Skip to main content
Log in

A Tail Measure With Variable Risk Tolerance: Application in Dynamic Portfolio Insurance Strategy

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

Risk measures for tail risk have an important application in the dynamic portfolio insurance strategies. We propose a new risk measure called SlideVaR which overcome the limitation of traditional measures like VaR and ES, and can sufficiently reflect the market changes. Several important properties of SlideVaR and its generalized risk measure have been investigated. Then, we further apply SlideVaR into constructing dynamic portfolio insurance strategy. Our numerical analysis shows that SlideVaR-based portfolio insurance strategy has advantage especially in markets where the state changes frequently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Distortion function \(g:[0,1] \rightarrow [0,1]\) is the non-decreasing function such that: \(g(0) = 0\), \(g(1) = 1\). Given a distortion function g, the distortion risk measure \(\rho _{g}(X)\) is:

    $$\begin{aligned} \rho _{g}(X) = \int _{-\infty }^{0}[g(P[X> x])-1]dx + \int _{0}^{+\infty }g(P[X > x])dx. \end{aligned}$$
    (6)

    More information about distortion risk measure can be found in Appendix 3.

  2. Cotter and Dowd (2006) suggest that spectral risk measures can be used by futures clearinghouses to set margin requirements that reflect their corporate risk aversion; Sriboonchitta et al. (2010) and Wächter and Mazzoni (2013) study the relationship between utility function and spectral risk measures; Dowd and Cotter (2007) discuss the relationship between the choice of risk aversion function and spectral risk measures.

  3. It is difficult to get the analytical closed-form expressions of \(U_{\beta }^{\phi }(X)\) under continuous functions such as exponential function and power function. From Remark 2 we know that, with the appropriate value of N, the tail thickness \(U_{\beta ,N}^{\phi }(X)\) under \(\phi ^s_{\beta ,N}(p)\) can be regarded as an approximation.

  4. See e.g. Norton et al. (2021) for the detailed calculation.

  5. The market tendency is mainly controlled by the AR model in process (35). For bull state with a mean return of \(10\%\), the parameters are \(\phi _{0}= 3.57\times 10^{-4}\) and \(\phi _{1} = 0.10\); and for bear state with a mean return of \(3\%\) the parameters are \(\phi _{0}= 1.07\times 10^{-4}\) and \(\phi _{1} = 0.10\). For the process (36), the degree of volatility cluster is decided by \(\gamma _1 = 0.80\) and \(\gamma _2 = 0.10\). The parameter \(\gamma _0\) of three scenarios is \(\gamma _0 = 3\times 10^{-5}\) for the high volatility scenario, \(\gamma _0 = 1.50\times 10^{-5}\) for the middle volatility scenario, and \(\gamma _0 = 0.50\times 10^{-5}\) for the low volatility scenario.

  6. As introduced, the parameters for bull state are \(\phi _{0}= 3.57\times 10^{-4}\) and \(\phi _{1} = 0.10\); and those for bear state are \(\phi _{0}= 1.07\times 10^{-4}\), and \(\phi _{1} = 0.10\). For the volatility parameter, the parameters are \(\sigma ^2=3.36\times 10^{-4}\) for the high volatility scenario, \(\sigma ^2=1.57\times 10^{-4}\) for the middle volatility scenario, and \(\sigma ^2=3.93\times 10^{-5}\) for the low volatility scenario.

  7. Specifically, we calculate the Protection Ratio as the ratio of the number of simulated paths with the final portfolio value greater than or equal to \(99.99\%\) of the initial value in the total number of simulations.

  8. The results reported later are denoted with * for the probability level 0.1, ** for level 0.05, and *** for level 0.01.

  9. In these two tables, SlideVaR-, VaR-, ES- and GlueVaR-based DPPI strategies are denoted as SlideVaR-PI, VaR-PI, ES-PI and GlueVaR-PI.

References

  • Acerbi C (2002) Spectral measures of risk: A coherent representation of subjective risk aversion. J Bank Finan 26(7):1505–1518

    Article  Google Scholar 

  • Adam A, Houkari M, Laurent JP (2008) Spectral risk measures and portfolio selection. J Bank Finan 32(9):1870–1882

    Article  Google Scholar 

  • Alexander C, Sarabia JM (2012) Quantile uncertainty and value-at-risk model risk. Risk Analysis: An Int J 32(8):1293–1308

    Article  Google Scholar 

  • Ameur HB, Prigent J (2007) Portfolio insurance: determination of a dynamic cppi multiple as function of state variables. Thema University of Cergy, Working paper

  • Ameur HB, Prigent JL (2014) Portfolio insurance: Gap risk under conditional multiples. Eur J Oper Res 236(1):238–253

    Article  MathSciNet  MATH  Google Scholar 

  • Artzner P, Delbaen F, Eber JM, Heath D (1999) Coherent measures of risk. Math Financ 9(3):203–228

    Article  MathSciNet  MATH  Google Scholar 

  • Balbás A, Garrido J, Mayoral S (2009) Properties of Distortion Risk Measures. Methodol Comput Appl Probab 11(3):385–399

    Article  MathSciNet  MATH  Google Scholar 

  • Balder S, Brandl M, Mahayni A (2009) Effectiveness of cppi strategies under discrete-time trading. J Econ Dyn Control 33(1):204–220

    Article  MathSciNet  MATH  Google Scholar 

  • Belles-Sampera J, Merigó JM, Guillén M, Santolino M (2013) The connection between distortion risk measures and ordered weighted averaging operators. Insurance: Mathematics and Economics 52(2):411–420

  • Belles-Sampera J, Guillén M, Santolino M (2014) Beyond Value-at-Risk: GlueVaR Distortion Risk Measures. Risk Anal 34(1):121–134

    Article  MATH  Google Scholar 

  • Benartzi S, Thaler RH (1995) Myopic loss aversion and the equity premium puzzle. Q J Econ 110(1):73–92

    Article  MATH  Google Scholar 

  • Benninga S (1990) Comparing portfolio insurance strategies. Finanzmarkt und Portfolio Management 4(1):20–30

    Google Scholar 

  • Bird R, Dennis D, Tippett M (1988) A stop loss approach to portfolio insurance. J Portf Manag 15(1):35

    Article  Google Scholar 

  • Black F, Jones RW (1987) Simplifying portfolio insurance. J Port Manag 14(1):48–51

    Article  Google Scholar 

  • Black F, Perold A (1992) Theory of constant proportion portfolio insurance. J Econ Dyn Control 16(3–4):403–426

    Article  MATH  Google Scholar 

  • Cai J, Wang Y, Mao T (2017) Tail subadditivity of distortion risk measures and multivariate tail distortion risk measures. Insurance: Mathematics and Economics 75:105–116

  • Cerreia-Vioglio S, Maccheroni F, Marinacci M, Montrucchio L (2011) Risk measures: rationality and diversification. Math Financ 21(4):743–774

    MathSciNet  MATH  Google Scholar 

  • Chen JS, Chang CL, Hou JL, Lin YT (2008) Dynamic proportion portfolio insurance using genetic programming with principal component analysis. Expert Syst Appl 35(1):273–278

    Article  Google Scholar 

  • Chen Z, Chen B (2020) Dhaene J (2020) Fair dynamic valuation of insurance liabilities: a loss averse convex hedging approach. Scand Actuar J 9:792–818

    Article  MATH  Google Scholar 

  • Chen Z, Chen B, Dhaene J, Yang T (2021a) Fair dynamic valuation of insurance liabilities via convex hedging. Insurance: Mathematics and Economics 98:1–13

  • Chen Z, Chen B, Hu Y, Zhang H (2021b) Hedge inflation risk of specific purpose guarantee funds. In: European Financial Management, forthcoming

  • Choquet G (1954) Theory of capacities. Annales de l’Institut Fourier 5:131–295

    Article  MathSciNet  MATH  Google Scholar 

  • Coleman T, Kim Y, Li Y, Patron M (2007) Robustly hedging variable annuities with guarantees under jump and volatility risks. J Risk Insurance 74(2):347–376

    Article  Google Scholar 

  • Cotter J, Dowd K (2006) Extreme spectral risk measures: an application to futures clearinghouse margin requirements. J Bank Finan 30(12):3469–3485

    Article  Google Scholar 

  • Cox LA Jr (2012) Confronting deep uncertainties in risk analysis. Risk Analysis: An Int J 32(10):1607–1629

    Article  Google Scholar 

  • Darkiewicz G, Dhaene J, Goovaerts M (2003) Coherent distortion risk measure: a pitfall. In: Working paper presented to 2003 IME conference

  • Denuit M, Dhaene J, Goovaerts M, Kaas R (2006) Actuarial theory for dependent risks: measures, orders and models. John Wiley & Sons

  • Dhaene J, Denuit M, Goovaerts MJ, Kaas R, Vyncke D (2002a) The concept of comonotonicity in actuarial science and finance: applications. Insurance: Mathematics and Economics 31(2):133–161

  • Dhaene J, Denuit M, Goovaerts MJ, Kaas R, Vyncke D (2002b) The concept of comonotonicity in actuarial science and finance: theory. Insurance: Mathematics and Economics 31(1):3–33

