. Spatial and temporal nanoscale plasmonic heating quantified by thermoreflectance. Nano Lett. 19, 3796–3803 (2019).

    CAS  PubMed  Google Scholar 

  223. Zhang, X. et al. Plasmon-enhanced catalysis: distinguishing thermal and nonthermal effects. Nano Lett. 18, 1714–1723 (2018).

    CAS  PubMed  Google Scholar 

  224. Carattino, A., Caldarola, M. & Orrit, M. Gold nanoparticles as absolute nanothermometers. Nano Lett. 18, 874–880 (2018).

    CAS  PubMed  Google Scholar 

  225. Barella, M. et al. In situ photothermal response of single gold nanoparticles through hyperspectral imaging anti-Stokes thermometry. ACS Nano 15, 2458–2467 (2021).

    CAS  PubMed  Google Scholar 

  226. Hugall, J. T. & Baumberg, J. J. Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds. Nano Lett. 15, 2600–2604 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Ostovar, B. et al. Increased intraband transitions in smaller gold nanorods enhance light emission. ACS Nano 14, 15757–15765 (2020).

    PubMed  Google Scholar 

  228. Cai, Y.-Y. et al. Photoluminescence of gold nanorods: Purcell effect enhanced emission from hot carriers. ACS Nano 12, 976–985 (2018).

    CAS  PubMed  Google Scholar 

  229. Baffou, G., Kreuzer, M. P., Kulzer, F. & Quidant, R. Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. Opt. Express 17, 3291–3298 (2009).

    CAS  PubMed  Google Scholar 

  230. Pellegrotti, J. V. et al. Plasmonic photothermal fluorescence modulation for homogeneous biosensing. ACS Sens. 1, 1351–1357 (2016).

    CAS  Google Scholar 

  231. Brites, C., Millán, A. & Carlos, L. D. in Including Actinides Vol. 49, 339–427 (Elsevier, 2016).

  232. Holub, M. et al. Single-nanoparticle thermometry with a nanopipette. ACS Nano 14, 7358–7369 (2020).

    CAS  PubMed  Google Scholar 

  233. Jollans, T., Caldarola, M., Sivan, Y. & Orrit, M. Effective electron temperature measurement using time-resolved anti-Stokes photoluminescence. J. Phys. Chem. A 124, 6968–6976 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Sytwu, K. et al. Driving energetically unfavorable dehydrogenation dynamics with plasmonics. Science 371, 280–283 (2021).

    CAS  PubMed  Google Scholar 

  235. Tian, Y. & Tatsuma, T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. 1810–1811 (2004).

  236. Reineck, P., Brick, D., Mulvaney, P. & Bach, U. Plasmonic hot electron solar cells: the effect of nanoparticle size on quantum efficiency. J. Phys. Chem. Lett. 7, 4137–4141 (2016).

    CAS  PubMed  Google Scholar 

  237. Murdoch, M. et al. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat. Chem. 3, 489–492 (2011).

    CAS  PubMed  Google Scholar 

  238. Wei, Q., Wu, S. & Sun, Y. Quantum-sized metal catalysts for hot-electron-driven chemical transformation. Adv. Mater. 30, e1802082 (2018).

    PubMed  Google Scholar 

  239. Bian, Z., Tachikawa, T., Zhang, P., Fujitsuka, M. & Majima, T. Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J. Am. Chem. Soc. 136, 458–465 (2014).

    CAS  PubMed  Google Scholar 

  240. Hong, J. W., Wi, D. H., Lee, S.-U. & Han, S. W. Metal–semiconductor heteronanocrystals with desired configurations for plasmonic photocatalysis. J. Am. Chem. Soc. 138, 15766–15773 (2016).

    CAS  PubMed  Google Scholar 

  241. Lee, S. et al. Core–shell bimetallic nanoparticle trimers for efficient light-to-chemical energy conversion. ACS Energy Lett. 5, 3881–3890 (2020).

    CAS  Google Scholar 

  242. Wang, W.-N. et al. Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J. Am. Chem. Soc. 134, 11276–11281 (2012).

    CAS  PubMed  Google Scholar 

  243. Kontoleta, E. et al. Using hot electrons and hot holes for simultaneous cocatalyst deposition on plasmonic nanostructures. ACS Appl. Mater. Interfaces 12, 35986–35994 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Lee, H. et al. Boosting hot electron flux and catalytic activity at metal–oxide interfaces of PtCo bimetallic nanoparticles. Nat. Commun. 9, 2235 (2018).

    PubMed  PubMed Central  Google Scholar 

  245. Li, H. et al. New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies. J. Am. Chem. Soc. 139, 3513–3521 (2017).

    CAS  PubMed  Google Scholar 

  246. Xie, W. & Schlücker, S. Rationally designed multifunctional plasmonic nanostructures for surface-enhanced Raman spectroscopy: a review. Rep. Prog. Phys. 77, 116502 (2014).

