Skip to main content

Advertisement

Log in

Review of Acquisition and Signal Processing Methods for Electromagnetic Noise Reduction and Retrieval of Surface Nuclear Magnetic Resonance Parameters

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

This article has been updated

Abstract

Surface nuclear magnetic resonance (sNMR) is an electromagnetic hydrogeophysical method directly sensitive to liquid phase water in the upper \(\approx \)100 m of the subsurface. For this reason, sNMR is a uniquely capable of unambiguous exploration and quantitative characterization of groundwater and its structural environment in the near-surface. In spite of these physical attributes, the method suffers from notoriously low signal-to-noise ratio (SNR) which can limit its application. A large span of research has therefore been dedicated to sNMR developments including instrument innovations, acquisition methodologies and signal processing techniques which improve the SNR of the method and expand its scope of application outside the research world. Towards this goal, we include a description of community-developed best practice techniques and strategies that can be relied upon to successfully gather and analyse sNMR data sets in a production setting. Complementing this, we provide a comprehensive review of past, recent, and on-going approaches that—while not currently widely adopted—present promising features should further research be dedicated to their development. As such, the objective of this paper is to provide both newcomers and specialists of the sNMR method a clear view of the existing signal processing techniques and strategies along with a structured proposition of promising research leads and future perspectives to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 18 May 2022

    Fig 9 and 10 were incorrectly placed. They are correctly placed under the “Appendices” section.

Notes

  1. High intensity EM radiation at any frequency can saturate receiver instrumentation and obscure all signal due to ‘clipping’.

References

  • Adams R, McIntyre J, Symonds F (1982) Characteristics of the eastern interconnection line frequency. IEEE Trans Power Appar Syst 12:4542–4547

    Article  Google Scholar 

  • Bao Q, Feng J, Chen L, Chen F, Liu Z, Jiang B, Liu C (2013) A robust automatic phase correction method for signal dense spectra. J Magnet Reson 234:82–89

    Article  Google Scholar 

  • Behroozmand AA, Auken E, Fiandaca G, Christiansen AV, Christensen NB (2012) Efficient full decay inversion of MRS data with a stretched-exponential approximation of the \({T}_2^*\) distribution. Geophys J Int 190(2):900–912

    Article  Google Scholar 

  • Behroozmand AA, Auken E, Fiandaca G, Rejkjaer S (2016) Increasing the resolution and the signal-to-noise ratio of magnetic resonance sounding data using a central loop configuration. Geophys Suppl Month Notices Royal Astronom Soc 205(1):243–256

    Article  Google Scholar 

  • Behroozmand AA, Dalgaard E, Christiansen AV, Auken E (2013) A comprehensive study of parameter determination in a joint MRS and TEM data analysis scheme. Near Surf Geophys 11(5):557–567

    Article  Google Scholar 

  • Behroozmand AA, Keating K, Auken E (2014) A review of the principles and applications of the NMR technique for near-surface characterization. Surv Geophys 36(1):27–85

    Article  Google Scholar 

  • Bianchi C, Meloni A (2007) Natural and man-made terrestrial electromagnetic noise: an outlook. Ann Geophys

  • Binley A, Hubbard SS, Huisman JA, Revil A, Robinson DA, Singha K, Slater LD (2015) The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour Res 51(6):3837–3866

    Article  Google Scholar 

  • Braun M, Yaramanci U (2011) Evaluation of the influence of 2D electrical resistivity on magnetic resonance sounding. J Environ Eng Geophys 16(3):95–103

    Article  Google Scholar 

  • Buselli G, Cameron M (1996) Robust statistical methods for reducing sferics noise contaminating transient electromagnetic measurements. Geophysics 61(6):1633–1646

    Article  Google Scholar 

  • Buselli G, Hwang H, Pik J (1998) Aem noise reduction with remote referencing. Explor Geophys 29(2):71–76

    Article  Google Scholar 

  • Butler KE, Russell RD (1993) Subtraction of powerline harmonics from geophysical records. Geophysics 58(6):898–903

    Article  Google Scholar 

  • Butler KE, Russell RD (2003) Cancellation of multiple harmonic noise series in geophysical records. Geophysics 68(3):1083–1090

    Article  Google Scholar 

  • Buttkus B (2012) Spectral analysis and filter theory in applied geophysics. Springer Science & Business Media, Berlin

