Skip to main content
Log in

Cyclic Strength of the Zr–1% Nb Alloy after Equal Channel Angular Pressing

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of equal channel angular pressing (ECAP) on the structure, static, and cyclic strength of zirconium alloy E110 (Zr–1% Nb) is studied. The ECAP procedure is applied to samples with a diameter of 20 mm and a length of 100 mm along the BC route with an angle of 110° between the channels in six passes with a stepwise decrease in temperature from 400 to 300°C. A highly inhomogeneous ultrafine-grained microstructure that is comprised of regions filled with cells and fragments with low misorientation and a high density of dislocations and regions with predominantly equiaxial structural units is formed in the alloy after ECAP. As a result of ECAP, the tensile strength of the alloy increases by 40%, the yield point increases by 22%, and the relative elongation decreases by a factor of 2. Equal channel angular pressing leads to a decrease in the endurance fatigue limit based on 107 cycles from 225 to 150 MPa and to a change in the fracture mechanism from a quasi-ductile microgrooved mechanism to a predominantly brittle one with secondary cracking. With high stresses in the cycle (above 280 MPa), the durabilities of the alloy both in the initial state and after ECAP are comparable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. G. Steinemann, Corrosion of Surgical Implants—In Vivo and In Vitro Tests, Evaluation of Biomaterials (Wiley, New York, 1980), pp. 1–34.

    Google Scholar 

  2. A. Yu. Fadeev, “Zirconium in orthopedic dentistry,” Medtekhnika I Medizdeliya, No. 4, 26–30 (2002).

  3. Yu. G. Shaposhnikov, K. M. Sherepo, V. Yu. Gorokhov, and G. N. Berchenko, “Zirconium for explants in traumatology and orthopedics,” Ortopediya, Travmatologiya i Protezirovanie, No. 1, 31–33 (1993).

    Google Scholar 

  4. S. A. Nikulin, A. B. Rozhnov, S. O. Rogachev, V. M. Khatkevich, V. A. Turchenko, and E. S. Khotulev, “Investigation of structure, phase composition, and mechanical properties of Zr–2.5% Nb alloy after ECAP,” Mater. Lett. 169, 223–226 (2016).

    Article  CAS  Google Scholar 

  5. V. F. Terent’ev, S. V. Dobatkin, S. A. Nikulin, V. I. Kopylov, D. V. Prosvirnin, S. O. Rogachev, and I. O. Bannykh, “Effect of equal-channel angular pressing on the fatigue strength of titanium and a zirconium alloy,” Metally 2011, No. 10, 981–988 (2011).

    Google Scholar 

  6. S. A. Nikulin, S. O. Rogachev, A. B. Rozhnov, V. I. Kopylov, S. V. Dobatkin, “Corrosion damage under stress corrosion cracking tests of Zr-2,5% Nb alloy after equal-channel angular pressing, Fiz. Khim. Obr. Met., No. 1, 74–80 (2012).

  7. M. V. P. Companhoni, J. R. G. Matheus, T. L. Marcondes, and A. L. Pinto, “Analysis of microstructure and microhardness of Zr–2.5Nb processed by High-Pressure Torsion (HPT),” J. Mater. Sci. 47, 7835–7840 (2012).

    Article  CAS  Google Scholar 

  8. A. P. Zhilyaev, I. Sabirov, G. Gonzalez-Doncel, J. Molina-Aldareguia, B. Srinivasarao, and M. T. Pérez-Prado, “Effect of Nb additions on the microstructure, thermal stability and mechanical behavior of high pressure Zr phases under ambient conditions,” Mater. Sci. Eng., A 528, 3496–3505 (2011).

    Article  Google Scholar 

  9. V. Sklenicka, J. Dvorak, P. Kral, M. Svoboda, M. Kvapilova, V. I. Kopylov, S. A. Nikulin, and S. V. Dobatkin, “Creep behavior of a zirconium alloy processed by equal-channel angular pressing,” Acta Phys. Pol. A 122, 485–489 (2012).

    Article  CAS  Google Scholar 

  10. B. S. Lee, M. H. Kim, S. K. Hwang, S. I. Kwun, and S. W. Chae, “Grain refinement of commercially pure zirconium by ECAP and subsequent intermediate heat treatment,” Mater. Sci. Eng., A 449451, 1087–1089 (2007).

    Article  Google Scholar 

  11. S. O. Rogachev, A. B. Rozhnov, S. A. Nikulin, O. V. Rybal’chenko, M. V. Gorshenkov, V. G. Chzhen, and S. V. Dobatkin, “Effect of torsion conditions under high pressure on the structure and strengthening of the Zr–1% Nb alloy,” Phys. Met. Metallogr. 117, No. 4, 371–377 (2016).

    Article  CAS  Google Scholar 

  12. V. M. Segal, V. I. Reznikov, A. E. Drobyshevskii, and V. I. Kopylov, “Plastics processing of metals by simple shearing,” Izv. Akad. Nauk SSSR, Met., No. 1, 115–123 (1981).

  13. R. Z. Valiev, A. P. Zhilyaev, and T. G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications (Wiley, New York, 2014).

    Google Scholar 

  14. V. F. Terent’ev, “Cyclic strength of submicro- and nanocrystalline metals and alloys (review),” Novye Materialy i Tekhnologii v Metallurgii I Mashinostroenii, No. 1, 8–24 (2010).

  15. T. Sawai, S. Matsuoka, and K. Tsuzaki, “Low-and high-cycle fatigue properties of ultrafine-grained low carbon steels,” J. Iron Steel Inst. Jpn. 89, 726–733 (2003).

    Article  CAS  Google Scholar 

  16. A. Vinogradov, S. Hashimoto, and V. I. Kopylov, “Enhanced strength and fatigue life of ultrafine grain Fe-36Ni Invar alloy,” Mater. Sci. Eng., A 355, 277–285 (2003).

    Article  Google Scholar 

  17. A. Vinogradov, V. V. Stolyarov, S. Hashimoto, and R. Z. Valiev, “Cyclic behavior of ultrafine-grain titanium produced by severe plastic deformation,” Mater. Sci. Eng., A 318, 163–173 (2001).

    Article  Google Scholar 

  18. H. K. Kim, M. I. Choi, C. S. Chung, and D. H. Shin, “Fatigue properties of ultrafine grained low carbon steel produced by equal channel angular pressing,” Mater. Sci. Eng., A 340, 243–250 (2003).

    Article  Google Scholar 

Download references

Funding

The structural studies were performed using the equipment of Center for Collective Use Materials Science and Metallurgy with the financial support from the Ministry of Education and Science of Russia (project no. 075-15-2021-696).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Rogachev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozhnov, A.B., Rogachev, S.O., Alsheikh, K. et al. Cyclic Strength of the Zr–1% Nb Alloy after Equal Channel Angular Pressing. Phys. Metals Metallogr. 123, 99–105 (2022). https://doi.org/10.1134/S0031918X22010112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22010112

Keywords:

Navigation