  • Dhaene J, Vanduffel S, Goovaerts MJ, Kaas R, Tang Q, Vyncke D (2006) Risk measures and comonotonicity: a review. Stoch Model 22(4):573–606

    Article  MathSciNet  MATH  Google Scholar 

  • Dhaene J, Laeven RJA, Vanduffel S, Darkiewicz G, Goovaerts MJ (2008) Can a coherent risk measure be too subadditive? J Risk Insurance 75(2):365–386

    Article  Google Scholar 

  • Dhaene J, Kukush A, Linders D, Tang Q (2012) Remarks on quantiles and distortion risk measures. Eur Actuar J 2(2):319–328

    Article  MathSciNet  MATH  Google Scholar 

  • Dhaene J, Kukush A, Linders D (2020) Comonotonic asset prices in arbitrage-free markets. J Comput Appl Math 364:112310

  • Dichtl H, Drobetz W (2011) Portfolio insurance and prospect theory investors: Popularity and optimal design of capital protected financial products. Journal of Banking & Finance 35(7):1683–1697

    Article  Google Scholar 

  • Dimson E, Marsh P, Staunton M (2008) The worldwide equity premium: a smaller puzzle. In: Handbook of the equity risk premium, Elsevier, pp 467–514

  • Dowd K, Cotter J (2007) Spectral risk measures and the choice of risk aversion function. Tech Rep. Working Paper

  • Drapeau S, Kupper M (2013) Risk preferences and their robust representation. Math Oper Res 38(1):28–62

    Article  MathSciNet  MATH  Google Scholar 

  • Embrechts P, Nešlehová J, Wüthrich MV (2009) Additivity properties for value-at-risk under archimedean dependence and heavy-tailedness. Insurance: Mathematics and Economics 44(2):164–169

  • Estep T, Kritzman M (1988) Tipp: Insurance without complexity. J Port Manag 14(4):38–42

    Article  Google Scholar 

  • Feng R (2018) An introduction to computational risk management of equity-linked insurance

  • Feng R, Shimizu Y (2016) Applications of central limit theorems for equity-linked insurance. Insurance: Mathematics and Economics 69:138–148

  • Feng R, Vecer J (2017) Risk based capital for guaranteed minimum withdrawal benefit. Quantitative Finance 17(3):471–478

    Article  MathSciNet  MATH  Google Scholar 

  • Feng R, Volkmer HW (2012) Analytical calculation of risk measures for variable annuity guaranteed benefits. Insurance: Mathematics and Economics 51(3):636–648

  • Feng R, Volkmer HW (2016) An identity of hitting times and its application to the valuation of guaranteed minimum withdrawal benefit. Math Financ Econ 10(2):127–149

    Article  MathSciNet  MATH  Google Scholar 

  • Feng R, Volkmer HW et al (2014) Spectral methods for the calculation of risk measures for variable annuity guaranteed benefits. Astin Bull 44(3):653–681

    Article  MathSciNet  MATH  Google Scholar 

  • Figlewski S, Chidambaran N, Kaplan S (1993) Evaluating the performance of the protective put strategy. Financial Analysts Journal pp 46–69

  • Föllmer H, Schied A (2002) Convex measures of risk and trading constraints. Finance Stochast 6(4):429–447

    Article  MathSciNet  MATH  Google Scholar 

  • Frittelli M, Gianin ER (2002) Putting order in risk measures. J Bank Fin 26(7):1473–1486

    Article  Google Scholar 

  • Frittelli M, Maggis M, Peri I (2014) Risk Measures on \(\cal{P}\left(\mathbb{R}\right)\)) and Value-at-Risk with Probability/Loss Function. Math Financ 24(3):442–463

    Article  MATH  Google Scholar 

  • Grabisch M, Marichal JL, Mesiar R, Pap E (2011) Aggregation functions: Construction methods, conjunctive, disjunctive and mixed classes. Inf Sci 181(1):23–43

    Article  MathSciNet  MATH  Google Scholar 

  • Hamidi B, Maillet B, Prigent J (2008) A time-varying proportion portfolio insurance strategy based on a caviar approach. Tech. rep., Working paper, University of Cergy-THEMA

  • Hamidi B, Maillet BB, Prigent JL (2009) A risk management approach for portfolio insurance strategies. In: Proceedings of the 1st EIF International Financial Research Forum, Economica

  • Hamidi B, Maillet B, Prigent JL (2014) A dynamic autoregressive expectile for time-invariant portfolio protection strategies. J Econ Dyn Control 46:1–29

    Article  MathSciNet  MATH  Google Scholar 

  • Hanbali H, Linders D, Dhaene J (2021) Value-at-risk, tail value-at-risk and upper tail transform of the sum of two counter-monotonic random variables

  • Happersberger D, Lohre H, Nolte I (2020) Estimating portfolio risk for tail risk protection strategies. Euro Fin Manag. https://doi.org/10.1111/eufm.12256

  • Hardy M (2003) Investment guarantees: modeling and risk management for equity-linked life insurance, vol 215. John Wiley & Sons

  • Hull JC (2003) Options futures and other derivatives. Pearson Education India

  • Jiang C, Ma Y, An Y (2009) The effectiveness of the var-based portfolio insurance strategy: An empirical analysis. Int Rev Financ Anal 18(4):185–197

    Article  Google Scholar 

  • Kato T (2015) Vwap execution as an optimal strategy. JSIAM Letters 7:33–36

    Article  MathSciNet  MATH  Google Scholar 

  • Konishi H (2002) Optimal slice of a vwap trade. J Fin Markets 5(2):197–221

    Article  Google Scholar 

  • Lee HI, Chiang MH, Hsu H (2008) A new choice of dynamic asset management: the variable proportion portfolio insurance. Appl Econ 40(16):2135–2146

    Article  Google Scholar 

  • Mitchell D, Białkowski J, Tompaidis S (2020) Volume-weighted average price tracking: A theoretical and empirical study. IISE Transactions 52(8):864–889

    Article  Google Scholar 

  • Norton M, Khokhlov V, Uryasev S (2021) Calculating cvar and bpoe for common probability distributions with application to portfolio optimization and density estimation. Ann Oper Res 299(1):1281–1315

    Article  MathSciNet  MATH  Google Scholar 

  • Pérignon C, Smith DR (2010) Diversification and Value-at-Risk. J Bank Fin 34(1):55–66

    Article  Google Scholar 

  • Qian PY, Wang ZZ, Wen ZW (2019) A composite risk measure framework for decision making under uncertainty. J Oper Res Soc China 7(1):43–68

    Article  MathSciNet  MATH  Google Scholar 

  • Righi MB (2018) A composition between risk and deviation measures. Ann Oper Res pp 1–15

  • Rubinstein M, Leland HE (1981) Replicating options with positions in stock and cash. Financ Anal J 37(4):63–72

    Article  Google Scholar 

  • Song Y, Yan JA (2009) Risk measures with comonotonic subadditivity or convexity and respecting stochastic orders. Insurance: Mathematics and Economics 45(3):459–465

  • Sriboonchitta S, Nguyen HT, Kreinovich V (2010) How to relate spectral risk measures and utilities. Int J Intell Technol Appl Stat 3(2):141–158

    Google Scholar 

  • Wächter HP, Mazzoni T (2013) Consistent modeling of risk averse behavior with spectral risk measures. Eur J Oper Res 229(2):487–495

    Article  MathSciNet  MATH  Google Scholar 

  • Wang S (1995) Insurance Pricing and Increased Limits Ratemaking by Proportional Hazards Transforms. Insurance: Mathematics and Economics 17(1):43–54

  • Wang S (1998) An actuarial index of the right-tail risk. North American Actuarial J 2(2):88–101

    Article  MathSciNet  MATH  Google Scholar 

  • Wang SS, Young VR, Panjer HH (1997) Axiomatic characterization of insurance prices. Insurance: Mathematics and Economics 21(2):173–183

  • Wirch JL, Hardy MR (2001) Distortion risk measures: Coherence and stochastic dominance. In: International congress on insurance: Mathematics and economics, pp 15–17

  • Yin C, Zhu D (2015) New class of distortion risk measures and their tail asymptotics with emphasis on var. arXiv preprint arXiv:150308586

Download references

Acknowledgements

This work is financially supported by National Natural Science Foundation of China (Grant No. 72101256), MOE (Ministry of Education in China) Project of Humanities and Social Sciences (Project No.21YJC790016), National Key R&D Program of China (Grant No. 2018YFA0703900), National Natural Science Foundation of China (Grant Nos. 11871309 and 11371226), and National Social Science Fund of China (Grant No. 21AZD028). This work is also supported by Public Computing Cloud Platform, Renmin University of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Preliminaries of Risk Measures

1.1 Coherent Risk Measure

Coherent risk measure was proposed by Artzner et al. (1999). Define a probability space \((\Omega , \mathcal {F},\mathbb {P})\), denote \(\mathcal {X}\) as the set of loss random variables defined on \((\Omega , \mathcal {F},\mathbb {P})\), then

Definition 3

(Coherent) A risk measure satisfying the four axioms of translation invariance, sub-additivity, positive homogeneity and monotonicity, is called coherent risk measure.