    Google Scholar 

  • Chalikakis K, Nielsen MR, Legchenko A, Hagensen TF (2009) Investigation of sedimentary aquifers in denmark using the magnetic resonance sounding method (MRS). Comptes Rendus Geosci 341(10):918–927

    Article  Google Scholar 

  • Christiansen AV, Auken E, Viezzoli A (2011) Quantification of modeling errors in airborne TEM caused by inaccurate system description. Geophysics 76(1):F43–F52

    Article  Google Scholar 

  • Costabel S (2019) Noise analysis and cancellation for the underground application of magnetic resonance using a multi-component reference antenna-case study from the rock laboratory of mont terri, switzerland. J Appl Geophys 169:85–97

    Article  Google Scholar 

  • Costabel S, Müller-Petke M (2014) Despiking of magnetic resonance signals in time and wavelet domains. Near Surf Geophys 12(2):185–198

    Article  Google Scholar 

  • Cummer SA, Inan US (2000) Modeling elf radio atmospheric propagation and extracting lightning currents from elf observations. Radio Sci 35(2):385–394

    Article  Google Scholar 

  • Dalgaard E, Auken E, Larsen JJ (2012) Adaptive noise cancelling of multichannel magnetic resonance sounding signals. Geophys J Int 191(1):88–100

    Article  Google Scholar 

  • Dalgaard E, Christiansen P, Larsen JJ, Auken E (2014) A temporal and spatial analysis of anthropogenic noise sources affecting SNMR. J Appl Geophys 110:34–42

    Article  Google Scholar 

  • Dalgaard E, Müller-Petke M, Auken E (2016) Enhancing SNMR model resolution by selecting an optimum combination of pulse moments, stacking, and gating. Near Surf Geophys 14(3):243–253

    Article  Google Scholar 

  • Davis A, Skibbe N, Müller-Petke M (2019) First measurements of surface nuclear magnetic resonance signals in a grounded bipole. Geophys Res Lett 46(16):9620–9627

    Article  Google Scholar 

  • Davis AC, Dlugosch R, Queitsch M, Macnae JC, Stolz R, Müller-Petke M (2014) First evidence of detecting surface nuclear magnetic resonance signals using a compact B-field sensor. Geophys Res Lett 41(12):4222–4229

    Article  Google Scholar 

  • Dlugosch R (2014) Aquifer characterisation using nuclear magnetic resonance. PhD thesis, Technische Universitaet Berlin (Germany)

  • Dlugosch R, Günther T, Müller-Petke M, Yaramanci U (2014) Two-dimensional distribution of relaxation time and water content from surface nuclear magnetic resonance. Near Surf Geophys 12(2):231–241

    Article  Google Scholar 

  • Dlugosch R, Müller-Petke M, Günther T, Costabel S, Yaramanci U (2011) Assessment of the potential of a new generation of surface nuclear magnetic resonance instruments. Near Surf Geophys 9(2):89–102

    Article  Google Scholar 

  • Du G, Lin J, Zhang J, Yi X, Jiang C (2019) Study on shortening the dead time of surface nuclear magnetic resonance instrument using bipolar phase pulses. IEEE Trans Instrum Measure 69(4):1268–1274

    Article  Google Scholar 

  • Elad M, Feuer A (1999) Superresolution restoration of an image sequence: adaptive filtering approach. IEEE Trans Image Process 8(3):387–395

    Article  Google Scholar 

  • Fan L, Kai-tian L, Kai L, Zhen-Yu L (2020) Cancellation of varying harmonic noise in magnetic resonance sounding signals. J Appl Geophys 177:104047

    Article  Google Scholar 

  • Farhang-Boroujeny B (2013) Adaptive filters: theory and applications. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  • Farrar TC, Becker ED (1971) Pulse and Fourier transform NMR: introduction to theory and methods. Elsevier, Amsterdam

    Google Scholar 

  • Garcia X, Jones AG (2002) Atmospheric sources for audio-magnetotelluric (amt) sounding. Geophysics 67(2):448–458

    Article  Google Scholar 

  • Ghanati R, Fallahsafari M, Hafizi MK (2014) Joint application of a statistical optimization process and empirical mode decomposition to magnetic resonance sounding noise cancelation. J Appl Geophys 111:110–120

    Article  Google Scholar 

  • Ghanati R, Hafizi M (2017) Statistical de-spiking and harmonic interference cancellation from surface-NMR signals via a state-conditioned filter and modified nyman-gaiser method. Bollettino di Geofisica Teorica ed Applicata, 58(3)

  • Ghanati R, Hafizi MK, Fallahsafari M (2016) Surface nuclear magnetic resonance signals recovery by integration of a non-linear decomposition method with statistical analysis. Geophys Prospect 64(2):489–504

    Article  Google Scholar 

  • Ghanati R, Hafizi MK, Mahmoudvand R, Fallahsafari M (2016) Filtering and parameter estimation of surface-NMR data using singular spectrum analysis. J Appl Geophys 130:118–130

    Article  Google Scholar 

  • Girard J-F, Jodry C, Matthey P-D (2020) On-site characterization of the spatio-temporal structure of the noise for MRS measurements using a pair of eight-shape loops. J Appl Geophys 178:104075

    Article  Google Scholar 

  • Grady WM, Santoso S (2001) Understanding power system harmonics. IEEE Power Eng Rev 21(11):8–11

    Article  Google Scholar 

  • Grombacher D, Liu L, Kass MA, Osterman G, Fiandaca G, Auken E, Larsen JJ (2020) Inverting surface NMR free induction decay data in a voltage-time data space. J Appl Geophys 172:103869

    Article  Google Scholar 

  • Grombacher D, Liu L, Osterman GK, Larsen JJ (2021) Mitigating narrowband noise sources close to the larmor frequency in surface NMR. IEEE Geosci Remote Sens Lett 18(8):1376–1380

    Article  Google Scholar 

  • Grunewald E, Grombacher D, Walsh D (2016) Adiabatic pulses enhance surface nuclear magnetic resonance measurement and survey speed for groundwater investigations. Geophysics 81(4):WB85–WB96

    Article  Google Scholar 

  • Grunewald E, Knight R (2012) Nonexponential decay of the surface-NMR signal and implications for water content estimation. Geophysics 77(1):EN1–EN9

    Article  Google Scholar 

  • Haykin S (2013) Communication systems. John Wiley & Sons, Hoboken

    Google Scholar 

  • Haykin SS (2008) Adaptive filter theory. Pearson Education India, London

    Google Scholar 

  • Hein A, Larsen JJ, Parsekian AD (2017) Symmetry based frequency domain processing to remove harmonic noise from surface nuclear magnetic resonance measurements. Geophys J Int 208(2):724–736

    Article  Google Scholar 

  • Hennessy L, Macnae J (2015) Natural field electromagnetics using a partially known source: improvements to signal to noise ratios. ASEG Ext Abstracts 2015(1):1–4

    Article  Google Scholar 

  • Hertrich M, Green AG, Braun M, Yaramanci U (2009) High-resolution surface NMR tomography of shallow aquifers based on multioffset measurements. Geophysics 74(6):G47–G59

    Article  Google Scholar 

  • Hoaglin DC, Mosteller F, Tukey JW (1983) Understanding robust and exploratory data analysis, vol 3. Wiley, New York

    Google Scholar 

  • Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH (1998) The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Royal Soc London Series A Math Phys Eng Sci 454(1971):903–995

    Article  Google Scholar 

  • Hyberts SG, Arthanari H, Robson SA, Wagner G (2014) Perspectives in magnetic resonance: NMR in the post-FFT era. J Magnet Reson 241:60–73

    Article  Google Scholar 

  • Irons T, Bloss B, Kremer T, Kass A (2019) Akvo: a surface NMR workbench. Fast TIMES 24(4):101–115

    Google Scholar 

  • Irons TP, Hobza CM, Steele GV, Abraham JD, Woodward DC (2012) Quantification of aquifer properties with surface nuclear magnetic resonance in the platte river valley, central nebraska, using a novel inversion method. Scientific Investigations Report 2012-5189, U.S. Geological Survey

  • Irons TP, Li Y (2014) Pulse and Fourier transform surface nuclear magnetic resonance: comprehensive modelling and inversion incorporating complex data and static dephasing dynamics. Geophys J Int 199(3):1372–1394

    Article  Google Scholar 

  • Irons TP, McPherson BJ, Kass MA (2018) Reliable noise measure in time-gated NMR data. Geophys J Int 215(2):959–964

