Skip to main content
Log in

On some variational principles in micropolar theories of single-layer thin bodies

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The generalized Reissner-type operator of three-dimensional micropolar mechanics of solids is presented, on the basis of which the generalized Reissner-type operator of three-dimensional micropolar mechanics of thin solids with one small size is obtained under the new parameterization of the domains of these bodies. From the last Reissner-type operator, in turn, the generalized Reissner-type variational principle of three-dimensional micropolar mechanics of thin solids with one small size is derived under the new parametrization of the domains of these bodies. It should be noted that the advantage of the new parameterization is that it is experimentally more accessible than other parameterizations (Nikabadze in Development of the method of orthogonal polynomials in the classical and micropolar mechanics of elastic thin bodies, MSU Publishing House, 2014; Contemp Math. Fundam Dir 55:3–194, 2015; J Math Sci 225:1, 2017). Further, applying the method of orthogonal polynomials (expansion of unknown quantities in series in terms of a system of orthogonal polynomials), from the generalized Reissner-type variational principle of three-dimensional micropolar mechanics of thin solids with one small size under the new parameterization of the domains of these bodies, the Reissner variational principle of micropolar mechanics of thin solids with one small size in the moments with respect to the system of Legendre polynomials is derived. In addition, the method is described for obtaining the variational principles of Lagrange and Castigliano of micropolar mechanics of thin solid with one small size under the new parametrization of the domains of these bodies in moments with respect to systems of the first and second kind Chebyshev polynomials. The paper is a continuation of the work “Nikabadze, Ulukhanyan, On some variational principles in the three-dimensional micropolar theories of solid”; therefore, before reading this paper, the authors invite the interested reader to familiarize themselves with the work (Nikabadze and Ulukhanyan in On some variational principles in the three-dimensional micropolar theories of solids, submitted).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. A three-dimensional body, one size of which is smaller than the others, is called a thin body with one small size, and a solid body, two sizes of which are small compared to the third dimension, is called a thin body with two small dimensions.

  2.  The dependence of the quantities on \(x'\) means their dependence on the curvilinear coordinates \(x^1\) and \(x^2\) of the base surface. The usual rules of tensor calculus used in [2, 3, 21, 24,25,26,27] are applied. The notations and agreements adopted in the work [4] and also in previously published works are preserved [1,2,3,4, 29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47].

References

  1. Nikabadze, M.U.: Development of the method of orthogonal polynomials in the classical and micropolar mechanics of elastic thin bodies. MSU Publishing House of the Board of Trustees Mech.-Math. Facul. of MSU (2014). (in Russian). https://istina.msu.ru/publications/book/6738800/

  2. Nikabadze, M.U.: On several issues of tensor calculus with applications to mechanics. Contemp. Math. Fundam. Direct. 55, 3–194 (2015). (in Russian). http://istina.msu.ru/media/publications/book/e25/00c/10117043/M.U.Nikabadze.pdf

  3. Nikabadze, M.U.: Topics on tensor calculus with applications to mechanics. J. Math. Sci. 225, 1 (2017). https://doi.org/10.1007/s10958-017-3467-4/

    Article  MathSciNet  MATH  Google Scholar 

  4. Nikabadze, M., Ulukhanyan, A.: Some variational principles in thethree-dimensional micropolar theories of solids and thin solids. Advanced Structured Materials, pp. 193–249 (2022)

  5. Bersani, A.M., Giorgio, I., Tomassetti, G.: Buckling of an elastic hemispherical shell with an obstacle. Cont. Mech. Thermodyn. 25(2), 443–67 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Z. Angew. Math. Phys. 67(4), 1–28 (2016)

  7. Turco, E., Misra, A., Pawlikowski, M., dell’Isola, F., Hild, F.: Enhanced Piola–Hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments. Int. J. Solids Struct. 15(147), 94–109 (2018)