  1. (a)

    Translation invariance:

    $$\begin{aligned} \rho (X + a)=\rho (X)+a, \,\, \forall X \in \mathcal {X}, \,\, \forall a \in \mathbb {R}. \end{aligned}$$
    (37)
  2. (b)

    Sub-additivity:

    $$\begin{aligned} \rho (X_1+X_2) \leqslant \rho (X_1)+\rho (X_2), \,\, \forall X_1, \,\, X_2 \in \mathcal {X}. \end{aligned}$$
    (38)
  3. (c)

    Positive homogeneity:

    $$\begin{aligned} \rho (\lambda X)=\lambda \rho (X), \,\, \forall \lambda \geqslant 0, \,\, \forall X \in \mathcal {X}. \end{aligned}$$
    (39)
  4. (d)

    Monotonicity:

    $$\begin{aligned} \text{ if } X \leqslant Y, \text{ then } \rho (X) \leqslant \rho (Y), \,\, \forall X, \,\, Y \in \mathcal {X}. \end{aligned}$$
    (40)

1.2 Spectral Risk Measure

As we mentioned in Sect. 3.1, \(U_{\beta }^{\phi }\) is a spectral risk measure and \(\phi _{\beta }\) is the corresponding risk aversion function. Spectral risk measure was proposed by Acerbi (2002). First, Acerbi (2002) define the risk aversion function \(\phi\) in the normed space \(L^1([0,1])\) where every element is represented by a class of functions which differ at most on a subset of [0, 1] of zero measure. The norm in given by

$$\begin{aligned} ||\phi || = \int _0^1|\phi (p)|dp. \end{aligned}$$
(41)

Second, let \(\phi\) satisfies

  • Monotonicity: \(\phi\) is decreasing if \(\forall q \in (a,b)\) and \(\forall \varepsilon >0\) such that \([q-\varepsilon ,q+\varepsilon ] \subset [a,b]\),

    $$\begin{aligned} \int _{q-\varepsilon }^{q}\phi (p)dp \geqslant \int _{q}^{q+\varepsilon }\phi (p)dp. \end{aligned}$$
    (42)

    \(\phi\) is increasing if \(\forall q \in (a,b)\) and \(\forall \varepsilon >0\) such that \([q-\varepsilon ,q+\varepsilon ] \subset [a,b]\),

    $$\begin{aligned} \int _{q-\varepsilon }^{q}\phi (p)dp \leqslant \int _{q}^{q+\varepsilon }\phi (p)dp. \end{aligned}$$
    (43)
  • Positivity: \(\phi\) is positive if \(\forall I \subset [a,b]\),

    $$\begin{aligned} \int _I\phi (p)dp \geqslant 0. \end{aligned}$$
    (44)

Then, Acerbi (2002) give the following,

Definition 4

(Spectral risk measure) If a risk aversion function \(\phi \in L^1([0,1])\) satisfies: (1) \(\phi\) is positive, (2) \(\phi\) is increasing, (3) \(|| \phi ||=1\). Then we call the function

$$\begin{aligned} M_{\phi }(X):=\int _0^1F^{-1}_X(p)\phi (p)dp, X\in \mathcal {X}, \end{aligned}$$
(45)

is the spectral risk measure generated by \(\phi\).

By some examples, Acerbi (2002) and Adam et al. (2008) show that, in a real-world risk management application the integral 45 will always be well defined and finite. For instance, if \(\phi (p)\) is bounded and X is a finite integrable random variable, then \(U_{\beta }^{\phi }\) is well-defined and finite.

1.3 Distortion Risk Measures

Distortion risk measures was proposed by Wang et al. (1997). Distortion function \(g:[0,1] \rightarrow [0,1]\) is the non-decreasing function such that: \(g(0) = 0\), \(g(1) = 1\).

Definition 5

Given a distortion function g, the distortion risk measure \(\rho _{g}(X)\) is:

$$\begin{aligned} \rho _{g}(X) = \int _{-\infty }^{0}[g(P[X> x])-1]dx + \int _{0}^{+\infty }g(P[X > x])dx. \end{aligned}$$
(46)

Distortion risk measure is a general framework that can be expressed as a special Chouqet Integral (Choquet 1954), and a distortion risk measure is coherent if and only if the distortion function is concave (Balbás et al. 2009; Wirch and Hardy 2001; Dhaene et al. 2012). Several widely used risk measures are special cases of \(\rho _{g}(X)\). For example, the distortion function of \(VaR_{\alpha }\) is

$$\begin{aligned} \psi _{\alpha }(u) = \left\{ \begin{aligned}&0 \,,&u&\in [0, 1-\alpha ),\\&1 \,,&u&\in [1-\alpha ,1]. \end{aligned} \right. \end{aligned}$$
(47)

The distortion function of \(ES_{\alpha }\) is:

$$\begin{aligned} \gamma _{\alpha }(u) = \left\{ \begin{aligned}&\frac{u}{1-\alpha } \,,&u&\in [0, 1-\alpha ),\\&1 \,,&u&\in [1-\alpha ,1]. \end{aligned} \right. \end{aligned}$$
(48)

Proof of Propositions and Corollaries

1.1 Proof of Proposition 1

Proof

Due to that \(U_{\beta }^{\phi }(X)\) is a spectral risk measure and S(x) is a non-decreasing function, if \(X \leqslant _{st} Y\), we have

$$\begin{aligned} S\circ U_{\beta }^{\phi }(Y) \geqslant S\circ U_{\beta }^{\phi }(X). \end{aligned}$$

Then we can have

$$\begin{aligned}&SlideVaR_{\alpha ,\beta }^{\phi }(Y) - SlideVaR_{\alpha ,\beta }^{\phi }(X) \\ =&S\circ U_{\beta }^{\phi }(Y) \left[ ES_{\alpha }(Y)- VaR_{\beta }(Y)\right] -S\circ U_{\beta }^{\phi }(X) \left[ ES_{\alpha }(X)- VaR_{\beta }(X)\right] +VaR_{\beta }(Y) \\ -&VaR_{\beta }(X) \\ \geqslant&S\circ U_{\beta }^{\phi }(X) \left[ ES_{\alpha }(Y)- VaR_{\beta }(Y)\right] -S\circ U_{\beta }^{\phi }(X) \left[ ES_{\alpha }(X)- VaR_{\beta }(X)\right] +VaR_{\beta }(Y) \\ -&VaR_{\beta }(X) \\ =&S\circ U_{\beta }^{\phi }(X)\left[ ES_{\alpha }(Y)- VaR_{\beta }(Y)\right] + \left[ 1-S\circ U_{\beta }^{\phi }(X) \right] \left[ VaR_{\beta }(Y)-VaR_{\beta }(X) \right] . \end{aligned}$$

Due to that \(ES_{\alpha }(Y) \geqslant VaR_{\beta }(Y)\) and \(VaR_{\beta }(Y) \geqslant VaR_{\beta }(X)\), we can have

$$\begin{aligned} SlideVaR_{\alpha ,\beta }^{\phi }(Y) - SlideVaR_{\alpha ,\beta }^{\phi }(X)\geqslant 0. \end{aligned}$$

1.2 Proof of Proposition 2

Proof

\(\forall X \in \tilde{\mathcal {X}}\), we have \(SlideVaR_{\alpha ,\beta }^{\phi }(X) = ES_{\alpha }(X)\). Therefore, \(\forall X,Y \in \tilde{\mathcal {X}}\), we have

$$\begin{aligned}&SlideVaR_{\alpha ,\beta }^{\phi }(X+Y) \leqslant ES_{\alpha }(X+Y)\leqslant ES_{\alpha }(X)+ES_{\alpha }(Y) \\ =&SlideVaR_{\alpha ,\beta }^{\phi }(X)+SlideVaR_{\alpha ,\beta }^{\phi }(Y). \end{aligned}$$

Then (a) is proved. \(\forall X^{*}\in \mathcal {X}^{*}\), if \(X^{*} \leqslant _{st} X\) (and Y), we have

$$\begin{aligned} 1 \geqslant S\circ U_{\beta }^{\phi }(Y) \geqslant S\circ U_{\beta }^{\phi }(X) \geqslant S\circ U_{\beta }^{\phi }(X^{*}) = 1, \end{aligned}$$

that is

$$\begin{aligned} S\circ U_{\beta }^{\phi }(Y) = S\circ U_{\beta }^{\phi }(X) = S\circ U_{\beta }^{\phi }(X^{*}) = 1, \end{aligned}$$

According to (a), (b) can be proved.

1.3 Proof of Corollary 2

Proof

\(\forall X, Y\) which satisfy the conditions in Proposition 2, we have \(SlideVaR_{\alpha ,\beta }^{\phi }(X) = ES_{\alpha }(X)\), \(SlideVaR_{\alpha ,\beta }^{\phi }(Y) = ES_{\alpha }(Y)\). Then \(X \leqslant _{icx} Y\) implies that \(SlideVaR_{\alpha ,\beta }^{\phi }(X) \leqslant SlideVaR_{\alpha ,\beta }^{\phi }(Y)\).

1.4 Proof of Corollary 1

Proof

\(\forall X\in \tilde{\mathcal {X}}\), if \(X \leqslant _{st} Y\), we have

$$\begin{aligned} 1 \geqslant S\circ U_{\beta }^{\phi }(Y) \geqslant S\circ U_{\beta }^{\phi }(X)= 1, \end{aligned}$$

which implies that \(S\circ U_{\beta }^{\phi }(Y)= 1\) and then \(Y \in \tilde{\mathcal {X}}\).

1.5 Proof of Proposition 3

Proof

\(\forall a \in \mathcal {R}\), We have

$$\begin{aligned} SlideVaR_{\alpha ,\beta }^{\phi }(X+a)&= S\circ U_{\beta }^{\phi }(X+a) \left[ ES_{\alpha }(X+a)-VaR_{\beta }(X+a)\right] +VaR_{\beta }(X+a) \\&=S\circ (U_{\beta }^{\phi }(X)+a) \left[ ES_{\alpha }(X)-VaR_{\beta }(X)\right] +VaR_{\beta }(X)+a. \end{aligned}$$

If \(a \geqslant 0\), we have \(S\circ (U_{\beta }^{\phi }(X)+a) \geqslant S\circ (U_{\beta }^{\phi }(X))\), then

$$\begin{aligned} SlideVaR_{\alpha ,\beta }^{\phi }(X+a)&\geqslant S\circ U_{\beta }^{\phi }(X) \left[ ES_{\alpha }(X)-VaR_{\beta }(X)\right] +VaR_{\beta }(X)+a \\&=SlideVaR_{\alpha ,\beta }^{\phi }(X)+a. \end{aligned}$$

The equal sign holds when \(a=0\). Similarly, if \(a \leqslant 0\), we have \(S\circ (U_{\beta }^{\phi }(X)+a) \leqslant S\circ U_{\beta }^{\phi }(X)\), then

$$\begin{aligned} SlideVaR_{\alpha ,\beta }^{\phi }(X+a)&\leqslant S\circ U_{\beta }^{\phi }(X) \left[ ES_{\alpha }(X)-VaR_{\beta }(X)\right] +VaR_{\beta }(X)+a \\&=SlideVaR_{\alpha ,\beta }^{\phi }(X)+a. \end{aligned}$$

The equal sign holds when \(a=0\).

1.6 Proof of Proposition 4

Proof

Due to that

$$\begin{aligned} SlideVaR_{\alpha ,\beta }^{\phi }(\lambda X)&= S\circ U_{\beta }^{\phi }(\lambda X) \left[ ES_{\alpha }( \lambda X)-VaR_{\beta }(\lambda X)\right] +VaR_{\beta }(\lambda X) \\&= \lambda S\circ ( \lambda U_{\beta }^{\phi }( X)) \left[ ES_{\alpha }( X)-VaR_{\beta }(X)\right] +\lambda VaR_{\beta }( X), \end{aligned}$$
$$\begin{aligned} \lambda SlideVaR_{\alpha ,\beta }^{\phi }( X)&= \lambda S\circ U_{\beta }^{\phi }(X) \left[ ES_{\alpha }(X)-VaR_{\beta }(X)\right] +\lambda VaR_{\beta }( X)), \end{aligned}$$

we can have

$$\begin{aligned}&SlideVaR_{\alpha ,\beta }^{\phi }(\lambda X) - \lambda SlideVaR_{\alpha ,\beta }^{\phi }( X) \\ =&\lambda \left[ ES_{\alpha }( X)-VaR_{\beta }(X)\right] \left[ S\circ ( \lambda U_{\beta }^{\phi }( X))- S\circ U_{\beta }^{\phi }( X)\right] . \end{aligned}$$

From \(U_{\beta }^{\phi }(X)>0\), we know that, if \(\lambda \geqslant 1\), we have \(S\circ ( \lambda U_{\beta }^{\phi }( X))- S\circ U_{\beta }^{\phi }( X) \geqslant 0\) which implies that \(SlideVaR_{\alpha ,\beta }^{\phi }(\lambda X) - \lambda SlideVaR_{\alpha ,\beta }^{\phi }( X) \geqslant 0\). The equal sign holds when \(\lambda =1\). Similarly, if \(\lambda \leqslant 1\), we have \(S\circ ( \lambda U_{\beta }^{\phi }( X))- S\circ U_{\beta }^{\phi }( X) \leqslant 0\) which implies that \(SlideVaR_{\alpha ,\beta }^{\phi }(\lambda X) - \lambda SlideVaR_{\alpha ,\beta }^{\phi }( X) \leqslant 0\). The equal sign holds when \(\lambda =1\).

1.7 Proof of Proposition 5

Proof

\(\forall X \in \tilde{\mathcal {X}}\), we have \(SlideVaR_{\alpha ,\beta }^{\phi }(X) = ES_{\alpha }(X)\). Therefore, \(\forall X,Y \in \tilde{\mathcal {X}}\), we have

$$\begin{aligned}&SlideVaR_{\alpha ,\beta }^{\phi }(\lambda X+(1-\lambda ) Y) \leqslant ES_{\alpha }(\lambda X+(1-\lambda ) Y)\leqslant ES_{\alpha }(\lambda X)+ES_{\alpha }((1-\lambda ) Y) \\ =&\lambda ES_{\alpha }(X)+(1-\lambda )ES_{\alpha }( Y) = \lambda SlideVaR_{\alpha ,\beta }^{\phi }(X)+(1-\lambda ) SlideVaR_{\alpha ,\beta }^{\phi }(Y). \end{aligned}$$

Then (a) is proved. \(\forall X^{*}\in \mathcal {X}^{*}\), if \(X^{*} \leqslant _{st} X\) (and Y) (or \(X^{*} \leqslant _{lr} X\) (and Y) or \(X^{*} \leqslant _{hr} X\) (and Y)), we have

$$\begin{aligned} S\circ U_{\beta }^{\phi }(Y) = S\circ U_{\beta }^{\phi }(X) = S\circ U_{\beta }^{\phi }(X^{*}) = 1, \end{aligned}$$

which means that \(X,Y \in \tilde{\mathcal {X}}\). According to (a), (b) can be proved.

1.8 Proof of Proposition 6

Proof

From Dhaene et al. (2006) we know that VaR and distortion risk measure are additive of for sums of comonotonic risks. Then we can have

$$\begin{aligned} SlideVaR_{\alpha ,\beta }^{\phi }(X+Y)&= S\circ U_{\beta }^{\phi }(X+Y) \left[ ES_{\alpha }(X+Y)-VaR_{\beta }(X+Y)\right] +VaR_{\beta }(X+Y) \\&= S\circ ( U_{\beta }^{\phi }( X)+U_{\beta }^{\phi }( Y)) \left[ ES_{\alpha }( X)-VaR_{\beta }(X)\right] +VaR_{\beta }( X) \\&+S\circ ( U_{\beta }^{\phi }( X)+U_{\beta }^{\phi }( Y)) \left[ ES_{\alpha }( Y)-VaR_{\beta }(Y)\right] +VaR_{\beta }( Y). \end{aligned}$$

Due to that \(U_{\beta }^{\phi }( X)>0\), \(U_{\beta }^{\phi }(Y)>0\), we can have

$$\begin{aligned} SlideVaR_{\alpha ,\beta }^{\phi }(X+Y)&\geqslant S\circ U_{\beta }^{\phi }( X) \left[ ES_{\alpha }( X)-VaR_{\beta }(X)\right] +VaR_{\beta }( X) \\&+S\circ U_{\beta }^{\phi }( Y) \left[ ES_{\alpha }( Y)-VaR_{\beta }(Y)\right] +VaR_{\beta }( Y)\\&=SlideVaR_{\alpha ,\beta }^{\phi }(X)+SlideVaR_{\alpha ,\beta }^{\phi }(Y). \end{aligned}$$

1.9 Proof of Proposition 7

Proof

  1. 1.

    Due to that \(\forall u \in [0,1]\), \(\sum \limits _{i=1}^N S_i(x)\cdot g_i(u)\) is non-decreasing with respect to \(x \in \mathcal {R}\), we can have that if \(X \leqslant _{st} Y\) (or \(X \leqslant _{lr} Y\), or \(X \leqslant _{hr} Y\)),

    $$\begin{aligned} \kappa _{X}(u) = \sum \limits _{i=1}^N S_i \circ U_{\beta }^{\phi }(X)\cdot g_i(u) \leqslant \sum \limits _{i=1}^N S_i \circ U_{\beta }^{\phi }(Y)\cdot g_i(u) = \kappa _{Y}(u). \end{aligned}$$

    From the definition, we know that

    $$\begin{aligned} SlideM(X)&= \int _{-\infty }^{0}\left[ \kappa _{X}\left( P\left[ X> x\right] \right) -1\right] dx + \int _{0}^{+\infty }\kappa _{X}\left( P\left[ X> x\right] \right) dx \\&\leqslant \int _{-\infty }^{0}[\kappa _{Y}(P[Y> y])-1]dy + \int _{0}^{+\infty }\kappa _{Y}(P[Y > y])dy \\&= SlideM(Y). \end{aligned}$$
  2. 2.