    Article  Google Scholar 

  • Irons TP, Quinn MC, Li Y, McKenna JR (2014) A numerical assessment of the use of surface nuclear magnetic resonance to monitor internal erosion and piping in earthen embankments. Near Surf Geophys 12(2):325–334

    Article  Google Scholar 

  • Jeng Y, Chen C-S (2011) A nonlinear method of removing harmonic noise in geophysical data. Nonlinear Process Geophys 18(3):367

    Article  Google Scholar 

  • Jiang C, Lin J, Duan Q, Sun S, Tian B (2011) Statistical stacking and adaptive notch filter to remove high-level electromagnetic noise from MRS measurements. Near Surf Geophys 9(5):459–468

    Article  Google Scholar 

  • Jiang C, Liu J, Tian B, Sun S, Lin J, Müller-Petke M (2016) 3D block QT inversion of surface nuclear magnetic resonance data 3D block QT inversion. Geophysics 81(5):E363–E376

    Article  Google Scholar 

  • Kajikawa Y, Gan W-S, Kuo SM (2012) Recent advances on active noise control: open issues and innovative applications. APSIPA Trans Signal Inf Process, 1

  • Kourki M, Mansoori I, Farrokhnia E, Jelvegar A, Dehnavi R (2007) Canceling stationary sinusoidal noise from magnetotellurics raw time series. In Int Earthquake Symp

  • Kremer T, Juul Larsen J, Nguyen F (2019) Processing harmonic EM noise with multiple or unstable frequency content in surface NMR surveys. Geophys J Int 219(2):753–775

    Article  Google Scholar 

  • Kremer T, Müller-Petke M, Michel H, Dlugosch R, Irons T, Hermans T, Nguyen F (2020) Improving the accuracy of 1D surface nuclear magnetic resonance surveys using the multi-central-loop configuration. J Appl Geophys 107:104042

    Article  Google Scholar 

  • Kuo SM, Morgan DR (1996) Active noise control systems, vol 4. Wiley, New York

    Google Scholar 

  • Lanzerotti L, Maclennan C, Fraser-Smith A (1990) Background magnetic spectra: \(10^{-5}\) to \(10^{5}\) Hz. Geophys Res Lett 17(10):1593–1596

    Article  Google Scholar 

  • Larsen JJ (2016) Model-based subtraction of spikes from surface nuclear magnetic resonance data. Geophysics 81(4):WB1–WB8

    Article  Google Scholar 

  • Larsen JJ, Behroozmand AA (2016) Processing of surface-nuclear magnetic resonance data from sites with high noise levels. Geophysics 81(4):WB75–WB83

    Article  Google Scholar 

  • Larsen JJ, Dalgaard E, Auken E (2014) Noise cancelling of MRS signals combining model-based removal of powerline harmonics and multichannel wiener filtering. Geophys J Int 196(2):828–836

    Article  Google Scholar 

  • Larsen JJ, Liu L, Grombacher D, Osterman G, Auken E (2020) Apsu—A new compact surface nuclear magnetic resonance system for groundwater investigation. Geophysics 85(2):JM1–JM11

    Article  Google Scholar 

  • Legchenko A (2007) MRS measurements and inversion in presence of EM noise. Boletin Geologico y Minero 118(3):489–508

    Google Scholar 

  • Legchenko A (2013) Magnetic resonance imaging for groundwater. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  • Legchenko A, Baltassat J-M, Bobachev A, Martin C, Robain H, Vouillamoz J-M (2004) Magnetic resonance sounding applied to aquifer characterization. Groundwater 42(3):363–373

    Article  Google Scholar 

  • Legchenko A, Valla P (1998) Processing of surface proton magnetic resonance signals using non-linear fitting. J Appl Geophys 39(2):77–83

    Article  Google Scholar 

  • Legchenko A, Valla P (2002) A review of the basic principles for proton magnetic resonance sounding measurements. J Appl Geophys 50(1–2):3–19

    Article  Google Scholar 

  • Legchenko A, Valla P (2003) Removal of power-line harmonics from proton magnetic resonance measurements. J Appl Geophys 53(2–3):103–120

    Article  Google Scholar 

  • Legchenko AV, Shushakov OA (1998) Inversion of surface NMR data. Geophysics 63(1):75–84