  8. Cazzani, A., Rizzi, N.L., Stochino, F., Turco, E.: Modal analysis of laminates by a mixed assumed-strain finite element model. Math. Mech. Solids 23(1), 99–119 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cazzani, A., Serra, M., Stochino, F., Turco, E.: A refined assumed strain finite element model for statics and dynamics of laminated plates. Cont. Mech. Thermodyn. 32(3), 665–92 (2020)

    Article  MathSciNet  Google Scholar 

  10. Yildizdag, M.E., Demirtas, M., Ergin, A.: Multipatch discontinuous Galerkin isogeometric analysis of composite laminates. Cont. Mech. Thermodyn. 32(3), 607–20 (2020)

    Article  MathSciNet  Google Scholar 

  11. Greco, L., Cuomo, M., Contrafatto, L.: A reconstructed local B formulation for isogeometric Kirchhoff–Love shells. Comput. Methods Appl. Mech. Eng. 15(332), 462–87 (2018)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Greco, L., Cuomo, M., Contrafatto, L.: Two new triangular G1-conforming finite elements with cubic edge rotation for the analysis of Kirchhoff plates. Comput. Methods Appl. Mech. Eng. 1(356), 354–86 (2019)

    Article  ADS  MATH  Google Scholar 

  13. Greco, L., Cuomo, M., Contrafatto, L.: A quadrilateral G1-conforming finite element for the Kirchhoff plate model. Comput. Methods Appl. Mech. Eng. 1(346), 913–51 (2019)

    Article  ADS  MATH  Google Scholar 

  14. Greco, L., Cuomo, M.: An implicit G1-conforming bi-cubic interpolation for the analysis of smooth and folded Kirchhoff–Love shell assemblies. Comput. Methods Appl. Mech. Eng. 1(373), 113476 (2021)

    Article  ADS  MATH  Google Scholar 

  15. Wang, F.F., Dai, H.H., Giorgio, I.: A numerical comparison of the uniformly valid asymptotic plate equations with a 3D model: clamped rectangular incompressible elastic plates. Math. Mech. Solids (2021). https://doi.org/10.1177/10812865211025583

  16. Giorgio, I.: A discrete formulation of Kirchhoff rods in large-motion dynamics. Math. Mech. Solids 25(5), 1081–100 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Turco, E., Barchiesi, E., Giorgio, I., dell’Isola, F.: A Lagrangian Hencky-type non-linear model suitable for metamaterials design of shearable and extensible slender deformable bodies alternative to Timoshenko theory. Int. J. Non-Linear Mech. 1(123), 103481 (2020)

  18. Rektorys, K.: Variational methods in mathematics science and engineering. Springer, Dordrecht. (1977). https://doi.org/10.1007/978-94-011-6450-4

  19. Washizy, K.: Variational Methods in Elasticity and Plasticity, 3rd edn. Pergamon, Oxford (1982)

    Google Scholar 

  20. Vanko, V.I.: Variational principles and problems of mathematical physics. MSU Publishing House of BMSTU (2010). (in Russian)

  21. Vekua, I.N.: Variational Principles of Constructing the Theory of Shells. Tbilisi University Publishing House, Tbilisi (1970). (in Russian)

  22. Pobedrya, B.E.: Mechanics of Composite Materials. MSU Publishing House, Moscow (1984). (in Russian)

  23. Pobedrya, B.E.: Numerical Methods in the Theory of Elasticity and Plasticity, 2nd edn. MSU Publishing House, Moscow (1995). (in Russian)

  24. Vekua, I.N.: Fundamentals of Tensor Analysis and Covariant Theory. Nauka, Moscow (1978). (in Russian)

  25. Vekua, I.N.: Some general methods for constructing various variants of the theory of shells. MSU Publishing House, Nauka (1982). (in Russian)

  26. Lurie, A.I.: Nonlinear Theory of Elasticity. Nauka, Moscow (1980). (in Russian)

  27. Pobedrya, B.E.: Lectures on Tensor Analysis. MSU Publishing House (1986). (in Russian)

  28. Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O., Burchuladze, T.V.: Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. Nauka, Moscow (1976). (in Russian)