    \(\forall X \in \tilde{\mathcal {X}}_G\), we have \(SlideM(X) = \rho _{g_1}(X)\). If \(g_1(u)\) is concave, we have \(\rho _{g_1}(X+Y)\leqslant \rho _{g_1}(X) +\rho _{g_1}(Y)\) (Dhaene et al. 2012). Therefore, \(\forall X,Y \in \tilde{\mathcal {X}}_G\), we have

    $$\begin{aligned} SlideM(X+Y) \leqslant \rho _{g_1}(X+Y)\leqslant \rho _{g_1}(X)+\rho _{g_1}(Y) =SlideM(X)+SlideM(Y). \end{aligned}$$

    Then (a) is proved. Due to that \(g_1(u) \geqslant g_2(u) \geqslant \cdots \geqslant g_N(u)\), and \(\sum \limits _{i=1}^N S_i(x)\cdot g_i(u)\) is non-decreasing with respect to x, \(\forall X^{*}\in \mathcal {X}^{*}\), if \(X^{*} \leqslant _{st} X\) (and Y) (or \(X^{*} \leqslant _{lr} X\) (and Y) or \(X^{*} \leqslant _{hr} X\) (and Y)), we have

    $$\begin{aligned} S_1 \circ U_{\beta }^{\phi }(Y) = S_1 \circ U_{\beta }^{\phi }(X) = S_1 \circ U_{\beta }^{\phi }(X^{*}) = 1, \end{aligned}$$

    According to (a), (b) can be proved.

  3. 3.

    \(\forall X, Y\) which satisfy (a) \(\forall\) \(X,Y\in \tilde{\mathcal {X}}_G\), or (b) if \({\exists }X^{*}\in \mathcal {X}^{*}_G\) s.t. \(X^{*} \leqslant _{st} X\) (and Y), we have \(SlideM(X) = \rho _{g_1}(X)\), \(SlideM(Y) = \rho _{g_1}(Y)\). Then \(X \leqslant _{icx} Y\) implies that \(SlideM(X) \leqslant SlideM(Y)\).

  4. 4.

    \(\forall X\in \tilde{\mathcal {X}}_G\), we have \(S_1\circ U_{\beta }^{\phi }(X)= 1\). If \(X \leqslant _{st} Y\) (or \(X \leqslant _{lr} Y\) or \(X \leqslant _{hr} Y\)), due to that \(g_1(u) \geqslant g_2(u) \geqslant \cdots \geqslant g_N(u)\), and \(\sum \limits _{i=1}^N S_i(x)\cdot g_i(u)\) is non-decreasing with respect to x, we have \(S\circ U_{\beta }^{\phi }(Y) = S\circ U_{\beta }^{\phi }(X)= 1\), which implies that \(Y \in \tilde{\mathcal {X}}_G\).

  5. 5.

    \(\forall a \in \mathcal {R}\), we have

    $$\begin{aligned} SlideM(X+a) = \sum \limits _{i=1}^N S_i \circ U_{\beta }^{\phi }(X+a)\cdot \rho _{g_i}(X+a) = \sum \limits _{i=1}^N S_i \circ \left( U_{\beta }^{\phi }(X)+a \right) \cdot \rho _{g_i}(X) +a. \end{aligned}$$

    If \(a \geqslant 0\), we know that \(\sum \limits _{i=1}^N S_i \circ \left( U_{\beta }^{\phi }(X)+a \right) \geqslant \sum \limits _{i=1}^N S_i \circ U_{\beta }^{\phi }(X)\) which implies that

    $$\begin{aligned} SlideM(X+a) \geqslant \sum \limits _{i=1}^N S_i \circ U_{\beta }^{\phi }(X)\cdot \rho _{g_i}(X)+a = SlideM(X)+a. \end{aligned}$$

    The equal sign holds when \(a=0\). Similarly, if \(a \leqslant 0\), we know that \(\sum \limits _{i=1}^N S_i \circ \left( U_{\beta }^{\phi }(X)+a \right) \leqslant \sum \limits _{i=1}^N S_i \circ U_{\beta }^{\phi }(X)\) which implies that

    $$\begin{aligned} SlideM(X+a) \leqslant \sum \limits _{i=1}^N S_i \circ U_{\beta }^{\phi }(X)\cdot \rho _{g_i}(X)+a = SlideM(X)+a. \end{aligned}$$

    The equal sign holds when \(a=0\).

  6. 6.

    Due to that

    $$\begin{aligned} SlideM(\lambda X)&= \sum \limits _{i=1}^N S_i \circ U_{\beta }^{\phi }(\lambda X)\cdot \rho _{g_i}(\lambda X) = \lambda \sum \limits _{i=1}^N S_i \circ (\lambda U_{\beta }^{\phi }( X))\cdot \rho _{g_i}(X), \\ \lambda SlideM(X)&= \lambda \sum \limits _{i=1}^N S_i \circ U_{\beta }^{\phi }(X)\cdot \rho _{g_i}(X), \end{aligned}$$

    we can have

    $$\begin{aligned} SlideM(\lambda X) - \lambda SlideM(X) = \lambda \left[ \sum \limits _{i=1}^N S_i \circ (\lambda U_{\beta }^{\phi }( X)) \cdot \rho _{g_i}(X) - \sum \limits _{i=1}^N S_i \circ U_{\beta }^{\phi }(X)\cdot \rho _{g_i}(X) \right] . \end{aligned}$$

    From \(U_{\beta }^{\phi }(X)>0\), we know that, if \(\lambda \geqslant 1\), we have \(\sum \limits _{i=1}^N S_i \circ (\lambda U_{\beta }^{\phi }( X)) \cdot \rho _{g_i}(X) - \sum \limits _{i=1}^N S_i \circ U_{\beta }^{\phi }(X)\cdot \rho _{g_i}(X) \geqslant 0\) which implies that \(SlideM(\lambda X) - \lambda SlideM(X) \geqslant 0\). The equal sign holds when \(\lambda =1\). Similarly, if \(\lambda \leqslant 1\), we have \(\sum \limits _{i=1}^N S_i \circ (\lambda U_{\beta }^{\phi }( X)) \cdot \rho _{g_i}(X) - \sum \limits _{i=1}^N S_i \circ U_{\beta }^{\phi }(X)\cdot \rho _{g_i}(X) \leqslant 0\) which implies that \(SlideM(\lambda X) - \lambda SlideM(X) \leqslant 0\). The equal sign holds when \(\lambda =1\).

  7. 7.

    \(\forall X \in \tilde{\mathcal {X}}_G\), we have \(SlideM(X) = \rho _{g_1}(X)\). Therefore, \(\forall X,Y \in \tilde{\mathcal {X}}_G\), we have

    $$\begin{aligned}&SlideM(\lambda X+(1-\lambda ) Y) \leqslant \rho _{g_1}(\lambda X+(1-\lambda ) Y)\leqslant \rho _{g_1}(\lambda X)+\rho _{g_1}((1-\lambda ) Y) \\ =&\lambda \rho _{g_1}(X)+(1-\lambda )\rho _{g_1}( Y) = \lambda SlideM(X)+(1-\lambda ) SlideM(Y). \end{aligned}$$

    Then (a) is proved. \(\forall X^{*}\in \mathcal {X}^{*}_G\), if \(X^{*} \leqslant _{st} X\) (and Y) (or \(X^{*} \leqslant _{lr} X\) (and Y) or \(X^{*} \leqslant _{hr} X\) (and Y)), we have

    $$\begin{aligned} S_1\circ U_{\beta }^{\phi }(Y) = S_1\circ U_{\beta }^{\phi }(X) = S_1\circ U_{\beta }^{\phi }(X^{*}) = 1, \end{aligned}$$

    which means that \(X,Y \in \tilde{\mathcal {X}}_G\). According to (a), (b) can be proved.

  8. 8.

    From Dhaene et al. (2006) we know that distortion risk measure is additive of for sums of comonotonic risks. Then we can have

    $$\begin{aligned} SlideM(X+Y)&= \sum \limits _{i=1}^N S_i \circ U_{\beta }^{\phi }(X+Y)\cdot \rho _{g_i}(X+Y) \\&= \sum \limits _{i=1}^N S_i \circ (U_{\beta }^{\phi }(X)+U_{\beta }^{\phi }(Y))\cdot \rho _{g_i}(X)+\sum \limits _{i=1}^N S_i \circ (U_{\beta }^{\phi }(X)+U_{\beta }^{\phi }(Y))\cdot \rho _{g_i}(Y). \end{aligned}$$

    Due to that \(U_{\beta }^{\phi }( X)>0\), \(U_{\beta }^{\phi }(Y)>0\), we can have

    $$\begin{aligned} SlideM(X+Y)&\geqslant \sum \limits _{i=1}^N S_i \circ U_{\beta }^{\phi }(X)\cdot \rho _{g_i}(X)+\sum \limits _{i=1}^N S_i \circ U_{\beta }^{\phi }(Y)\cdot \rho _{g_i}(Y) \\&= SlideM(X)+SlideM(Y). \end{aligned}$$

Other Examples of Analytical SlideVaR Expressions

1.1 Exponential Distribution

Let X be an exponential distributed random variable with parameters \(\lambda\), i.e. \(X \sim Exp(\lambda )\), then we know that \(E[X]=SD[X]=1/\lambda\). Because the exponential is

$$\begin{aligned} F(x)=\left\{ \begin{aligned}&1-e^{-\lambda x},&\,\, \text {if }\,\,&x \geqslant 0,\\&0,&\,\, \text {if }\,\,&x <0. \end{aligned} \right. \end{aligned}$$

we can have

$$\begin{aligned} VaR_{\alpha }(X) = \frac{-\ln {(1-\alpha )}}{\lambda }. \end{aligned}$$

Thanks to integration by parts, we can get

$$\begin{aligned} ES_{\alpha }(X) = \frac{-\ln {(1-\alpha )}+1}{\lambda }. \end{aligned}$$

For the function \(\phi ^e_{\beta }(p)\) in Eq. (11), we have

$$\begin{aligned} U_{\beta ,N}^{\phi ^e}(X)&= \frac{1}{\gamma (1-e^{\frac{\beta -1}{\gamma }})}\sum _{i=2}^{N} \left( e^{\frac{\beta _i-1}{\gamma }}-e^{\frac{\beta _{i-1}-1}{\gamma }}\right) (1-\beta _i) \cdot \frac{-\ln {(1-\beta _i)}+1}{\lambda } \\&+ \frac{e^{\frac{\beta -1}{\gamma }}(1-\beta )}{\gamma (1-e^{\frac{\beta -1}{\gamma }})}\cdot \frac{-\ln {(1-\beta )}+1}{\lambda }. \end{aligned}$$

Therefore, we have

  • When \(U_{\beta ,N}^{\phi ^e}(X) < a\), \(SlideVaR(X) = VaR_{\beta }(X) = \dfrac{-\ln {(1-\beta )}}{\lambda }\);

  • When \(a \leqslant U_{\beta ,N}^{\phi ^e}(X) < b\),

    $$\begin{aligned} SlideVaR(X)&= \frac{1}{\lambda (b-a)} \left( \ln \frac{1-\beta }{1-\alpha }+1\right) \left[ \frac{1}{\gamma (1-e^{\frac{\beta -1}{\gamma }})}\sum _{i=2}^{N} \left( e^{\frac{\beta _i-1}{\gamma }}-e^{\frac{\beta _{i-1}-1}{\gamma }}\right) (1-\beta _i) \right. \\&\left. \frac{-\ln {(1-\beta _i)}+1}{\lambda } + \frac{e^{\frac{\beta -1}{\gamma }}(1-\beta )}{\gamma (1-e^{\frac{\beta -1}{\gamma }})} \cdot \frac{-\ln {(1-\beta )}+1}{\lambda }-a \right] + \frac{-\ln {(1-\beta )}}{\lambda }; \end{aligned}$$
  • When \(U_{\beta ,N}^{\phi ^e}(X) \geqslant b\), \(SlideVaR(X) = ES_{\alpha }(X)=\dfrac{-\ln {(1-\alpha )}+1}{\lambda }\).

For the function \(\phi ^p_{\beta }(p)\) in Eq. (12), we have

$$\begin{aligned} U_{\beta ,N}^{\phi ^p}(X)&= \frac{1-\gamma }{(1-\beta )^{1-\gamma }}\sum _{i=2}^{N} \left[ (1-\beta _{i})^{-\gamma }-(1-\beta _{i-1})^{-\gamma }\right] (1-\beta _i) \cdot \frac{-\ln {(1-\beta _i)}+1}{\lambda } \\&+ (1-\gamma )\cdot \frac{-\ln {(1-\beta )}+1}{\lambda }. \end{aligned}$$

Therefore, we have

  • When \(U_{\beta ,N}^{\phi ^p}(X) < a\), \(SlideVaR(X) = VaR_{\beta }(X) = \dfrac{-\ln {(1-\beta )}}{\lambda }\);

  • When \(a \leqslant U_{\beta ,N}^{\phi ^p}(X) < b\),

    $$\begin{aligned} SlideVaR(X)&= \frac{1}{\lambda (b-a)} \left( \ln \frac{1-\beta }{1-\alpha }+1\right) \left[ \frac{1-\gamma }{(1-\beta )^{1-\gamma }}\sum _{i=2}^{N} \left[ (1-\beta _{i})^{-\gamma }-(1-\beta _{i-1})^{-\gamma }\right] \right. \\&\left. (1-\beta _i)\frac{-\ln {(1-\beta _i)}+1}{\lambda } + (1-\gamma )\cdot \frac{-\ln {(1-\beta )}+1}{\lambda } - a \right] + \frac{-\ln {(1-\beta )}}{\lambda }; \end{aligned}$$
  • When \(U_{\beta ,N}^{\phi ^p}(X) \geqslant b\), \(SlideVaR(X) =ES_{\alpha }(X)= \dfrac{-\ln {(1-\alpha )}+1}{\lambda }\).

In addition, if \(U_{\beta ,N}^{\phi ^e}(X)\) or \(U_{\beta ,N}^{\phi ^p}(X) \equiv h(b-a)+a\) where h is a constant in [0, 1]. Then

$$\begin{aligned} SlideVaR(X) = h\cdot \dfrac{-\ln {(1-\alpha )}+1}{\lambda } + (1-h)\cdot \dfrac{-\ln {(1-\beta )}}{\lambda }, \end{aligned}$$

which becomes \(GlueVaR_{\alpha ,\beta }^{h_1,h_2}(X)\) with \(h_1=h_2=h\) (Belles-Sampera et al. 2014).

1.2 Pareto Distribution

Let X be a Pareto distributed random variable with parameters \((k, \sigma )\) where \(k>0\), \(\sigma >0\), i.e. \(X \sim Pareto(k, \sigma )\), then we know that

$$\begin{aligned} E(X)=\left\{ \begin{aligned}&\infty ,&\,\, \text {if }\,\,&k \leqslant 1,\\&\frac{k\sigma }{k-1},&\,\, \text {if }\,\,&k >1. \end{aligned} \right. \end{aligned}$$
$$\begin{aligned} D(X)=\left\{ \begin{aligned}&\quad \quad \infty ,&\,\, \text {if }\,\,&0< k \leqslant 2,\\&\frac{k\sigma ^2}{(k-1)^2(k-2)},&\,\, \text {if }\,\,&k >2. \end{aligned} \right. \end{aligned}$$

Because the Pareto CDF is

$$\begin{aligned} F(x)=\left\{ \begin{aligned}&1-\left( \frac{\sigma }{x}\right) ^k,&\,\, \text {if }\,\,&x \geqslant \sigma ,\\&0,&\,\, \text {if }\,\,&x<\sigma , \end{aligned} \right. \end{aligned}$$

we can have

$$\begin{aligned} VaR_{\alpha }(X) = \frac{\sigma }{(1-\alpha )^{\frac{1}{k}}}. \end{aligned}$$

From Norton et al. (2021) we know that

$$\begin{aligned} ES_{\alpha }(X) = \frac{k\sigma }{(1-\alpha )^{\frac{1}{k}}(k-1)}. \end{aligned}$$

For the function \(\phi ^e_{\beta }(p)\) in Eq. (11), we have

$$\begin{aligned} U_{\beta ,N}^{\phi ^e}(X)&= \frac{k\sigma }{\gamma (1-e^{\frac{\beta -1}{\gamma }})(k-1)}\sum _{i=2}^{N} \left( e^{\frac{\beta _i-1}{\gamma }}-e^{\frac{\beta _{i-1}-1}{\gamma }}\right) (1-\beta _i)^{1-\frac{1}{k}}+ \frac{k\sigma e^{\frac{\beta -1}{\gamma }}(1-\beta )^{1-\frac{1}{k}}}{\gamma (1-e^{\frac{\beta -1}{\gamma }})(k-1)}. \end{aligned}$$

Therefore, we have

  • When \(U_{\beta ,N}^{\phi ^e}(X) < a\), \(SlideVaR(X) = VaR_{\beta }(X) =\dfrac{\sigma }{(1-\beta )^{\frac{1}{k}}}\);

  • When \(a \leqslant U_{\beta ,N}^{\phi ^e}(X) < b\),

    $$\begin{aligned} SlideVaR(X)&= \frac{k (1-\beta )^{\frac{1}{k}} - (1-\alpha )^{\frac{1}{k}}(k-1)}{(1-\alpha )^{\frac{1}{k}}(1-\beta )^{\frac{1}{k}}(k-1)} \cdot \frac{\sigma }{b-a}\left[ \frac{k\sigma }{\gamma (1-e^{\frac{\beta -1}{\gamma }})(k-1)} \right. \\&\left. \sum _{i=2}^{N} \left( e^{\frac{\beta _i-1}{\gamma }}-e^{\frac{\beta _{i-1}-1}{\gamma }}\right) (1-\beta _i)^{1-\frac{1}{k}}+ \frac{k\sigma e^{\frac{\beta -1}{\gamma }}(1-\beta )^{1-\frac{1}{k}}}{\gamma (1-e^{\frac{\beta -1}{\gamma }})(k-1)}-a \right] \\&+ \dfrac{\sigma }{(1-\beta )^{\frac{1}{k}}}; \end{aligned}$$
  • When \(U_{\beta ,N}^{\phi ^e}(X) \geqslant b\), \(SlideVaR(X) = ES_{\alpha }(X)=\dfrac{k\sigma }{(1-\alpha )^{\frac{1}{k}}(k-1)}\).