    Article  Google Scholar 

  • Lehmann-Horn JA, Hertrich M, Greenhalgh SA, Green AG (2012) On the sensitivity of surface nmr in the presence of electrical conductivity anomalies. Geophys J Int 189:331–342

    Article  Google Scholar 

  • Levitt MH (1997) The signs of frequencies and phases in NMR. J Magnet Reson 126(2):164–182

    Article  Google Scholar 

  • Lin J, Zhang Y, Yang Y, Sun Y, Lin T (2017) Anti-saturation system for surface nuclear magnetic resonance in efficient groundwater detection. Rev Sci Instrum 88(6):064702

    Article  Google Scholar 

  • Lin T, Yang Y, Teng F, Müller-Petke M (2018) Enabling surface nuclear magnetic resonance at high-noise environments using a pre-polarization pulse. Geophys J Int 212(2):1463–1467

    Article  Google Scholar 

  • Lin T, Zhang Y, Lee Y-H, Krause H-J, Lin J, Zhao J (2014) High-sensitivity cooled coil system for nuclear magnetic resonance in kHz range. Rev Sci Instrum 85(11):114708

    Article  Google Scholar 

  • Lin T, Zhang Y, Müller-Petke M (2019) Random noise suppression of magnetic resonance sounding oscillating signal by combining empirical mode decomposition and time-frequency peak filtering. IEEE Access 7:79917–79926

    Article  Google Scholar 

  • Lin T, Zhang Y, Yi X, Fan T, Wan L (2018) Time-frequency peak filtering for random noise attenuation of magnetic resonance sounding signal. Geophys J Int 213(2):727–738

    Article  Google Scholar 

  • Liu L, Grombacher D, Auken E, Larsen JJ (2017) Removal of co-frequency powerline harmonics from multichannel surface NMR data. IEEE Geosci Remote Sens Lett 15(1):53–57

    Article  Google Scholar 

  • Margat J, Van der Gun J (2013) Groundwater around the world: a geographic synopsis. CRC Press, Boca Raton

    Book  Google Scholar 

  • McCracken K, Pik J, Harris R (1984) Noise in EM exploration systems. Explor Geophys 15(3):169–174

    Article  Google Scholar 

  • Mierisová Š, Ala-Korpela M (2001) Mr spectroscopy quantitation: a review of frequency domain methods. NMR Biomed Int J Devot Dev Appl Magnet Reson In Vivo 14(4):247–259

    Google Scholar 

  • Mika A, Haldoupis C, Marshall R, Neubert T, Inan U (2005) Subionospheric VLF signatures and their association with sprites observed during eurosprite-2003. J Atmos Solar-Terr Phys 67(16):1580–1597

    Article  Google Scholar 

  • Minsley BJ, Ajo-Franklin J, Mukhopadhyay A, Morgan FD (2011) Hydrogeophysical methods for analyzing aquifer storage and recovery systems. Groundwater 49(2):250–269

    Article  Google Scholar 

  • Mohnke O, Yaramanci U (2005) Forward modeling and inversion of MRS relaxation signals using multi-exponential decomposition. Near Surf Geophys 3(3):165–185

    Article  Google Scholar 

  • Morris BL, Lawrence AR, Chilton P, Adams B, Calow RC, Klinck BA (2003) Groundwater and its susceptibility to degradation: a global assessment of the problem and options for management, volume 3. United Nations Environment Programme

  • Mukhopadhyay S, Ray G (1998) A new interpretation of nonlinear energy operator and its efficacy in spike detection. IEEE Trans Biomed Eng 45(2):180–187

    Article  Google Scholar 

  • Müller-Petke M (2020) Non-remote reference noise cancellation-using reference data in the presence of surface-NMR signals. J Appl Geophys 177:104040

    Article  Google Scholar 

  • Müller-Petke M, Braun M, Hertrich M, Costabel S, Walbrecker J (2016) MRSmatlab—A software tool for processing, modeling, and inversion of magnetic resonance sounding data. Geophysics 81(4):WB9–WB21

    Article  Google Scholar 

  • Müller-Petke M, Costabel S (2014) Comparison and optimal parameter settings of reference-based harmonic noise cancellation in time and frequency domains for surface-NMR. Near Surf Geophys 12(2):199–210

