Skip to main content
Log in

Crystallographic Analysis and Mechanism of Thermoelastic Martensitic Transformation in Heusler Alloys with a Seven-Layer Martensite Structure

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The lattice parameters of the matrix of modulated 14M martensite in the Ni51Mn24Ga25 and Ni63Al37 alloys are calculated. The mechanism of martensitic transformation in alloys with a seven-layer martensite structure is determined, which includes shear deformation of the austenite lattice in the initial L21 phase along the (112) plane in the \(\left[ {\bar {1}\bar {1}1} \right]\) direction and additional compressive and tensile deformations in three mutually perpendicular directions. The deformation of martensite with an invariant lattice takes place through the formation of bilayered twins that create a seven-layer modulation of the crystal structure of martensite. The crystallographic characteristics of the martensitic transformation are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. N. Vasil’ev, V. D. Buchel’nikov, T. Takagi, V. V. Khovailo, and E. I. Estrin, “Shape memory ferromagnets,” Phys.-Usp. 46, 559 (2003).

    Article  Google Scholar 

  2. H. D. Chopra, Ji. Chunhai, and V. V. Kokorin, “Magnetic-field-induced twin boundary motion in magnetic shape-memory alloys,” Phys. Rev. B 61, No. 22. R14913–14915 (2000).

    Article  CAS  Google Scholar 

  3. K. Ullakko, J. K. Huang, C. Kantner, R. C. O’handley, and V. V. Kokorin, “Large magnetic-field-induced strains in Ni2MnGa single crystals,” Appl. Phys. Lett. 63, No. 13, 1966–1968 (1996).

    Article  Google Scholar 

  4. A. Sozinov, A. A. Likhachev, N. Lanska, and K. Ullakko, “Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase,” Appl. Phys. Lett. 80, No. 10, 1746–1748 (2002).

    Article  CAS  Google Scholar 

  5. B. M. Gundyrev and Yu. V. Kaletina, “Crystallographic analysis and mechanism of the martensitic transformation in the Heusler alloy Ni47Mn42In11,” Phys. Met. Metallogr. 120, No. 11, 1097–1104 (2019).

    Article  CAS  Google Scholar 

  6. Y. Murakami, K. Otsuka, S. Hanada, and S. Watanabe, “Crystallography of stress-induced B2 → 7R martensitic transformation in a Ni–37.0 at % Al alloy,” Mater. Trans. JIM 33, 282–288 (1992).

    Article  CAS  Google Scholar 

  7. V. V. Martynov, “X-ray diffraction study of thermally and stress-induced phase transformations in single crystalline Ni–Mn–Ga alloys,” J. Phys. IV (Paris) 5, 8–91 (1995)

    Google Scholar 

  8. V. V. Martynov, K. Enami, L. G. Khandros, S. Nenno, and A. V. Tkachenko, “The structure of the martensitic phases formed in the 63.1 at. % Ni–Al under tension,” Fiz. Met. Metalloved. 55, No. 5, 982–989 (1983).

    CAS  Google Scholar 

  9. V. M. Gundyrev and Yu. V. Kaletina, “X-Ray diffraction study of the martensite structure of the Ni47Mn42In11 alloy” Phys. Met. Metallogr. 119, No. 10, 1018–1024 (2018).

    Article  Google Scholar 

  10. V. M. Gundyrev and V. I. Zel’dovich, “Crystallographic analysis of the B2 → B19' martensite transformation in titanium nickelide,” Bull. Russ. Acad. Sci.: Phys. 76, No. 1, 18–22 (2012).

    Article  CAS  Google Scholar 

  11. V. M. Gundyrev and V. I. Zeldovich, “Crystallographic analysis of martensitic transformation in an iron-nickel alloy with twinned martensite,” Bull. Russ. Acad. Sci.: Phys. 77, No. 11, 1367–1372 (2013).

    Article  CAS  Google Scholar 

  12. V. M. Gundyrev and V. I. Zel’dovich, “Crystallographic analysis of the FCC → BCC martensitic transformation in high-carbon steel,” Phys. Met. Metallogr. 115, No. 10, 973–980 (2014).

    Article  Google Scholar 

  13. V. M. Gundyrev, V. I. Zel’dovich, and V. M. Schastliv-tsev, “Crystallographic analysis of the martensitic transformation in medium-carbon steel with packet martensite,” Phys. Met. Metallogr. 117, No. 10, 1017–1027 (2016).

    Article  CAS  Google Scholar 

  14. V. M. Gundyrev, V. I. Zel’dovich, and V. M. Schastliv-tsev, “Crystallographic analysis and mechanism of martensitic transformation in Fe alloys,” Phys. Met. Metallogr. 121, No. 11, 1045–1063 (2020).

    Article  CAS  Google Scholar 

  15. M. S. Wechsler, D. S. Lieberman, and T. A. Read, “On the theory of the formation of martensite,” Trans. AIME 197, 1503–1515.

  16. C. M. Wayman, Introduction to the Crystallography of Martensitic Transformations (New York, 1964).

    Google Scholar 

  17. Y. Murakami, K. Otsuka, S. Hanada, and S. Watanabe, “Self-accomodation and morphology of 14M (7R) martensites in a Ni–37.0 at % Al alloy,” Mater. Sci. Eng., A 189, 181–199 (1994).

    Article  Google Scholar 

Download references

Funding

This study was performed within the framework of State assignment from the Ministry of Education and Science of Russian Federation on topics Structure (no. AAAA-A18-118020190116-6) and Pressure (no. AAAA-A18-118020190104-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. M. Gundyrev or V. I. Zel’dovich.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gundyrev, V.M., Zel’dovich, V.I. Crystallographic Analysis and Mechanism of Thermoelastic Martensitic Transformation in Heusler Alloys with a Seven-Layer Martensite Structure. Phys. Metals Metallogr. 123, 25–31 (2022). https://doi.org/10.1134/S0031918X22010069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22010069

Keywords:

Navigation