For the function \(\phi ^p_{\beta }(p)\) in Eq. (12), we have

$$\begin{aligned} U_{\beta ,N}^{\phi ^p}(X)&= \frac{(1-\gamma )k\sigma }{(1-\beta )^{1-\gamma }(k-1)}\sum _{i=2}^{N} \left[ (1-\beta _{i})^{-\gamma }-(1-\beta _{i-1})^{-\gamma }\right] (1-\beta _i)^{1-\frac{1}{k}}+ \frac{(1-\gamma )k\sigma }{(1-\beta )^{\frac{1}{k}}(k-1)}. \end{aligned}$$

Therefore, we have

  • When \(U_{\beta ,N}^{\phi ^p}(X) < a\), \(SlideVaR(X) = VaR_{\beta }(X) =\dfrac{\sigma }{(1-\beta )^{\frac{1}{k}}}\);

  • When \(a \leqslant U_{\beta ,N}^{\phi ^p}(X) < b\),

    $$\begin{aligned} SlideVaR(X)&= \frac{k (1-\beta )^{\frac{1}{k}} - (1-\alpha )^{\frac{1}{k}}(k-1)}{(1-\alpha )^{\frac{1}{k}}(1-\beta )^{\frac{1}{k}}(k-1)} \cdot \frac{\sigma }{b-a}\left[ \frac{(1-\gamma )k\sigma }{(1-\beta )^{1-\gamma }(k-1)} \right. \\&\left. \sum _{i=2}^{N} \left[ (1-\beta _{i})^{-\gamma }-(1-\beta _{i-1})^{-\gamma }\right] (1-\beta _i)^{1-\frac{1}{k}}+ \frac{(1-\gamma )k\sigma }{(1-\beta )^{\frac{1}{k}}(k-1)} - a \right] \\&+ \dfrac{\sigma }{(1-\beta )^{\frac{1}{k}}}; \end{aligned}$$
  • When \(U_{\beta ,N}^{\phi ^p}(X) \geqslant b\), \(SlideVaR(X) = ES_{\alpha }(X)=\dfrac{k\sigma }{(1-\alpha )^{\frac{1}{k}}(k-1)}\).

In addition, if \(U_{\beta ,N}^{\phi ^e}(X)\) or \(U_{\beta ,N}^{\phi ^p}(X) \equiv h(b-a)+a\) where h is a constant in [0, 1]. Then

$$\begin{aligned} SlideVaR(X) = \frac{h k (1-\beta )^{\frac{1}{k}} - h (1-\alpha )^{\frac{1}{k}}(k-1) + (1-\alpha )^{\frac{1}{k}}(k-1) }{(1-\alpha )^{\frac{1}{k}}(1-\beta )^{\frac{1}{k}}(k-1)} \cdot \sigma , \end{aligned}$$

which equals to \(GlueVaR_{\alpha ,\beta }^{h_1,h_2}(X)\) with \(h_1=h_2=h\) (Belles-Sampera et al. 2014).

1.3 Generalized Pareto Distribution

Let X be a Generalized Pareto distributed random variable with parameters \((\mu , \sigma , \xi )\) where \(\sigma >0\), i.e. \(X \sim GP(\mu , \sigma , \xi )\), then we know that

$$\begin{aligned} E(X)= \mu + \frac{\sigma }{1-\xi }, \quad if \quad \xi <1, \end{aligned}$$
$$\begin{aligned} D(X)=\frac{\sigma ^2}{(1-\xi )^2(1-2\xi )}, \quad if \quad \xi <0.5. \end{aligned}$$

Because the Pareto CDF is

$$\begin{aligned} F(x)=\left\{ \begin{aligned}&1-\left( 1+ \frac{\xi (x-\mu )}{\sigma }\right) ^{-\frac{1}{\xi }},&\,\, \text {if }\,\,&\xi \ne 0,\\&1-e^{-\frac{x-\mu }{\sigma }},&\,\, \text {if }\,\,&\xi = 0, \end{aligned} \right. \end{aligned}$$

for \(x \geqslant \mu\) when \(\xi \geqslant 0\) and \(\mu \leqslant x \leqslant \mu -\frac{\sigma }{\xi }\) when \(\xi <0\), we can have

$$\begin{aligned} VaR_{\alpha }(X) =\left\{ \begin{aligned}&\mu + \sigma \frac{(1-\alpha )^{-\xi }-1}{\xi },&\,\, \text {if }\,\,&\xi \ne 0,\\&\mu -\sigma \ln (1-\alpha ),&\,\, \text {if }\,\,&\xi = 0, \end{aligned} \right. \end{aligned}$$

From Norton et al. (2021) we know that, with \(-1< \xi <1\),

$$\begin{aligned} ES_{\alpha }(X) =\left\{ \begin{aligned}&\mu + \sigma \frac{(1-\alpha )^{-\xi }-1}{\xi }+ \sigma \frac{(1-\alpha )^{-\xi }}{1-\xi },&\,\, \text {if }\,\,&\xi \ne 0,\\&\mu - \sigma \ln (1-\alpha )+\sigma ,&\,\, \text {if }\,\,&\xi = 0, \end{aligned} \right. \end{aligned}$$

We know that, if \(\xi =0\), X would become an exponential distributed random variable which we have discussed in Sect. 1. If \(\xi <0\), X would become a Pareto distributed random variable which we have discussed in Sect. 2. Therefore, in this section, we only consider the case where \(\xi \in (0,1)\).

For the function \(\phi ^e_{\beta }(p)\) in Eq. (11), we have

$$\begin{aligned} U_{\beta ,N}^{\phi ^e}(X)&= \frac{1}{\gamma (1-e^{\frac{\beta -1}{\gamma }})}\sum _{i=2}^{N} \left( e^{\frac{\beta _i-1}{\gamma }}-e^{\frac{\beta _{i-1}-1}{\gamma }}\right) (1-\beta _i)\left( \mu + \sigma \frac{(1-\beta _i)^{-\xi }-1}{\xi }+ \sigma \frac{(1-\beta _i)^{-\xi }}{1-\xi } \right) \\&+ \frac{e^{\frac{\beta -1}{\gamma }}(1-\beta )}{\gamma (1-e^{\frac{\beta -1}{\gamma }})} \left( \mu + \sigma \frac{(1-\beta )^{-\xi }-1}{\xi }+ \sigma \frac{(1-\beta )^{-\xi }}{1-\xi } \right) . \end{aligned}$$

Therefore, we have

  • When \(U_{\beta ,N}^{\phi ^e}(X) < a\), \(SlideVaR(X) = VaR_{\beta }(X) = \mu + \sigma \dfrac{(1-\beta )^{-\xi }-1}{\xi }\);

  • When \(a \leqslant U_{\beta ,N}^{\phi ^p}(X) < b\),

    $$\begin{aligned} SlideVaR(X)&= \left[ \frac{(1-\alpha )^{-\xi }-(1-\beta )^{-\xi }}{\xi }+ \frac{(1-\alpha )^{-\xi }}{1-\xi } \right] \frac{\sigma }{b-a}\left[ \frac{1}{\gamma (1-e^{\frac{\beta -1}{\gamma }})} \right. \\&\left. \sum _{i=2}^{N} \left( e^{\frac{\beta _i-1}{\gamma }}-e^{\frac{\beta _{i-1}-1}{\gamma }}\right) (1-\beta _i)\left( \mu + \sigma \frac{(1-\beta _i)^{-\xi }-1}{\xi }+ \sigma \frac{(1-\beta _i)^{-\xi }}{1-\xi } \right) \right. \\&\left. + \frac{e^{\frac{\beta -1}{\gamma }}(1-\beta )}{\gamma (1-e^{\frac{\beta -1}{\gamma }})} \left( \mu + \sigma \frac{(1-\beta )^{-\xi }-1}{\xi }+ \sigma \frac{(1-\beta )^{-\xi }}{1-\xi } \right) -a \right] + \mu \\&+ \sigma \frac{(1-\beta )^{-\xi }-1}{\xi }; \end{aligned}$$
  • When \(U_{\beta ,N}^{\phi ^e}(X) \geqslant b\), \(SlideVaR(X)=ES_{\alpha }(X)=\mu + \sigma \dfrac{(1-\alpha )^{-\xi }-1}{\xi }+ \sigma \dfrac{(1-\alpha )^{-\xi }}{1-\xi }\).