    Article  Google Scholar 

  • Müller-Petke M, Yaramanci U (2010) QT inversion—Comprehensive use of the complete surface NMR data set. Geophysics 75(4):WA199–WA209

    Article  Google Scholar 

  • Neyer FM (2010) Processing of full time series, multichannel surface NMR signals. Master’s thesis, Institute of Geophysics - ETH Zurich

  • Nyboe NS, Sørensen K (2012) Noise reduction in TEM: Presenting a bandwidth-and sensitivity-optimized parallel recording setup and methods for adaptive synchronous detection. Geophysics 77(3):E203–E212

    Article  Google Scholar 

  • Nyman DC, Gaiser JE (1983) Adaptive rejection of high-line contamination. In SEG Technical Program Expanded Abstracts 1983. Society of Exploration Geophysicists. pp 321–323

  • Olsson P-I, Fiandaca G, Larsen JJ, Dahlin T, Auken E (2016) Doubling the spectrum of time-domain induced polarization by harmonic de-noising, drift correction, spike removal, tapered gating and data uncertainty estimation. Geophys J Int 207(2):774–784

    Article  Google Scholar 

  • Packard M, Varian R (1954) Free nuclear induction in the earth’s magnetic field. Phys Rev, 93(49)

  • Peli T, Lim JS (1982) Adaptive filtering for image enhancement. Opt Eng 21(1):211108

    Article  Google Scholar 

  • Plata J, Rubio F (2002) MRS experiments in a noisy area of a detrital aquifer in the south of spain. J Appl Geophys 50(1–2):83–94

    Article  Google Scholar 

  • Potter R (1977) Matrix formulation of multiple and partial coherence. J Acoust Soc Am 61(3):776–781

    Article  Google Scholar 

  • Poullet J-B, Sima DM, Van Huffel S (2008) MRS signal quantitation: a review of time-and frequency-domain methods. J Magnet Reson 195(2):134–144

    Article  Google Scholar 

  • Radic T (2005) Mobile instrument for NMR measurements on samples in the Earth magnetic field. In Near Surface 2005-11th European Meeting of Environmental and Engineering Geophysics, pp cp–13. European Association of Geoscientists & Engineers

  • Radic T (2006) Improving the signal-to-noise ratio of surface NMR data due to the remote reference technique. In Near Surface 2006-12th EAGE European Meeting of Environmental and Engineering Geophysics, pp cp–14. European Association of Geoscientists & Engineers

  • Robert T, Dassargues A, Brouyère S, Kaufmann O, Hallet V, Nguyen F (2011) Assessing the contribution of electrical resistivity tomography (ERT) and self-potential (SP) methods for a water well drilling program in fractured/karstified limestones. J Appl Geophys 75(1):42–53

    Article  Google Scholar 

  • Rubin Y, Hubbard SS (2006) Hydrogeophysics, vol 50. Springer Science & Business Media, Berlin

    Google Scholar 

  • Saucier A, Marchant M, Chouteau M (2005) A fast and accurate frequency estimation method for canceling harmonic noise in geophysical records. Geophysics 71(1):V7–V18

    Article  Google Scholar 

  • Sazhin S, Bullough K, Hayakawa M (1993) Auroral hiss: a review. Planet Space Sci 41(2):153–166

    Article  Google Scholar 

  • Schubert G (2015) Treatise on geophysics. Elsevier, Amsterdam

    Google Scholar 

  • Semenov A (1987) NMR hydroscope for water prospecting. Proceedings of a Seminar on Geotomography, Indian Geophysical Union, Hyderabad, pp 66–67

  • Semenov A, Pusep A, Schirov M (1982) Hydroscope—An installation for prospecting without drilling. USSR Academy of Science, Novosibirsk, pp 1–26 ((in Russian))

    Google Scholar 

  • Skibbe N, Rochlitz R, Günther T, Müller-Petke M (2020) Coupled magnetic resonance and electrical resistivity tomography: An open-source toolbox for surface nuclear-magnetic resonance. Geophysics 85(3):F53–F64

    Article  Google Scholar 

  • Strehl S (2006) Development of strategies for improved filtering and fitting of sNMR signals. Master’s thesis, Technical University of Berlin

  • Szarka L (1988) Geophysical aspects of manmade electromagnetic noise in the earth. A review. Surv Geophys 9(3–4):287–318