  29. Nikabadze, M.U.: A variant of the theory of multilayer structures. Mech. Solids 1, 143–158 (2001)

    Google Scholar 

  30. Nikabadze, M.U.: To a version of the theory of multilayer structures. Mech. Solids 36(1), 119–129 (2001)

    Google Scholar 

  31. Nikabadze, M.U., Ulukhanyan, A.R.: Statements of problems for a thin deformable three-dimensional body. Mosc. Univer. Bull., Math. Mech. 5, 43–49 (2005) (in Russian)

  32. Nikabadze, M.U.: A variant of the system of equations of the theory of thin bodies. Mosc. Univer. Bull., Math. Mech. 1, 30–35 (2006). (in Russian)

  33. Nikabadze, M.U.: Application of a system of Chebyshev polynomials to the theory of thin bodies. Mosc. Univer. Bull., Math. Mech. 5, 56–63 (2007). (in Russian)

  34. Nikabadze, M.U.: Application of Chebyshev polynomials to the theory of thin bodies. Mosc. Univer. Mech. Bull. 62(5), 141–148 (2007). https://doi.org/10.3103/S0027133007050056

    Article  MathSciNet  MATH  Google Scholar 

  35. Nikabadze, M.U.: Some issues concerning a version of the theory of thin solids based on expansions in a system of Chebyshev polynomials of the second kind. Mech. Solids 42(3), 391–421 (2007)

    Article  ADS  Google Scholar 

  36. Nikabadze, M.U.: Mathematical modeling of multilayer thin body deformation. J. Math. Sci. 187(3), 300–336 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nikabadze, M.U., Ulukhanyan, A.R.: Analytical solutions in the theory of thin bodies. In: Altenbach, H., Forest, S. (eds.) Generalized Continua as Models for Classical and Advanced Materials, Advanced Structured Materials, vol. 42, pp. 319–361 (2016). https://doi.org/10.1007/978-3-319-31721-2_15

  38. Nikabadze, M.U., Ulukhanyan, A.R.: Some applications of eigenvalue problems for tensor and tensor-block matrices for mathematical modeling of micropolar thin bodies. Math. Comput. Appl. 24(1), 1–19 (2019). https://doi.org/10.3390/mca24010033

    Article  MathSciNet  Google Scholar 

  39. Nikabadze, M.U., Ulukhanyan, A.R.: To the modeling of multilayer thin prismatic bodies. IOP Confer. Ser.: Mater. Sci. Eng. 683, 012019 (2019). https://doi.org/10.1088/1757-899X/683/1/012019

  40. Nikabadze, M.U., Ulukhanyan, A.R.: Mathematical modeling of elastic thin bodies with one small size. In: Altenbach, H., Müller, W., Abali, B. (eds,) Higher Gradient Materials and Related Generalized Continua. Advanced Structured Materials, vol. 120, pp. 155–199 (2019). https://doi.org/10.1007/978-3-030-30406-5_9

  41. Nikabadze, M.U., Ulukhanyan, A.R.: Modeling of multilayer thin bodies. Cont. Mech. Thermodyn. 32, 817–842 (2020). https://doi.org/10.1007/s00161-019-00762-6

    Article  MathSciNet  MATH  Google Scholar 

  42. Nikabadze, M.U., Ulukhanyan, A.R.: On the decomposition of equations of micropolar elasticity and thin body theory. Lobachevskii J. Math. 41(10), 2059–2074 (2020). https://doi.org/10.1134/S1995080220100145

    Article  MathSciNet  MATH  Google Scholar 

  43. Nikabadze, M.U., Ulukhanyan, A.R.: On the theory of multilayer thin bodies. Lobachevskii J. Math. 42(8), 1900–1911 (2021). https://doi.org/10.1134/S1995080221080217

    Article  MathSciNet  MATH  Google Scholar 

  44. Nikabadze, M.U.: On compatibility conditions in linear micropolar theory. Mosc. Univer. Bull., Math. Mech. 5, 48–51 (2010). (in Russian)