    PubMed  Google Scholar 

  247. Linic, S., Chavez, S. & Elias, R. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nat. Mater. 20, 916–924 (2021).

    CAS  PubMed  Google Scholar 

  248. Gao, W., Hood, Z. D. & Chi, M. Interfaces in heterogeneous catalysts: advancing mechanistic understanding through atomic-scale measurements. Acc. Chem. Res. 50, 787–795 (2017).

    CAS  PubMed  Google Scholar 

  249. Zitolo, A. et al. Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nat. Commun. 8, 957 (2017).

    PubMed  PubMed Central  Google Scholar 

  250. Hartman, T., Geitenbeek, R. G., Wondergem, C. S., van der Stam, W. & Weckhuysen, B. M. Operando nanoscale sensors in catalysis: all eyes on catalyst particles. ACS Nano 14, 3725–3735 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Choi, J. I. J., Kim, T.-S., Kim, D., Lee, S. W. & Park, J. Y. Operando surface characterization on catalytic and energy materials from single crystals to nanoparticles. ACS Nano 14, 16392–16413 (2020).

    CAS  Google Scholar 

  252. Grey, C. P. & Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2016).

    CAS  PubMed  Google Scholar 

  253. Ruan, D., Xue, J., Fujitsuka, M. & Majima, T. Ultrafast spectroscopic study of plasmon-induced hot electron transfer under NIR excitation in Au triangular nanoprism/g-C3N4 for photocatalytic H2 production. Chem. Commun. 55, 6014–6017 (2019).

    CAS  Google Scholar 

  254. van Turnhout, L., Hattori, Y., Meng, J., Zheng, K. & Sá, J. Direct observation of a plasmon-induced hot electron flow in a multimetallic nanostructure. Nano Lett. 20, 8220–8228 (2020).

    PubMed  PubMed Central  Google Scholar 

  255. Liu, Y., Chen, Q., Cullen, D. A., Xie, Z. & Lian, T. Efficient hot electron transfer from small Au nanoparticles. Nano Lett. 20, 4322–4329 (2020).

    CAS  PubMed  Google Scholar 

  256. Robatjazi, H., Bahauddin, S. M., Doiron, C. & Thomann, I. Direct plasmon-driven photoelectrocatalysis. Nano Lett. 15, 6155–6161 (2015).

    CAS  PubMed  Google Scholar 

  257. Xiao, F.-X., Zeng, Z. & Liu, B. Bridging the gap: electron relay and plasmonic sensitization of metal nanocrystals for metal clusters. J. Am. Chem. Soc. 137, 10735–10744 (2015).

    CAS  PubMed  Google Scholar 

  258. Kaushik, M. & Moores, A. New trends in sustainable nanocatalysis: Emerging use of earth abundant metals. Curr. Opin. Green Sustain. Chem. 7, 39–45 (2017).

    Google Scholar 

  259. Knight, M. W. et al. Aluminum for plasmonics. ACS Nano 8, 834–840 (2014).

    CAS  PubMed  Google Scholar 

  260. Kalz, K. F. et al. Future challenges in heterogeneous catalysis: understanding catalysts under dynamic reaction conditions. ChemCatChem 9, 17–29 (2017).

    CAS  PubMed  Google Scholar 

  261. Coccia, E. et al. Hybrid theoretical models for molecular nanoplasmonics. J. Chem. Phys. 153, 200901 (2020).

    CAS  PubMed  Google Scholar 

  262. Luk, H. L., Feist, J., Toppari, J. J. & Groenhof, G. Multiscale molecular dynamics simulations of polaritonic chemistry. J. Chem. Theory Comput. 13, 4324–4335 (2017).

    CAS  PubMed  Google Scholar 

  263. Bonn et al. Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 285, 1042–1045 (1999). A seminal paper on thermal and electronic processes at metal photocatalysts.

    CAS  PubMed  Google Scholar 

  264. Yu, S. & Jain, P. K. Isotope effects in plasmonic photosynthesis. Angew. Chem. 59, 22480–22483 (2020).

    CAS  Google Scholar 

  265. Mulvaney, P., Parak, W. J., Caruso, F. & Weiss, P. S. Standardizing nanomaterials. ACS Nano 10, 9763–9764 (2016).

    CAS  PubMed  Google Scholar 

  266. Voiry, D. et al. Best practices for reporting electrocatalytic performance of nanomaterials. ACS Nano 12, 9635–9638 (2018).

    CAS  PubMed  Google Scholar 

  267. Bell, S. E. J. et al. Towards reliable and quantitative surface-enhanced Raman scattering (SERS): From key parameters to good analytical practice. Angew. Chem. 59, 5454–5462 (2020).