    Article  Google Scholar 

  • Thakor NV, Zhu Y-S (1991) Applications of adaptive filtering to ecg analysis: noise cancellation and arrhythmia detection. IEEE Trans Biomed Eng 38(8):785–794

    Article  Google Scholar 

  • Tian B-F, Zhou Y-Y, Zhu H, Jiang C-D, Yi X-F (2017) Noise cancellation of a multi-reference full-wave magnetic resonance sounding signal based on a modified sigmoid variable step size least mean square algorithm. J Central South Univ 24(4):900–911

    Article  Google Scholar 

  • Torres ME, Colominas MA, Schlotthauer G, Flandrin P (2011) A complete ensemble empirical mode decomposition with adaptive noise. In 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE. pp 4144–4147

  • Trushkin D, Shushakov O, Legchenko A (1994) The potential of a noise-reducing antenna for surface NMR groundwater surveys in the earth’s magnetic field. Int J Rock Mech Min Sci Geomech Abstracts 5:226A

    Google Scholar 

  • Van den Boogaart A, Ala-Korpela M, Jokisaari J, Griffiths J (1994) Time and frequency domain analysis of NMR data compared: an application to 1D 1H spectra of lipoproteins. Magnet Reson Med 31(4):347–358

    Article  Google Scholar 

  • Vaseghi SV (2008) Advanced digital signal processing and noise reduction. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  • Walsh DO (2008) Multi-channel surface NMR instrumentation and software for 1D/2D groundwater investigations. J Appl Geophys 66(3–4):140–150

    Article  Google Scholar 

  • Walsh DO, Grunewald E, Turner P, Hinnell A, Ferre P (2011) Practical limitations and applications of short dead time surface NMR. Near Surf Geophys 9(2):103–113

    Article  Google Scholar 

  • Wang Q, Jiang C, Müller-Petke M (2018) An alternative approach to handling co-frequency harmonics in surface nuclear magnetic resonance data. Geophys J Int 215(3):1962–1973

    Article  Google Scholar 

  • Weichman PB, Lavely EM, Ritzwoller MH (2000) Theory of surface nuclear magnetic resonance with applications to geophysical imaging problems. Phys Rev E 62(1):1290

    Article  Google Scholar 

  • Widrow B, Glover JR, McCool JM, Kaunitz J, Williams CS, Hearn RH, Zeidler JR, Dong JE, Goodlin RC (1975) Adaptive noise cancelling: principles and applications. Proc IEEE 63(12):1692–1716

    Article  Google Scholar 

  • Yin L, Yang R, Gabbouj M, Neuvo Y (1996) Weighted median filters: a tutorial. IEEE Trans Circ Syst II Anal Dig Signal Process 43(3):157–192

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kremer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Fundamental Frequency Values Around the World

Figure 9 shows the geographical distribution of powerline networks fundamental frequency values around the world. Most countries have a uniform network characterized by only one frequency value, expect for Liberia, Japan and North Korea that have a mixed network with co-existing 50 Hz and 60 Hz fundamental frequency powerlines.

Fig. 9
figure 9

Map representing the nominal fundamental frequency value distribution of powerline networks around the world (IEC\(^1\). Red, blue and green countries are equipped with a 60 Hz, 50 Hz, or mixed (50 Hz / 60 Hz) network, respectively

Figure 10 shows the different electrical systems used for railway transportation in Europe that may produce harmonic EM noise. Note that this map is only indicative and should not be used as a reference, since different railway systems (e.g., DC systems that do not produce harmonic noise) may coexist within the same country, and new railway systems may have been set-up in the coming years.

Fig. 10
figure 10

Map representing the nominal fundamental frequency value distribution of the main railway systems in Europe (IEC\(^2\) - 2014). Orange colour corresponds to a nominal value of 16.66 Hz and pale beige colours to a value of 50 Hz. Iceland is not equipped with an electrified railway network and the Republic of Ireland possesses a full DC network. Non-European countries are represented in grey

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kremer, T., Irons, T., Müller-Petke, M. et al. Review of Acquisition and Signal Processing Methods for Electromagnetic Noise Reduction and Retrieval of Surface Nuclear Magnetic Resonance Parameters. Surv Geophys 43, 999–1053 (2022). https://doi.org/10.1007/s10712-022-09695-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-022-09695-3

Keywords

Navigation