For the function \(\phi ^p_{\beta }(p)\) in Eq. (12), we have

$$\begin{aligned} U_{\beta ,N}^{\phi ^e}(X)&= \frac{1-\gamma }{(1-\beta )^{1-\gamma }}\sum _{i=2}^{N} \left[ (1-\beta _{i})^{-\gamma }-(1-\beta _{i-1})^{-\gamma }\right] (1-\beta _i)\left( \mu + \sigma \frac{(1-\beta _i)^{-\xi }-1}{\xi } \right. \\&\left. + \sigma \frac{(1-\beta _i)^{-\xi }}{1-\xi } \right) + (1-\gamma ) \left( \mu + \sigma \frac{(1-\beta )^{-\xi }-1}{\xi }+ \sigma \frac{(1-\beta )^{-\xi }}{1-\xi } \right) . \end{aligned}$$

Therefore, we have

  • When \(U_{\beta ,N}^{\phi ^e}(X) < a\), \(SlideVaR(X) = VaR_{\beta }(X) = \mu + \sigma \dfrac{(1-\beta )^{-\xi }-1}{\xi }\);

  • When \(a \leqslant U_{\beta ,N}^{\phi ^p}(X) < b\),

    $$\begin{aligned} SlideVaR(X)&= \left[ \frac{(1-\alpha )^{-\xi }-(1-\beta )^{-\xi }}{\xi }+ \frac{(1-\alpha )^{-\xi }}{1-\xi } \right] \frac{\sigma }{b-a}\left[ \frac{1-\gamma }{(1-\beta )^{1-\gamma }} \right. \\&\left. \sum _{i=2}^{N} \left[ (1-\beta _{i})^{-\gamma } -(1-\beta _{i-1})^{-\gamma }\right] (1-\beta _i)\left( \mu + \sigma \frac{(1-\beta _i)^{-\xi }-1}{\xi } \right. \right. \\&\left. \left. +\sigma \frac{(1-\beta _i)^{-\xi }}{1-\xi } \right) + (1-\gamma ) \left( \mu + \sigma \frac{(1-\beta )^{-\xi }-1}{\xi }+ \sigma \frac{(1-\beta )^{-\xi }}{1-\xi } \right) \right. \\&\left. -a \right] + \mu + \sigma \frac{(1-\beta )^{-\xi }-1}{\xi }; \end{aligned}$$
  • When \(U_{\beta ,N}^{\phi ^e}(X) \geqslant b\), \(SlideVaR(X)=ES_{\alpha }(X)=\mu + \sigma \dfrac{(1-\alpha )^{-\xi }-1}{\xi }+ \sigma \dfrac{(1-\alpha )^{-\xi }}{1-\xi }\).

In addition, if \(U_{\beta ,N}^{\phi ^e}(X)\) or \(U_{\beta ,N}^{\phi ^p}(X) \equiv h(b-a)+a\) where h is a constant in [0, 1]. Then

$$\begin{aligned} SlideVaR(X) = \left[ \frac{(1-\alpha )^{-\xi }-(1-\beta )^{-\xi }}{\xi }+ \frac{(1-\alpha )^{-\xi }}{1-\xi } \right] \sigma + \mu + \sigma \frac{(1-\beta )^{-\xi }-1}{\xi }, \end{aligned}$$

which equals to \(GlueVaR_{\alpha ,\beta }^{h_1,h_2}(X)\) with \(h_1=h_2=h\) (Belles-Sampera et al. 2014).

1.4 Weibull Distribution

Let X be a Weibull distributed random variable with parameters \((\lambda , k)\), i.e. \(X \sim Weibull(\lambda , k)\), then we know that \(E[X]=\lambda \Gamma (1+\frac{1}{k})\), \(D[X]=\lambda ^2 \left[ \Gamma (1+\frac{2}{k})-\Gamma (1+\frac{1}{k})^2 \right]\) where \(\Gamma (a) = \int _0^\infty p^{a-1}e^{-p}dp\) is the gamma function. Because the Weibull CDF is

$$\begin{aligned} F(x) = 1-e^{-(\frac{x}{\lambda })^k}, \end{aligned}$$

we can have

$$\begin{aligned} VaR_{\alpha }(X) = \lambda [-\ln (1-\alpha )]^{\frac{1}{k}}. \end{aligned}$$

From Norton et al. (2021) we know that

$$\begin{aligned} ES_{\alpha }(X) = \frac{\lambda }{1-\alpha }\Gamma _U\left( 1+\frac{1}{k},-\ln (1-\alpha ) \right) , \end{aligned}$$

where \(\Gamma _U(a,b) = \int _b^\infty p^{a-1}e^{-p}dp\) is the upper incomplete gamma function. For the function \(\phi ^e_{\beta }(p)\) in Eq. (11), we have

$$\begin{aligned} U_{\beta ,N}^{\phi ^e}(X)&= \frac{\lambda }{\gamma (1-e^{\frac{\beta -1}{\gamma }})}\sum _{i=2}^{N} \left( e^{\frac{\beta _i-1}{\gamma }}-e^{\frac{\beta _{i-1}-1}{\gamma }}\right) \Gamma _U\left( 1+\frac{1}{k},-\ln (1-\beta _i) \right) \\&+ \frac{\lambda e^{\frac{\beta -1}{\gamma }}}{\gamma (1-e^{\frac{\beta -1}{\gamma }})} \Gamma _U\left( 1+\frac{1}{k},-\ln (1-\beta ) \right) . \end{aligned}$$

Therefore, we have

  • When \(U_{\beta ,N}^{\phi ^e}(X) < a\), \(SlideVaR(X) = \lambda (-\ln (1-\beta ))^{\frac{1}{k}}\);

  • When \(a \leqslant U_{\beta ,N}^{\phi ^e}(X) < b\),

    $$\begin{aligned} SlideVaR(X)&= \left[ \frac{\Gamma _U\left( 1+\frac{1}{k},-\ln (1-\alpha ) \right) }{1-\alpha } - [-\ln (1-\beta )]^{\frac{1}{k}} \right] \frac{\lambda }{b-a}\left[ \frac{\lambda }{\gamma (1-e^{\frac{\beta -1}{\gamma }})} \right. \\&\left. \sum _{i=2}^{N} \left( e^{\frac{\beta _i-1}{\gamma }}-e^{\frac{\beta _{i-1}-1}{\gamma }}\right) \Gamma _U\left( 1+\frac{1}{k},-\ln (1-\beta _i) \right) + \frac{\lambda e^{\frac{\beta -1}{\gamma }}}{\gamma (1-e^{\frac{\beta -1}{\gamma }})} \right. \\&\left. \Gamma _U\left( 1+\frac{1}{k},-\ln (1-\beta ) \right) -a \right] +\lambda (-\ln (1-\beta ))^{\frac{1}{k}}; \end{aligned}$$
  • When \(U_{\beta ,N}^{\phi ^e}(X) \geqslant b\), \(SlideVaR(X) = \dfrac{\lambda }{1-\alpha }\Gamma _U\left( 1+\frac{1}{k},-\ln (1-\alpha ) \right)\).

For the function \(\phi ^p_{\beta }(p)\) in Eq. (12), we have

$$\begin{aligned} U_{\beta ,N}^{\phi ^p}(X)&= \frac{\lambda (1-\gamma )}{(1-\beta )^{1-\gamma }}\sum _{i=2}^{N} \left[ (1-\beta _{i})^{-\gamma }-(1-\beta _{i-1})^{-\gamma }\right] \Gamma _U\left( 1+\frac{1}{k},-\ln (1-\beta _i) \right) \\&+ \frac{\lambda (1-\gamma )}{1-\beta }\Gamma _U\left( 1+\frac{1}{k},-\ln (1-\beta ) \right) . \end{aligned}$$

Therefore, we have

  • When \(U_{\beta ,N}^{\phi ^e}(X) < a\), \(SlideVaR(X) = \lambda (-\ln (1-\beta ))^{\frac{1}{k}}\);

  • When \(a \leqslant U_{\beta ,N}^{\phi ^e}(X) < b\),

    $$\begin{aligned} SlideVaR(X)&= \left[ \frac{\Gamma _U\left( 1+\frac{1}{k},-\ln (1-\alpha ) \right) }{1-\alpha } - [-\ln (1-\beta )]^{\frac{1}{k}} \right] \frac{\lambda }{b-a}\left[ \frac{\lambda (1-\gamma )}{(1-\beta )^{1-\gamma }} \right. \\&\left. \sum _{i=2}^{N} \left[ (1-\beta _{i})^{-\gamma }-(1-\beta _{i-1})^{-\gamma }\right] \Gamma _U\left( 1+\frac{1}{k},-\ln (1-\beta _i) \right) \right. \\&\left. + \frac{\lambda (1-\gamma )}{1-\beta }\Gamma _U\left( 1+\frac{1}{k},-\ln (1-\beta ) \right) -a \right] +\lambda (-\ln (1-\beta ))^{\frac{1}{k}}; \end{aligned}$$
  • When \(U_{\beta ,N}^{\phi ^e}(X) \geqslant b\), \(SlideVaR(X) = \dfrac{\lambda }{1-\alpha }\Gamma _U\left( 1+\frac{1}{k},-\ln (1-\alpha ) \right)\).

In addition, if \(U_{\beta ,N}^{\phi ^e}(X)\) or \(U_{\beta ,N}^{\phi ^p}(X) \equiv h(b-a)+a\) where h is a constant in [0, 1]. Then

$$\begin{aligned} SlideVaR(X)&= \left[ \frac{\Gamma _U\left( 1+\frac{1}{k},-\ln (1-\alpha ) \right) }{1-\alpha } - [-\ln (1-\beta )]^{\frac{1}{k}} \right] \lambda h +\lambda (-\ln (1-\beta ))^{\frac{1}{k}}, \end{aligned}$$

which equals to \(GlueVaR_{\alpha ,\beta }^{h_1,h_2}(X)\) with \(h_1=h_2=h\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Chen, C., Shi, Y. et al. A Tail Measure With Variable Risk Tolerance: Application in Dynamic Portfolio Insurance Strategy. Methodol Comput Appl Probab 24, 831–874 (2022). https://doi.org/10.1007/s11009-022-09951-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-022-09951-4

Keywords

Navigation