Skip to main content

Advertisement

Log in

Study of variation of aerosol optical properties over a high altitude station in Indian Western Himalayan region, palampur using raman lidar system

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

A Raman lidar system was operated along with the Microtops sunphotometer measurements to carry out the study of the variation of the optical properties of aerosols over Palampur (32.11° N and 76.53° E), India from 17th April to 11th May 2019. The lidar system is furnished with Raman (N2) channel and depolarization channel allowing independent measurement of Lidar Ratio (LR) and linear depolarization ratio. The study reveals that the majority of the aerosols approximately were restricted within the planetary boundary layer (PBL) and very less loading was present in the free troposphere over the study location. The particle loading over the study period was found to be very less with aerosol backscatter coefficient (at 355 nm) ranging from ∼0.13 Mm−1sr−1 to ∼7.25 Mm−1sr−1 with mean value of 2.67 ± 0.82 Mm−1sr−1 and it is well supplemented by the mean aerosol optical depth (AOD) of 0.37 ± 0.13 obtained from Microtops Sunphotometer. The average lidar ratio values for 0-1 km altitude (L1) 72 ± 13sr, for 1-2 km (L2) altitude 55 ± 8sr, for 2-3 km (L3) 54 ± 15sr were observed as suggesting dominance of the biomass burning aerosols and anthropogenic aerosols. The particle depolarization ratio (355 nm) values were found from approximately 4.8 ± 2.7% to 11.5 ± 1.9% with the mean value of 7 ± 1.3% suggesting the presence of non-spherical particles. To trace the sources of the pollution, we derived the HYSPLIT trajectory which shows the majority of the movement was from local sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12 

Similar content being viewed by others

Availability of data

Data may be provided as per the Institutional guidelines.

References

  • Amiridis, V., Balis, D.S., Giannakaki, E., Stohl, A., Kazadzis, S., Koukouli, M.E., Zanis, P.: Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements. Atmos. Chem. Phys. 9, 2431–2440 (2009). https://doi.org/10.5194/acp-9-2431-2009

    Article  Google Scholar 

  • Ansmann, A., Riebesell, M., Weitkamp, C.: Measurement of atmospheric aerosol extinction profiles with a Raman lidar. Opt. Lett. 15, 746 (1990). https://doi.org/10.1364/OL.15.000746

    Article  Google Scholar 

  • Ansmann, A., Riebesell, M., Wandinger, U., Weitkamp, C., Voss, E., Lahmann, W., Michaelis, W.: Combined raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio. Appl. Phys. B 55, 18–28 (1992a). https://doi.org/10.1007/BF00348608

    Article  Google Scholar 

  • Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C., Michaelis, W.: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Appl. Opt. 31, 7113–7131 (1992b). https://doi.org/10.1364/AO.31.007113

    Article  Google Scholar 

  • Ansmann, A.: European pollution outbreaks during ACE 2: Optical particle properties inferred from multiwavelength lidar and star-Sun photometry. J. Geophys. Res. 107, 4259 (2002). https://doi.org/10.1029/2001JD001109

    Article  Google Scholar 

  • Bangia, T., Omar, A., Sagar, R., Kumar, A., Bhattacharjee, S., Reddy, A., Agarwal, P.K., Kumar, P.: Study of atmospheric aerosols over the central Himalayan region using a newly developed Mie light detection and ranging system: preliminary results. J. Appl. Remote Sens. 5, 053521 (2011)

  • Behrendt, A., Nakamura, T.: Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature. Opt. Express 10, 805–817 (2002)

    Article  Google Scholar 

  • Charlson, R.J., Schwartz, S.E., Hales, J.M., Cess, R.D., Coakley, J.A., Hansen, J.E., Hofmann, D.J.: Climate Forcing by Anthropogenic Aerosols. Science 255, 423–430 (1992). https://doi.org/10.1126/science.255.5043.423

    Article  Google Scholar 

  • Donovan, D.P., Whiteway, J.A., Carswell, A.I.: Correction for nonlinear photon-counting effects in lidar systems. Appl. Opt. 32, 6742 (1993). https://doi.org/10.1364/AO.32.006742

    Article  Google Scholar 

  • Fernald, F.G.: Analysis of atmospheric lidar observations: some comments. Appl. Optic. 23, 652 (1984). https://doi.org/10.1364/AO.23.000652

    Article  Google Scholar 

  • Freudenthaler, V., Esselborn, M., Wiegner, M., Heese, B., Tesche, M., Ansmann, A., Seefeldner, M.: Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus B Chem. Phys. Meteorol. 61(1), 165–179 (2009)

    Article  Google Scholar 

  • Giannakaki, E., van Zyl, P.G., Müller, D., Balis, D., Komppula, M.: Optical and microphysical characterization of aerosol layers over SouthAfrica by means of multi-wavelength depolarization and Raman lidarmeasurements. Atmos. Chem. Phys. 16, 8109–8123 (2016). https://doi.org/10.5194/acp-16-8109-2016

    Article  Google Scholar 

  • Groß, S., Tesche, M., Freudenthaler, V., Toledano, C., Wiegner, M., Ansmann, A., Althausen, D., Seefeldner, M.: Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2. Tellus B Chem. Phys. Meteorol. 63, 706–724 (2011). https://doi.org/10.1111/j.1600-0889.2011.00556.x

    Article  Google Scholar 

  • Hara, Y., Nishizawa, T., Sugimoto, N., Matsui, I., Pan, X., Kobayashi, H., Osada, K., Uno, I.: Optical properties of mixed aerosol layers over Japan derived with multi-wavelength Mie-Raman lidar system. J. Quant. Spectrosc. Radiat. Transfer 188, 20–27 (2017). https://doi.org/10.1016/j.jqsrt.2016.06.038

    Article  Google Scholar 

  • Hee, W.S., Lim, H.S., Jafri, Mohd.Z.M., Lolli, S., Ying, K.W.,: Vertical Profiling of Aerosol Types Observed across Monsoon Seasons with a Raman Lidar in Penang Island. Malaysia. Aerosol Air Qual. Res. 16, 2843–2854 (2016). https://doi.org/10.4209/aaqr.2015.07.0450

    Article  Google Scholar 

  • Hegde, P., Pant, P., Bhavani Kumar, Y.: An integrated analysis of lidar observations in association with optical properties of aerosols from a high-altitude location in central Himalayas. Atmosph. Sci. Lett. 10, 48–57 (2009). https://doi.org/10.1002/asl.209

    Article  Google Scholar 

  • Illingworth, A.J., Barker, H.W., Beljaars, A., Ceccaldi, M., Chepfer, H., Clerbaux, N., Cole, J., Delanoë, J., Domenech, C., Donovan, D.P., Fukuda, S., Hirakata, M., Hogan, R.J., Huenerbein, A., Kollias, P., Kubota, T., Nakajima, T., Nakajima, T.Y., Nishizawa, T., Ohno, Y., Okamoto, H., Oki, R., Sato, K., Satoh, M., Shephard, M.W., Velázquez-Blázquez, A., Wandinger, U., Wehr, T., van Zadelhoff, G.-J.: The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Am. Meteor. Soc. 96, 1311–1332 (2015). https://doi.org/10.1175/BAMS-D-12-00227.1

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (Ed.): Clouds and aerosols. In Climate Change 2013 - The Physical Science Basis. Cambridge University Press, Cambridge. 571–658 (2014). https://doi.org/10.1017/CBO9781107415324.016

  • Jaswant, R., S.R., Singh, S.K., Sharma, C., Shukla, D.K.,: Initial assessment of lidar signal and the first result of a Raman lidar installed at a high altitude station in India. Remote Sens. Appl. Soc. Environ. 18, 100309 (2020). https://doi.org/10.1016/j.rsase.2020.100309

    Article  Google Scholar 

  • Kanitz, T., Engelmann, R., Heinold, B., Baars, H., Skupin, A., Ansmann, A.: Tracking the Saharan Air Layer with shipborne lidar across the tropical Atlantic. Geophys. Res. Lett. 41, 1044–1050 (2014). https://doi.org/10.1002/2013GL058780

    Article  Google Scholar 

  • Kim, D., Ramanathan, V.: Solar radiation budget and radiative forcing due to aerosols and clouds. J. Geophys. Res. 113, D02203 (2008). https://doi.org/10.1029/2007JD008434

    Article  Google Scholar 

  • Kumar, S.S., Parameswaran, K., Murthy, B.K.: Lidar observations of cirrus cloud near the tropical tropopause: General features. Atmos. Res. 66(3), 203–227 (2003)

    Article  Google Scholar 

  • Levy, R.C., Remer, L.A., Mattoo, S., Vermote, E.F., Kaufman, Y.J.: Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res. 112, 2006JD007811 (2007). https://doi.org/10.1029/2006JD007811

  • Liu, Z., Li, Z., Liu, B., Li, R.: Analysis of saturation signal correction of the troposphere lidar. Chin. Opt. Lett. 7, 1051–1054 (2009)

    Article  Google Scholar 

  • Mattis, I., Ansmann, A., Müller, D., Wandinger, U., Althausen, D.: Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust: Lidar ratios of saharan dust. Geophys. Res. Lett. 29, 20–1–20–4 (2002). https://doi.org/10.1029/2002GL014721

  • Morys, M., Mims, F.M., Hagerup, S., Anderson, S.E., Baker, A., Kia, J., Walkup, T.: Design, calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer. Journal of Geophysical Research: Atmospheres 106(D13), 14573–14582 (2001). https://doi.org/10.1029/2001JD900103