  45. Nikabadze, M.U.: On compatibility conditions and equations of motion in the micropolar linear theory of elasticity. Mosc. Univ. Bull., Math. Mech. 1, 63–66 (2012)

    MathSciNet  MATH  Google Scholar 

  46. Nikabadze, M.U.: Compatibility conditions and equations of motion in the linear micropolar theory of elasticity. Mosc. Univ. Mech. Bull. Allerton Press, Inc. 67(1), 18–22 (2012)

  47. Nikabadze, M.U.: Eigenvalue problems of a tensor and a tensor-block matrix (TMB) of any even rank with some applications in mechanics. In: Altenbach, H., Forest, S. (eds.) Generalized Continua as Models for Classical and Advanced Materials, Advanced Structured Materials, vol. 42, pp. 279–317 (2016). https://doi.org/10.1007/978-3-319-31721-2_14

  48. Altenbach, H., Eremeyev, V.A.: On the linear theory of micropolar plates. ZAMM-Z. Angew. Math. Mech. 89(4), 242–56 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Altenbach, H., Eremeyev, V.: On the constitutive equations of viscoelastic micropolar plates and shells of differential type. Math. Mech. Compl. Syst. 3(3), 273–83 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Chróścielewski, J., dell’Isola, F., Eremeyev, V.A., Sabik, A.: On rotational instability within the nonlinear six-parameter shell theory. Int. J. Solids Struct. 1(196), 179–89 (2020)

  51. Giorgio, I., De Angelo, M., Turco, E., Misra, A.: A Biot–Cosserat two-dimensional elastic nonlinear model for a micromorphic medium. Cont. Mech. Thermodyn. 32(5), 1357–69 (2020)

    Article  MathSciNet  Google Scholar 

  52. Giorgio, I., Spagnuolo, M., Andreaus, U., Scerrato, D., Bersani, A.M.: In-depth gaze at the astonishing mechanical behavior of bone: a review for designing bio-inspired hierarchical metamaterials. Math. Mech. Solids 26(7), 1074–103 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  53. Cosserat, E., Cosserat, F.: Theorie des Corp Dcformablcs. Librairie Scientifique A, Hermann et Fils, Paris (1909)

    MATH  Google Scholar 

  54. Le Roux, J.: Etude géométrique de la torsion et de la flexion, dans les déformations infinitésimales d’un milieu continu. Ann. Scient. Ecole Norm. Sup. Sér. 3(28), 523–579 (1911)

  55. Le Roux, J.: Recherches sur géométrie des déformations finies. Ann. Sci. Ecole Norm. Sup. Sér. 3(30), 193–245 (1913)

  56. Jaramillo, T.J.: A generalization of the energy function of elasticity theory. Dissertation, Department of Mathematics, University of Chicago, vol. 98 (1929)

  57. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Rat. Mech. Anal. 16(1), 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  58. Toupin, R.A.: Theories of elasticity with couple-stresses. Arch. Rat. Mech. Anal. 17(2), 85–112 (1964)

    Article  MATH  Google Scholar 

  59. Eringen, A.C.: Microcontinuum Field Theories. 1. Foundation and Solids. Springer, New York (1999)

  60. Harm, A., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962–1990 (2011). https://doi.org/10.1016/j.ijsolstr.2011.03.006

    Article  Google Scholar 

  61. Aifantis, E.C.: Continuum nanomechanics for nanocrystalline and ultrafine grain materials. IOP Conf. Ser.: Mater. Sci. Eng. 63, 012129 (2014). http://iopscience.iop.org/1757-899X/63/1/012129

  62. dell’Isola, F., Sciara, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. A: Math., Phys. Eng. Sci. 465(2107), 2177–2196 (2009). https://doi.org/10.1098/rspa.2008.0530

  63. Alibert, J.J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003). https://doi.org/10.1177/1081286503008001658

  64. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Abrio Piola. Math. Mech. Solids 20(8), 887–928 (2014). https://doi.org/10.1177/1081286513509811

  65. dell’Isola, F., Seppecher, P., Della Corte, A.: The postulations a la D’Alembert and a la Cauchy for higher gradient continuum theories are equivalent: a review of existing results. Proc. R. Soc. A: Math., Phys. Eng. Sci.(2015). https://doi.org/10.1098/rspa.2015.0415

  66. Barchiesi, E., Spagnuolo, M., Placidi, L.: Mechanical metamaterials: a state of the art. Math. Mech. Solids 24(1), 212–34 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  67. Abdoul-Anziz, H., Seppecher, P.: Strain gradient and generalized continua obtained by homogenizing frame lattices. Math. Mech. Compl. Syst. 6(3), 213–50 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  68. Eugster, S., dell’Isola, F., Steigmann, D.: Continuum theory for mechanical metamaterials with a cubic lattice substructure. Math. Mech. Compl. Syst. 7(1), 75–98 (2019)

  69. Novatskiy, V.: Theory of Elasticity. MIR, Moscow (1975). (in Russian)

  70. Barchiesi, E., Ganzosch, G., Liebold, C., Placidi, L., Grygoruk, R., Müller, W.H.: Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation. Cont. Mech. Thermodyn. 31(1), 33–45 (2019)

    Article  MathSciNet  Google Scholar 

  71. Barchiesi, E., dell’Isola, F., Hild, F.: On the validation of homogenized modeling for bi-pantographic metamaterials via digital image correlation. Int. J. Solids Struct. 1(208), 49–62 (2021)

  72. Giorgio, I., Rizzi, N.L., Turco, E.: Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc. R. Soc. A: Math., Phys. Eng. Sci. 473(2207), 20170636 (2017)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  73. Giorgio, I.: Lattice shells composed of two families of curved Kirchhoff rods: an archetypal example, topology optimization of a cycloidal metamaterial. Cont. Mech. Thermodyn. 33(4), 1063–82 (2021)

    Article  MathSciNet  Google Scholar 

  74. Giorgio, I., Varano, V., dell’Isola, F., Rizzi, N.L.: Two layers pantographs: a 2D continuum model accounting for the beams’ offset and relative rotations as averages in SO (3) Lie groups. Int. J. Solids Struct. 1(216), 43–58 (2021)

  75. Scerrato, D., Giorgio, I.: Equilibrium of two-dimensional cycloidal pantographic metamaterials in three-dimensional deformations. Symmetry 11(12), 1523 (2019)

    Article  ADS  Google Scholar 

  76. Giorgio, I., Rizzi, N.L., Andreaus, U., Steigmann, D.J.: A two-dimensional continuum model of pantographic sheets moving in a 3D space and accounting for the offset and relative rotations of the fibers. Math. Mech. Compl. Syst. 7(4), 311–25 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  77. Turco, E., Golaszewski, M., Giorgio, I., D’Annibale, F.: Pantographic lattices with non-orthogonal fibres: experiments and their numerical simulations. Compos. B Eng. 1(118), 1–4 (2017)

  78. Auger, P., Lavigne, T., Smaniotto, B., Spagnuolo, M., dell’Isola, F., Hild, F.: Poynting effects in pantographic metamaterial captured via multiscale DVC. J. Strain Anal. Eng. Des. (2021). https://doi.org/10.1177/0309324720976625

  79. Yang, H., Ganzosch, G., Giorgio, I., Abali, B.E.: Material characterization and computations of a polymeric metamaterial with a pantographic substructure. Z. Angew. Math. Phys. 69(4), 1–6 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The paper was published with the financial support of the Ministry of Education and Science of the Russian Federation as part of the program of the Moscow Center for Fundamental and Applied Mathematics under the Agreement No. 075-15-2019-1621 and of the Shota Rustaveli National Science Foundation (project No FR-21-3926).

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikabadze, M., Ulukhanyan, A. On some variational principles in micropolar theories of single-layer thin bodies. Continuum Mech. Thermodyn. 35, 1147–1164 (2023). https://doi.org/10.1007/s00161-022-01089-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01089-5

Keywords

Navigation