Skip to main content
Log in

Advantages of the Rayleigh–Lowe–Andersen thermostat in soft sphere molecular dynamics simulations

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The Rayleigh–Lowe–Andersen thermostat is a momentum-conserving, Galilean-invariant analogue of the Andersen thermostat, like the original (Maxwellian) Lowe–Andersen thermostat. However, the Rayleigh–Lowe–Andersen thermostat remains local even if the fluid density becomes low. By using a minimized thermostat interaction radius we show with a molecular dynamics simulation that the Rayleigh–Lowe–Andersen thermostat affects the natural dynamics of a low-density Lennard–Jones fluid in a minimal fashion. We also show that it is no longer necessary to consider a separate simulation just to determine the optimal value of the thermostat interaction radius. Instead, this value is computed directly during the main simulation run. Because the Rayleigh–Lowe–Andersen thermostat can be combined with the velocity Verlet integration scheme, we expect a widespread applicability of the thermal mechanism presented here.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. If we wish to thermalize the Lennard–Jones potential at very low temperatures, we may set \(\lim _{\Delta t\rightarrow 0} r_{ij}(t+\Delta t)\) fractionally larger than \(\sigma _{ij}\), but for most temperatures equality Eq. (21) will suffice.

References

  1. S. Roy, S.K. Das, Study of critical dynamics in fluids via molecular dynamics in canonical ensemble. Eur. Phys. J. E 38, 132 (2015)

    Article  Google Scholar 

  2. J. Ruiz-Franco, L. Rovigatti, E. Zaccarelli, On the effect of the thermostat in non-equilibrium molecular dynamics simulations. Eur. Phys. J. E 41, 80 (2018)

    Article  Google Scholar 

  3. S. Nosé, A molecular dynamics method for simulation in the canonical ensemble. Mol. Phys. 52, 255 (1984)

    Article  ADS  Google Scholar 

  4. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A. 31, 1695 (1985)

    Article  ADS  Google Scholar 

  5. T. Soddemann, B. Dunweg, K. Kremer, Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys. Rev. E 68, 046702 (2003)

    Article  ADS  Google Scholar 

  6. S.D. Stoyanov, R.D. Groot, From Molecular Dynamics to hydrodynamics-a novel Galilean invariant thermostat. J. Chem. Phys. 122, 114112 (2005)

    Article  ADS  Google Scholar 

  7. H.C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72, 2384 (1980)

    Article  ADS  Google Scholar 

  8. E.A. Koopman, C.P. Lowe, Advantages of a Lowe-Andersen thermostat in molecular dynamics simulations. J. Chem. Phys. 124, 204103 (2006)

    Article  ADS  Google Scholar 

  9. P.J. Hoogerbrugge, J.V.A.M. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19, 155 (1993)

    Article  ADS  Google Scholar 

  10. P. Español, P.B. Warren, Statistical mechanics of dissipative particle dynamics. Europhys. Lett. 30, 191 (1995)

    Article  ADS  Google Scholar 

  11. C.P. Lowe, An alternative approach to dissipative particle dynamics. Europhys. Lett. 47, 145 (1999)

  12. M.G. Verbeek, A modified Lowe-Andersen thermostat for a hard sphere fluid. Eur. Phys. J. E 42, 60 (2019)

    Article  Google Scholar 

  13. M.G. Verbeek, A modified Lowe-Andersen thermostat for a Lennard-Jones fluid. Microfluid Nanofluid 25, 8 (2021)

  14. D. Frenkel, B. Smit, Understanding Molecular Simulations: From Algorithms to Applications, 2nd edn. (Academic Press, 2002)

  15. J.M. Haile, Molecular Dynamics Simulation: Elementary Methods (Wiley, New York, 1992)

    Google Scholar 

  16. D.A. Mc Quarrie, Statistical Mechanics (Harper & Row, 1976)

Download references

Author information

Authors and Affiliations

Authors

Contributions

MGV, DS, JV and JV performed simulations, and the results were analysed during many fruitful discussions. MGV wrote the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verbeek, M.G., Smid, D., Valentijn, J. et al. Advantages of the Rayleigh–Lowe–Andersen thermostat in soft sphere molecular dynamics simulations. Eur. Phys. J. E 45, 27 (2022). https://doi.org/10.1140/epje/s10189-022-00173-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-022-00173-7

Navigation