    Article  Google Scholar 

  • Müller, D., Ansmann, A., Mattis, I., Tesche, M., Wandinger, U., Althausen, D., Pisani, G.: Aerosol-type-dependent lidar ratios observed with Raman lidar. J. Geophys. Res. 112, D16202 (2007). https://doi.org/10.1029/2006JD008292

    Article  Google Scholar 

  • Radhakrishnan, S.R., Arya, B.C., Sharma, C., Kumar, A., Shukla, D.K.: Studies on lower tropospheric aerosols over New Delhi, India using lidar. Mapan 32, 183–191 (2017). https://doi.org/10.1007/s12647-017-0213-9

    Article  Google Scholar 

  • Radhakrishnan, S.R., Satyanarayana, M., Krishnakumar, V., Pillai, V.P.M., Reghunath, K.: Lidar measurements on aerosol characteristics at the tropical stations Trivandrum (8.33° N, 77° E) and Gadanki (13.5° N, 79.2° E). In 2009 International Conference on Ultra Modern Telecommunications & Workshops. Presented at the Workshops (ICUMT), IEEE, St. Petersburg, Russia. 1–4 (2009). https://doi.org/10.1109/ICUMT.2009.5345492

  • Ramana, M.V., Ramanathan, V., Podgorny, I.A., Pradhan, B.B., Shrestha, B.: The direct observations of large aerosol radiative forcing in the Himalayan region. \grl 31, L05111 (2004). https://doi.org/10.1029/2003GL018824

  • Raymetrics User Manual: LR111-ESS-D200 Raman Depolarization LIDAR. 2016

  • Sakai, T., Shibata, T., Iwasaka, Y., Nagai, T., Nakazato, M., Matsumura, T., Ichiki, A., Kim, Y.-S., Tamura, K., Troshkin, D., Hamdi, S.: Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan. Atmos. Environ. 36, 5479–5489 (2002). https://doi.org/10.1016/S1352-2310(02)00664-7

    Article  Google Scholar 

  • Sasano, Y., Browell, E.V., Ismail, S.: Error caused by using a constant extinction/backscattering ratio in the lidar solution. Appl. Opt. 24(22), 3929–3932 (1985)

    Article  Google Scholar 

  • Satheesh, S.K., Moorthy, K.K., Babu, S.S., Vinoj, V., Dutt, C.B.S.: Climate implications of large warming by elevated aerosol over India. Geophys. Res. Lett. 35, L19809 (2008). https://doi.org/10.1029/2008GL034944

    Article  Google Scholar 

  • Solanki, R., Singh, N.: LiDAR observations of the vertical distribution of aerosols in free troposphere: Comparison with CALIPSO level-2 data over the central Himalayas. Atmos. Environ. 99, 227–238 (2014). https://doi.org/10.1016/j.atmosenv.2014.09.083

    Article  Google Scholar 

  • Srivastava, A.K., Pant, P., Hegde, P., Singh, S., Dumka, U.C., Naja, M., Singh, N., Bhavanikumar, Y.: The influence of a south Asian dust storm on aerosol radiative forcing at a high-altitude station in central Himalayas. Int. J. Remote Sens. 32, 7827–7845 (2011). https://doi.org/10.1080/01431161.2010.531781

    Article  Google Scholar 

  • Tesche, M., Gross, S., Ansmann, A., Müller, D., Althausen, D., Freudenthaler, V., Esselborn, M.: Profiling of Saharan dust and biomass-burning smoke with multiwavelength polarization Raman lidar at Cape Verde. Tellus B Chem. Phys. Meteorol. 63, 649–676 (2011). https://doi.org/10.1111/j.1600-0889.2011.00548.x

    Article  Google Scholar 

  • Tiwari, S., Singh, A.K.: Variability of aerosol parameters derived from ground and satellite measurements over varanasi located in the indo-gangetic basin. Aerosol Air Qual. Res. 13, 627–638 (2013). https://doi.org/10.4209/aaqr.2012.06.0162

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Director, CSIR- National Physical Laboratory for necessary support. Authors are thankful to CSIR network project PSC-0112 for necessary financial support. Mr. Shishir Kumar Singh is thankful to University Grant Commission (UGC) for providing research fellowship and also to Academy of Scientific and Innovative Research (AcSIR) for facilitating as its PhD student.

Funding

Council of Scientific and Industrial Research (CSIR), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Radhakrishnan.

Ethics declarations

Conflict of interest

We have no conflict of interest to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Radhakrishnan, S.R., Jaswant et al. Study of variation of aerosol optical properties over a high altitude station in Indian Western Himalayan region, palampur using raman lidar system. J Atmos Chem 79, 117–139 (2022). https://doi.org/10.1007/s10874-022-09432-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-022-09432-5

Keywords

Navigation