    CAS  Google Scholar 

  268. Grzeschik, R. et al. On the overlooked critical role of the pH value on the kinetics of the 4-nitrophenol NaBH4-reduction catalyzed by noble-metal nanoparticles (Pt, Pd, and Au). J. Phys. Chem. C https://doi.org/10.1021/acs.jpcc.9b07114 (2020).

    Article  Google Scholar 

  269. Toyao, T. et al. Machine learning for catalysis informatics: recent applications and prospects. ACS Catal. 10, 2260–2297 (2020).

    CAS  Google Scholar 

  270. Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1, 696–703 (2018).

    CAS  Google Scholar 

  271. Kitchin, J. R. Machine learning in catalysis. Nat. Catal. 1, 230–232 (2018).

    Google Scholar 

  272. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

    CAS  PubMed  Google Scholar 

  273. Salley, D. et al. A nanomaterials discovery robot for the Darwinian evolution of shape programmable gold nanoparticles. Nat. Commun. 11, 2771 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Tomko, J. A. et al. Long-lived modulation of plasmonic absorption by ballistic thermal injection. Nat. Nanotechnol. 16, 47–51 (2021).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.A.M. and E.C. acknowledge funding and support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (EXC2089/1-390776260), the Bavarian programme Solar Energies go Hybrid (SolTech) and the Center for NanoScience (CeNS). E.C. acknowledges support from the European Commission through the ERC Starting Grant CATALIGHT (802989). S.A.M. acknowledges the Lee-Lucas Chair in Physics. S.S. acknowledges funding and support from the DFG within the Collaborative Research Center ‘Non-equilibrium dynamics of condensed matter in the time domain’ (CRC 1242, project no. 278162697, project A04) and the project SCHL 594/17-1 (project no. 410889534).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emiliano Cortés, Stefan A. Maier or Sebastian Schlücker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks G. Baffou, G. Tagliabue and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Activation barrier

Corresponds to the energy needed for a chemical reaction to occur, since it is the energy difference between the activated complex/transition state and the reactants along the path of lowest energy on the potential energy surface. Referred to as Ea.

Rate constant

A measure for the speed of a chemical reaction (not to be mixed up with the reaction speed dc/dt itself) and it is a constant value for a given reaction temperature. Referred to as k.

Potential energy surface

Describes the potential energy of the system as a function of the positions of the nuclei and is normally used to visualize the relevant reaction coordinates for the progression from reactants via the transition state(s) to products.

Vibrational pumping

Significant increase in the population of higher excited vibrational states that may even exceed that of the vibrational ground state — such a non-equilibrium situation is, therefore, different from a thermal equilibrium described by the Boltzmann statistics.

Superlinear dependency

In the case of plasmon-assisted reactions, it means that, upon increasing the power of the incident light, the corresponding reaction rate grows in a nonlinear fashion, i.e. faster than linear.

Electron-beam lithography

A method frequently used in microconductor and semiconductor technology for structuring surfaces using electron-sensitive films.

Haber–Bosch process

Main industrial production process for the large-scale synthesis of ammonia from nitrogen and hydrogen at ca. 200 bar and ca. 450 °C using iron-based catalysts. Ammonia is a basic compound for the synthesis of many important chemicals, with relevance for fertilizers, plastics and synthetic fibres.

Wave vector

Describes the propagation direction of light as an electromagnetic wave and its value is inversely proportional to the wavelength.

Quantum cascade laser

Semiconductor-based lasers relying on intersubband transitions, normally emitting in the infrared spectral region. Laser-based infrared spectroscopy offers several advantages over conventional Fourier transform infrared spectroscopy using incoherent thermal electromagnetic radiation.

Optical parametric oscillator

By means of second-order nonlinear optical interaction, an optical parametric oscillator converts an input laser wave with a given frequency into two output waves of lower frequency. In this laser, the optical gain is produced in a parametric crystal rather than by a population inversion; tunability is achieved by orienting the nonlinear crystal with respect to the axis of an optical resonator. Therefore, optical parametric oscillators are widely exploited in modern laser spectroscopy.

Ohmic contacts

A common junction between a metal and a semiconductor with low electrical resistance, frequently employed in semiconductor physics/technology.

Schottky barriers

At a semiconductor–metal interface, the Schottky barrier is the energy difference between the valence (or conduction) band edge of the semiconductor and the Fermi energy of the metal.

Tunnel barriers

In this context, describes the potential barrier formed between two metals separated by a thin insulator, with the system acting as a tunnel junction that the electronic wave packet can tunnel through.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortés, E., Grzeschik, R., Maier, S.A. et al. Experimental characterization techniques for plasmon-assisted chemistry. Nat Rev Chem 6, 259–274 (2022). https://doi.org/10.1038/s41570-022-00368-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00368-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing