Skip to main content

Advertisement

Log in

Review: Hydrogeology of Northern Mendoza (Argentina), from the Andes to the eastern plains, in the context of climate change

Article de synthèse: Hydrogéologie du Nord de Mendoza (Argentine), des Andes aux plaines orientales, en contexte de changement climatique

Revisión: Hidrogeología del Norte de Mendoza (Argentina), desde los Andes a las planicies del Este, en el contexto del cambio climático

横跨安第斯山脉和东部平原的阿根廷门多萨北部的水文地质研究综述

Revisão: Hidrogeologia do norte de Mendoza (Argentina), dos Andes à planície oriental, no contexto das mudanças climáticas

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

In the drylands of Northern Mendoza, Argentina, water supply depends on rivers and groundwater. Climate change makes this region vulnerable due to the snow-glacial-melt regime of the main rivers and populations being concentrated in “irrigated oasis” areas. This article synthesizes hydrogeological knowledge of Northern Mendoza, from the Andes to the eastern plains. The study collected hydrogeological information (published and unpublished) from 1974 to 2020 and analyzed the groundwater situation in the context of climate change. Northern Mendoza comprises fractured and clastic aquifers. Hydrogeological studies (mainly technical reports from the 1980s and 1990s) focused on clastic aquifers to support agricultural activities. These studies included general hydrochemical characterization and localized contamination surveys. Also, they included estimations of groundwater reserves and hydraulic parameters. The hydrogeology of mountain and foothill areas is mostly unknown. Further work is needed: quantification of groundwater resources, surveys of contamination and overexploitation of the confined and unconfined aquifers, better understanding of the surface-water/groundwater interaction, and an efficient monitoring network. The lack of updated information and a sustainable groundwater management strategy in irrigated areas has created legal conflicts among groundwater users, pollution problems, and high pressure on this finite resource. Besides, the poor current groundwater knowledge limits the regional economic development and the enforcement of protection measures against water contamination and overexploitation. Although the impacts of climate change on groundwater resources are globally uncertain, the adaptation to this change requires an improvement in the understanding of groundwater, professionalization of its management, and incorporation of technological advances in hydrogeology issues and water uses.

Résumé

Dans les zones arides du nord de Mendoza, en Argentine, l’approvisionnement en eau dépend des rivières et des eaux souterraines. Le changement climatique rend cette région vulnérable en raison du régime neige-glace-fonte des principales rivières et de la concentration des populations dans les zones d’“oasis irriguées”. Cet article fait la synthèse des connaissances hydrogéologiques du nord de Mendoza, des Andes aux plaines orientales. L’étude a recueilli des informations hydrogéologiques (publiées et non publiées) de 1974 à 2020 et a analysé la situation des eaux souterraines dans le contexte du changement climatique. Le nord de Mendoza comprend des aquifères fracturés et détritiques. Les études hydrogéologiques (principalement des rapports techniques des années 1980 et 1990) se sont concentrées sur les aquifères détritiques pour soutenir les activités agricoles. Ces études comprenaient une caractérisation hydrochimique générale et des enquêtes localisées sur la contamination. Ils comprenaient également des estimations des réserves d’eau souterraine et des paramètres hydrauliques. L’hydrogéologie des zones de montagne et de piémont est en grande partie inconnue. D’autres travaux sont nécessaires: quantification des ressources en eau souterraine, enquêtes sur la contamination et la surexploitation des aquifères captifs et libres, meilleure compréhension de l’interaction entre les eaux de surface et les eaux souterraines, et réseau de surveillance efficace. L’absence d’informations actualisées et de stratégie de gestion durable des eaux souterraines dans les zones irriguées a engendré des conflits juridiques entre les utilisateurs des eaux souterraines, des problèmes de pollution et une forte pression sur cette ressource limitée. En outre, la maigre connaissance actuelle des eaux souterraines limite le développement économique régional et l’application de mesures de protection contre la contamination et la surexploitation des eaux. Bien que les impacts du changement climatique sur les ressources en eau souterraine soient globalement incertains, l’adaptation à ce changement nécessite une amélioration de la compréhension des eaux souterraines, une professionnalisation de leur gestion, et l’incorporation des avancées technologiques en matière d’hydrogéologie et des usages de l’eau.

Resumen

En la región árida del norte de Mendoza, Argentina, el abastecimiento de agua depende de los ríos y las aguas subterráneas. Esta zona resulta altamente vulnerable al cambio climático debido al régimen nivo-glaciar de los principales ríos y a la concentración de la población en los denominados “oasis irrigados”. Este artículo sintetiza el estado del conocimiento de la hidrogeológica del norte de Mendoza, desde los Andes hasta las áreas llanas del este. El estudio recopila información hidrogeológica (publicada e inédita) desde 1974 hasta 2020 y analiza la situación de las aguas subterráneas en el contexto del cambio climático. En la zona de estudio se reconocen acuíferos fracturados y clásticos. Los estudios hidrogeológicos (principalmente informes técnicos de las décadas de 1980 y 1990) se centraron en el estudio de los acuíferos clásticos altamente demandados por el sector agrícola. Estos estudios incluían la caracterización hidroquímica general y estudios de contaminación localizados. También incluían estimaciones de las reservas de agua subterránea y de parámetros hidráulicos. Se desconoce en gran medida la hidrogeología de las zonas de montaña y piedemonte. Es necesario generar estudios vinculados a: la cuantificación de los recursos hídricos subterráneos, la contaminación y sobreexplotación de acuíferos libre y confinados, la interacción aguas superficiales-agua subterránea, así como incluir una red de monitoreo efectiva. Se observa que la falta de información y de estrategias de gestión sustentables de las aguas subterráneas en las zonas de regadío, han generado conflictos legales entre los usuarios, así como problemas de contaminación y una gran presión sobre este recurso finito. Además, el escaso conocimiento actualizado de las aguas subterráneas limita el desarrollo económico regional y la aplicación de medidas de protección contra la contaminación y la sobreexplotación de acuíferos. Aunque los impactos del cambio climático sobre los recursos hídricos subterráneos son globalmente inciertos, la adaptación a este cambio requiere una mejora en la comprensión de las aguas subterráneas, la profesionalización de su gestión y la incorporación de los avances tecnológicos en materia de hidrogeología y usos del agua.

摘要

阿根廷门多萨北部的干旱区主要采用河水和地下水作为供水水源。由于主要河流的冰雪融化机制和人口集中在“灌溉绿洲”区,气候变化使该地区的供水更为脆弱。本文综合了从安第斯山脉到东部平原的门多萨北部的水文地质认识。该研究收集了 1974 年至 2020 年的水文地质信息(已发表和未发表),并分析了气候变化背景下的地下水状况。门多萨北部由裂隙和碎屑含水层组成。水文地质研究(主要是 1980 年代和 1990 年代的技术报告)主要关注支持农业活动的碎屑含水层。这些研究包括一般水化学表征和局部污染调查。此外,研究还包括对地下水储量和水力参数的估计。山区和山麓地区的水文地质大多是未知的。需要进一步开展工作包括:地下水资源的量化、承压和潜水含水层的污染和过度开采调查、更好地了解地表水/地下水相互作用以及有效的监测网络。灌区缺乏更新的信息和可持续的地下水管理战略,造成了地下水使用者之间的法律冲突、污染问题以及对利用有限资源的高压。此外,目前对地下水的认识不足,限制了区域经济发展和防止水污染和过度开采的保护措施的执行。尽管气候变化对地下水资源的影响在全球范围内尚不确定,但要适应这种变化,就需要提高对地下水的理解,使其管理专业化,并将技术进步纳入水文地质问题和用水。

Resumo

Nas terras áridas do norte de Mendoza, Argentina, o abastecimento de água depende dos rios e das águas subterrâneas. As mudanças climáticas tornam esta região vulnerável devido ao regime de degelo dos rios principais e populações concentradas em áreas de “oásis irrigados”. Este artigo sintetiza o conhecimento hidrogeológico do norte de Mendoza, desde os Andes até a planície oriental. O estudo coletou informações hidrogeológicas (publicadas e não publicadas) de 1974 a 2020 e analisou a situação das águas subterrâneas no contexto das mudanças climáticas. O norte de Mendoza compreende aquíferos fraturados e clásticos. Estudos hidrogeológicos (principalmente relatórios técnicos das décadas de 1980 e 1990) enfocaram os aquíferos clásticos para apoiar as atividades agrícolas. Esses estudos incluíram a caracterização hidroquímica geral e pesquisas de contaminação localizada. Além disso, eles incluíram estimativas de reservas de água subterrânea e parâmetros hidráulicos. A hidrogeologia das áreas montanhosas e contrafortes é quase totalmente desconhecida. São necessários mais trabalhos: quantificação dos recursos hídricos subterrâneos, levantamentos de contaminação e sobreexploração dos aquíferos confinados e não confinados, melhor compreensão da interação água superficial/subterrânea e uma rede de monitoramento eficiente. A falta de informações atualizadas e uma estratégia de gestão sustentável das águas subterrâneas em áreas irrigadas tem criado conflitos legais entre os usuários das águas subterrâneas, problemas de poluição e alta pressão sobre este recurso finito. Além disso, o pouco conhecimento atual sobre as águas subterrâneas limita o desenvolvimento econômico regional e a aplicação de medidas de proteção contra a contaminação e a sobreexploração da água. Embora os impactos das mudanças climáticas sobre os recursos hídricos subterrâneos sejam globalmente incertos, a adaptação a essa mudança requer uma melhoria no entendimento das águas subterrâneas, profissionalização de sua gestão e incorporação de avanços tecnológicos nas questões de hidrogeologia e usos da água.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdelhalim A, Sefelnasr A, Ismail E (2019) Response of the interaction between surface water and groundwater to climate change and proposed megastructure. J Afr Earth Sci 162:103723. https://doi.org/10.1016/j.jafrearsci.2019.103723

    Article  Google Scholar 

  • Abraham E, Rodriguez Martinez F (2000) Argentina: recursos y problemasambientales de la zona arida. Provincias de Mendoza, San Juan y La Rioja [Argentina: resources and environmental problems of the arid zone. Provinces of Mendoza, San Juan and La Rioja]. GTZ. Junta de Gobierno de Andalucia, Universidades y Centros de Investigacion de la Region Andina Argentina, Mendoza, Argentina

  • Abraham E, Abad J, Lora S, Borrero B, Salomon M, Sanchez C, Soria D (2007) Caracterizacion y valoracion hidrologica de la cuenca del rio Mendoza mediante elaboracion del modelo conceptual de evaluación [Characterization and hydrological assessment of the Mendoza River basin through the elaboration of a conceptual evaluation model]. XX Congreso Nacional del Agua, Argentina. http://www.asicprimerazona.com.ar/asic/publicaciones/trabajo_modelo_conagua2007.pdf. Accessed Feb 2022

  • Abraham E, Salomon M, Rubio C, Soria D (2010) Aportes metodologicos para evaluacion hidrologica de cuencas Andinas. Estudio cuenca Rio Mendoza [Methodological contributions for the hydrological evaluation of Andean basins: Mendoza River basin study, chap 1]. Revista Zonas Aridas; Centro de Investigaciones de Zonas Aridas, Universidad Nacional Agraria La Molina, Lima, Peru, pp 9–33

  • Ahumada A (1992) Periglacial climatic conditions and vertical form associations in Quebrada Benjamin Matienzo, Mendoza, Argentina. Permafr Periglac Process 3(3):221–224. https://doi.org/10.1002/ppp.3430030308

    Article  Google Scholar 

  • Alvarez A, Fasciolo G, Barbazza C, Lorenzo F, Balanza M (2008) The impact of waste water irrigation on groundwater: the Paramillos system (Lavalle, Mendoza, Argentina). Rev Facultad Cienc Agrar 40(2):370–466 https://bdigital.uncu.edu.ar/objetos_digitales/2720/alvarezagrarias2-08.pdf. Accessed Feb 2022

    Google Scholar 

  • Alvarez A, D’Elia M, Paris M, Fasciolo G, Barbazza C (2011) Assessment of aquifer contamination from on-site sanitation systems and effluent reuse in the north of Mendoza province. Rev Facultad Cienc Agrar 43(1):19–39 https://bdigital.uncu.edu.ar/3872.

  • Aranibar J, Villagra P, Gomez L, Jobbagy E, Quiroga M, Wuilloud R, Monasterio R, Guevara A (2011) Nitrate dynamics in the soil and unconfined aquifer in arid groundwater coupled ecosystems of the Monte Desert, Argentina. J Geophys Res 116:g04015. https://doi.org/10.1029/2010jg001618

    Article  Google Scholar 

  • Auge M (2004) Regiones hidrogeologicas. Republica Argentina y provincias de Buenos Aires, Mendoza y Santa Fe [Hydrogeological regions: Argentine Republic and provinces of Buenos Aires, Mendoza and Santa Fe]. http://sedici.unlp.edu.ar/bitstream/handle/10915/15909/Documento_completo.pdf?sequence=1. Accessed 26 Feb 2020

  • Bandyopadhyay J, Kraemer D, Kattelmann R, Kundzewicz Z (1997) Highland waters: a resource of global significance. In: Messerli B, Ives J (eds) Mountains of the world: a global priority. Parthenon, New York, 131–155 pp

    Google Scholar 

  • Barcena J (1992) Pedro del Castillo square. The pile or fountain XIX c. Archaeological Rescue on Foundational Area of Mendoza City. Archaelogical and Historical Research Programme on Foundational Area of Mendoza City, Municipality of Mendoza City, Argentina

  • Bates B, Kundzewicz Z, Wu S, Palutikof J (2008) Climate change and water. Technical Paper VI of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change Secretariat, Geneva, 210 pp

  • Bermejillo A, Marti L, Consoli D, Salcedo C, Llera J, Valdes A, Venier M, Troilo S (2012) Aptitude for underground irrigation based on salinity and sodicity in drillings made between 2004 and 2010 in the north and central oasis, Mendoza. Rev Facultad Cienc Agrar 44(2):221–240 https://bdigital.uncu.edu.ar/4759. Accessed Feb 2022

    Google Scholar 

  • Bocanegra O (2002) Informe sobre HACRE en el departamento Lavalle. Mendoza. En: CONAPRIS-MSAL (Comision Nacional de Programas de Investigacion Sanitaria, Ministerio de Salud de la Republica Argentina) Epidemiologia del hidroarsenisismo cronico regional endemico en la Republica Argentina. Estudio colaborativo multicentrico [Epidemiology of chronic regional endemic hydroarsenism in the Argentine Republic: multicentre collaborative study]. 200 pp. https://www.argentina.gob.ar/sites/default/files/2006_epidemiologia_del_hacre_en_argentina.pdf. Accessed Feb 2022

  • Bocanegra O, Bocanegra E, Alvarez A (2005) Arsenic in groundwater: its impacts on health, chap 6. In: Bocanegra E Hernandez M, Usunoff E (eds) Groundwater and human development. IAH Selected Papers on Hydrogeology, 1st edn. IAH, Goring, UK, 262 pp

  • Boningseña J (2013) Impacto del cambio climatico en los oasis del oeste argentino [Impact of climate change on the oases of western Argentina]. Cienc Invest 64(1):45–58 http://hdl.handle.net/11336/4849. Accessed Feb 2022

    Google Scholar 

  • Boningseña J, Llop A (2015) Impactos y vulnerabilidad al cambio climatico de los principales rios de Mendoza y San Juan a partir de la evolucion de los glaciares cordilleranos. La economia del cambio climatico [Impacts and vulnerability to climate change of the main rivers of Mendoza and San Juan from the evolution of mountain glaciers: the economics of climate change]. Serie Medio Ambiente y Desarrollo 161, CEPAL, Santiago, Chile

  • Buccheri M, Pinto M (2018) Análisis de la política pública del agua subterránea en Mendoza, Argentina [Analysis of groundwater public policy in Mendoza, Argentina]. 4to Encuentro de Investigadores en Formación en Recursos Hídricos. IFRH, https://www.ina.gov.ar/ifrh-2018/pdf/IFRH_2018_paper_21.pdf. Accessed Feb 2022

  • Buk E (1988) Hydrochemistry of rivers in mountain permafrost at 33° LS, Mendoza-Argentina. Proceedings of the Fifth International Conference on Permafrost, vol 1, pp 294–298 https://b-ok.cc/book/3257761/e4add4. Accessed Feb 2022

    Google Scholar 

  • Carpio F (1999) Sulfatera General San Martin, Mendoza [Gypsum mine General San Martin, Mendoza]. In: Zappettini E (ed) Recursos minerales de la Republica Argentina [Mineral resources of the Argentine Republic]. Instituto de Geologia y Recursos Minerales, Buenos Aires, Argentina. SEGEMAR Anales 35:1943–1946

  • Castex V, Moran Tejeda E, Beniston M (2015) Water availability, use and governance in the wine producing region of Mendoza, Argentina. Environ Sci Pol 48:1–8. https://doi.org/10.1016/j.envsci.2014.12.008

    Article  Google Scholar 

  • Cavicchi A (1997) A multi-attribute tradeoff analysis for water resource planning: a case study of the Mendoza River. MSc Thesis, Massachusetts Institute of Technology, Cambridge, MA, 120 pp. http://hdl.handle.net/1721.1/43414. Accessed Feb 2022

  • Chamberlain C, Poage M (2000) Reconstructing the paleotopography of mountain belts from the isotopic composition of authigenic minerals. Geology 28:115–118 http://www.science.earthjay.com/instruction/HSU/2017_spring/GEOL_110/reading/Geology-2000-Chamberlain-115-8.pdf. Accessed Feb 2022

    Article  Google Scholar 

  • Civit B, Arena P, Curadelli S, Piastrellini R (2012) Indicadores de sostenibilidad. Huella de carbono y huella hidrica de un viñedo considerando distintos sistemas de riego en Mendoza, Argentina [Sustainability indicators: carbon footprint and water footprint of a vineyard considering different irrigation systems in Mendoza, Argentina]. Enoviticultura 1(14):1–9 http://hdl.handle.net/11336/95985. Accessed Feb 2022

    Google Scholar 

  • Consoli D, Zuluaga J, Drovandi A, Rearte E (2016) Calidad del agua en zonas bajo riego: situacion del Cinturon Verde de Mendoza [Water quality in irrigated areas: situation of the Mendoza Green Belt]. IFRH 3o Encuentro de Investigadores en Formacion de Recursos Hidricos, Argentina.https://www.ina.gob.ar/ifrh-2016/trabajos/IFRH_2016_paper_137.pdf. Accessed Feb 2022

  • Consoli D, Drovandi A, Zuluaga J, Dedio C, Valdes A, Haye S, Morsucci A, Velgas M (2018) Medicion de la contaminacion del agua en el Embalse Potrerillos y cuenca del Rio Blanco, Mendoza, Argentina: monitoreo y analisis de datos [Measuring water pollution in the Potrerillos reservoir and Rio Blanco basin, Mendoza, Argentina: monitoring and data analysis]. IFRH 4to Encuentro de Investigadores en Formacion de Recursos Hidricos. Argentina. https://www.ina.gov.ar/ifrh-2018/pdf/IFRH_2018_paper_51.pdf. Accessed Feb 2022

  • Cordini R (1948) Cuerpos salinos de la Argentina [Salt mine in Argentina]. Rev Asoc Geol Argentina 3(3):145–199

    Google Scholar 

  • Corte A (1989) Rock glaciers taxonimy. In: Giardino J, Schoeder Jr. F, Vitek J (eds) Rock glaciers. Allen and Uwin, London, pp 27–40. https://doi.org/10.1002/esp.3290140810

  • Corte A, Buk E (1984) El marco criogenico para la hidrologia cordillerana [The cryogenic framework for mountain hydrology]. Programa Hidroldgico Internacional. Jornadas de hidrologia de nieves y hielo en America del Sur, Chile. ROSTLAC-UNESCO, Montevideo, Uruguay 1–15 pp

  • Corte A, Grosso S (1993) Geocriología [Geocryology]. XII Congreso Geologico Argentino y II Congreso de Exploracion de Hidrocarburos, Buenos Aires, Argentina. Relat Geol Recurs Nat Mendoza V(1):205–216

  • Crespo S, Gomez L, Aranibar J, Schwikowski M, Corvalan J (2012) Caracteristicas quimicas e isotopicas de glaciares, arroyos y vertientes de la cuenca alta del rio Mendoza, Andes centrales de Argentina [Chemical and isotopic characteristics of glaciers, streams and springs in the upper Mendoza River basin, central Andes of Argentina]. II Reunion Argentina de Geoquimica de la Superficie II RAGSU. Bahia Blanca, Argentina, 2012, 10 pp

  • Crespo S, Aranibar J, Gomez L, Schwikowski M, Bruetsch S, Cara L, Villalba R (2017) Ionic and stable isotope chemistry as indicators of water sources to the upper Mendoza River basin, Central Andes of Argentina. Hydrol Sci J 62(4):588–605. https://doi.org/10.1080/02626667.2016.1252840

    Article  Google Scholar 

  • Crespo S, Fernandoy F, Cara L, Klarian S, Lavergne C (2020) First snow, glacier and groundwater contribution quantification in the upper Mendoza River basin using stable water isotopes. Isot Environ Health Stud 56(5–6):566–585. https://doi.org/10.1080/10256016.2020.1797713

    Article  Google Scholar 

  • Demartini H, Vargas A, Demartini J, Miranda M (1998) Caracteristicas de las vertientes de aguas subterraneas de Villavicencio [Characteristics of groundwater sources in Villavicencio] In: Dalmasso A,Martinez Carretero E, Videla F, Puig S, Candia R (eds) Reserva Natural Villavicencio (Mendoza, Argentina). Plan de manejo, Multequina. Contribucion del a Direccion de Recursos Naturales Renovables 8:11–50

    Google Scholar 

  • Diaz Araujo E, Bertranou A (2004) Systematic analysis of water resources management in Mendoza, Argentina. Global Water Partnership, South America, Asociacion Mundial del Agua, SAMTAC ComiteTecnico Asesor Sud America, 88 pp. https://www.cepal.org/samtac/noticias/documentosdetrabajo/8/23418/InAr00404.pdf. Accessed Feb 2022

  • Dragoni W, Sukhija B (2008) Climate change and groundwater: a short review. Geol Soc Lond Spec Publ 288:1–12. https://doi.org/10.1144/SP288.1

    Article  Google Scholar 

  • Dussaillant I, Berthier E, Brun F, Masiokas M, Hugonnet R, Favier V, Rabatel A, Pitte P, Ruiz L (2019) Two decades of glacier mass loss along the Andes. Nat Geosci 12:802–808. https://doi.org/10.1038/s41561-019-0432-5

    Article  Google Scholar 

  • Edmunds M (2003) Renewable and non-renewable groundwater in semi-arid and arid regions. Dev Water Sci 50:265–280. https://doi.org/10.1016/S0167-5648(03)80023-0

    Article  Google Scholar 

  • Espizua L, Maldonado G (2007) Glacier variations in the Central Andes (Mendoza province, Argentina) from 1896 to 2005. In: Scarpati O, Jones A (eds) Environmental change and rational water use. Orientacion Grafica Editora, Buenos Aires, pp 353–366

    Google Scholar 

  • Foster S, Garduño H (2005) Argentina enfoque de Gestion Integrada para la Conservacion del Agua Subterranea en los Acuiferos de Mendoza [Integrated management approach for groundwater conservation in Mendoza’s aquifers]. Informe Banco Mundial, Programa asociado a la GWP, 16 pp. https://docplayer.es/23020326-Argentina-enfoque-de-gestion-integrada-para-la-conservacion-del-agua-subterranea-en-los-acuiferos-de-mendoza.html. Accessed Feb 2022

  • Foster S, Tyson R (2019) Climate-change adaptation & groundwater. International Association of Hydrogeologists: Strategic Overview Series. IAH Publications. https://iah.org/wp-content/uploads/2019/07/IAH_Climate-ChangeAdaptationGdwtr.pdf. Accessed Feb 2022

    Google Scholar 

  • Foster S, Garduño H, Kemper K, Tuinhof A, Nanni M (2006) Making intensive use of groundwater more sustainable key lessons from field experience. In: Sahuquillo A, Capilla J, Martinez Cortina L, Vila XS (eds) Groundwater intensive use. IAH Selected Papers on Hydrogeology 7, 1st edn. IAH, Goring, UK, 410 pp

    Google Scholar 

  • Fulin L, Huawei C, Kairan W, Xuequn C (2018) Comprehensive review of groundwater-dependent ecosystems. Adv Water Sci 29(5):750–758. https://doi.org/10.14042/j.cnki.32.1309.2018.05.015

    Article  Google Scholar 

  • Garreaud R (2009) The Andes climate and weather. Adv Geosci 7:1–9 www.adv-geosci.net/7/1/2009/. Accessed Feb 2022

    Google Scholar 

  • Gilfedder M, Rassam D, Stenson M, Jolly I, Walker G, Littleboy M (2012) Incorporating land-use changes and surface groundwater interactions in a simple catchment water yield model. Environ Model Softw 38:62–73. https://doi.org/10.1016/j.envsoft.2012.05.005

    Article  Google Scholar 

  • Gomez L, Aranibar J, Wuilloud R, Rubio C, Martinez D, Monasterio R, Villagra P (2014) Hydrogeology and hydrogeochemical modeling in phreatic aquifer of NE Mendoza, Argentina. J Iber Geol 40(3):521–538 http://hdl.handle.net/11336/37388. Accessed Feb 2022

    Article  Google Scholar 

  • Gomez L Aravena R Alvarez A Ibañez S Donna F (2015) Application of isotopic techniques for water resource management in an arid region of western Argentina. International Symposium on Isotope Hydrology: Revisiting Foundations and Exploring Frontiers-CN225. Vienna, Austria, 2015. http://www-naweb.iaea.org/napc/ih/documents/other/Poster%20session%203.pdf. Accessed Feb 2022

  • Gomez L, Canizo B, Lana B, Zalazar G, Wuilloud R, Aravena R (2019) Hydrochemical processes, variability and natural background levels of arsenic in groundwater of northeastern Mendoza, Argentina. J Iber Geol 45:365–382. https://doi.org/10.1007/s41513-018-00099-0

    Article  Google Scholar 

  • Gomez L, Alvarez A, D’Ambrosio S, Zalazar G, Aravena R (2020) Use of isotopes techniques to reveal the origin of water salinity in an arid region of central-western Argentina. Sci Total Environ 763(1):1–14. https://doi.org/10.1016/j.scitotenv.2020.142935

    Article  Google Scholar 

  • Hassan T, Lubczynskia W, Niswongerb R, Zhongbo S (2014) Surface–groundwater interactions in hard rocks in Sardon catchment of western Spain: an integrated modeling approach. J Hydrol 517:390–410. https://doi.org/10.1016/j.jhydrol.2014.05.026

    Article  Google Scholar 

  • Hernandez J Martinis N (2006) Particularidades de las cuencas hidrogeológicas explotadas con fines de riego en la provincia de Mendoza [Particularities of the hydrogeological basins exploited for irrigation purposes in the province of Mendoza]. III Jornadas de Actualización en Riego y Fertirriego, Mendoza, Argentina, 17 pp

  • Hirata R, Conicelli B (2012) Groundwater resources in Brazil: a review of possible impacts caused by climate change. An Acad Bras Cienc 84(2):297–312. https://doi.org/10.1590/S0001-37652012005000037

    Article  Google Scholar 

  • Hoke G, Garzione C, Araneo D, Latorre C, Strecker M, Williams K (2009) The stable isotope altimeter: do quaternary pedogenic carbonates predict modern elevations? Geology 37:1015–1018. https://doi.org/10.1130/G30308A.1

    Article  Google Scholar 

  • Hoke G, Aranibar J, Viale M, Araneo D, Llano C (2013) Seasonal moisture sources and the isotopic composition of precipitation, rivers, and carbonates across the Andes at 32.5–35.5°S. Geochem Geophys Geosyst 14(4):962–978. https://doi.org/10.1002/ggge.20045

    Article  Google Scholar 

  • Hurlbert M, Montaña E (2015) Dimensions of adaptive water governance and drought in Argentina and Canada. J Sustain Devel 8(1):120–138

    Google Scholar 

  • INDEC, Instituto Nacional de Estadistica y Censos (2010) Censo Nacional de Poblacion, Hogares y Viviendas [National population, households and housing census]. Documento Metodologico Preliminar. http://censo2010.indec.gov.ar/metodologia.asp. Accessed Feb 2022

  • IPCC, Intergovernmental Panel on Climate Change (2011) Managing the risks of extreme events and disasters to advance climate change adaptation. http://ipcc-wg2.gov/SREX. Accessed Feb 2022

  • Jobbagy E, Nosetto M, Villagra P, Jackson R (2011) Water subsidies from mountains to deserts: their role sustaining groundwater-fed oasis in a sandy landscape. Ecol Appl 21:678–694. https://doi.org/10.1890/09-1427.1

    Article  Google Scholar 

  • Jones J (1999) Climate change and sustainable water resources: placing the threat of global warming in perspective. Hydrol Sci J 44(4):541–557. https://doi.org/10.1080/02626669909492251

    Article  Google Scholar 

  • Kitabata H, Nishizawa K, Yoshida Y, Maruyama K (2006) Permafrost thawing in Circum-Arctic and highlands under climatic change scenario projected by community climate system model (CCSM3). Scientific Online Lett Atmos 3(2):053–056. https://doi.org/10.2151/sola.2006-014

    Article  Google Scholar 

  • Klove B, Ala-aho P, Bertrand G, Gurdak J, Kupfersberger H, Kvœrner J, Muotka T, Mykrä H, Preda E, Rossi P, Uvo C, Velasco E, Pulido-Velazquez M (2014) Climate change impacts on groundwater and dependent ecosystems. J Hydrol 518:250–266. https://doi.org/10.1016/j.jhydrol.2013.06.037

    Article  Google Scholar 

  • Kundzewicz Z, Döll P (2009) Will groundwater ease freshwater stress under climate change? Hydrol Sci J 54(4):665–675. https://doi.org/10.1623/hysj.54.4.665

    Article  Google Scholar 

  • Lana B, Ibañez S, Rodriguez S, Rodriguez M, Scarpa J, Ferrer L (2018) Identificacion de la relacion agua superficial-agua subterranea en el arroyo San Alberto, Mendoza, Argentina, mediante la tecnica de radon-222 [Identification of the surface water-groundwater relationship in the San Alberto stream, Mendoza, Argentina, using the radon-222 technique]. XIV Congreso Latinoamericano de Hidrogeologia, X Congreso Argentino de Hidrogeologia, Salta, Argentina, October 2018

  • Lauro C, Vich A, Moreiras S (2019) Streamflow variability and its relationship with climate indices in western rivers of Argentina. Hydrol Sci J 64:607–619. https://doi.org/10.1080/02626667.2019.1594820

    Article  Google Scholar 

  • Lauro C, Vich A, Otta S, Moreiras S, Bastidas L, Vaccarino E (2021) Modos de variabilidad hidroclimatica en los andes centrales (30–37°S) [Modes of hydroclimatic variability in the central Andes]. XXIX Reunión Científica AAGG 2021, Mendoza, Argentina, August 2021

  • Leiva J, Espizua L, Iturraspe R, Masiokas M, Norte F, Villalba R (2008) The response of the Argentinian glaciers, to the climate of the XX and XXI centuries. Terra Glacialis, Special Edition, pp 179–192

  • Leon J, Pedrozo F (2014) Lithological and hydrological controls on water composition: evaporite dissolution and glacial weathering in the south Central Andes of Argentina (33°–34°S). Hydrol Process 29(6):1156–1172. https://doi.org/10.1002/hyp.10226

    Article  Google Scholar 

  • Liniger H, Weingartner R, Grosjean M (1998) Mountains of the world: water towers for the 21st century: a contribution to global freshwater management. University of Berne, Switzerland

    Google Scholar 

  • Llop A, Fasciolo G, Duek A, Comellas E, Buccheri M (2012) The water balance in Mendoza: measurement proposals. Proyeccion 14. Planificacion del Territorio 8:48–67 https://bdigital.uncuyo.edu.ar/objetos_digitales/12801/04llop-proyeccion14.pdf. Accessed Feb 2022

    Google Scholar 

  • Llop A, Buccheri M, Comellas E, Duek A, Marziali C, Puebla P, Reta J (2016) Hacia la incorporacion del agua subterranea en la gestion del recurso [Towards the incorporation of groundwater into resource management]. IFRH 4to Encuentro de Investigadores en Formacion de Recursos Hidricos. Argentina, 16 pp. https://www.ina.gov.ar/legacy/ifrh-2016/trabajos/IFRH_2016_paper_92.pdf. Accessed Feb 2022

  • Lohn P, Guimaraes R, Bucich N (2000) Evaluacion hidroquimica y de la contaminacion quimico-biologica de la cuenca el carrizal – zona norte – provincia de Mendoza Republica Argentina [Hydrochemical and chemical-biological pollution assessment of the El Carrizal basin - northern area - province of Mendoza, Argentina]. 1st Joint World Congress on Groundwater, IAH, Brazil, 23 pp

  • Martin F (2008) Agua y Modelo productivo. Innovaciones tecnologicas e impactos territoriales en el sistema agroalimentario de Mendoza [Water and production model: technological innovations and territorial impacts in the agri-food system of Mendoza]. Estudios Socioterritoriales 7:26–45

    Google Scholar 

  • Martinez Carretero E, Dalmasso A (1995) Mendoza ambiental [Mendoza environmental]. Libro de Edicion Argentina, 283 pp. http://www.geobotanica.net/PUBLICACIONES/LIBROS/Mendoza%20Ambiental.pdf. Accessed Feb 2022

  • Martinez D, Vich A, Trombotto D, Quiroz Londoño M, Ferrante A, Massone H (2013) Caracterizacion Isotopica de agua, hielo y nieve en el Cordon del Plata, Mendoza, Argentina [Isotopic characterization of water, ice and snow in the Cordon del Plata, Mendoza, Argentina]. E-ICES 8° Encuentro del Centro Internacional de Ciencias de la Tierra, 248–257 pp http://www.uncuyo.edu.ar/ices/upload/trabajos-completos-e-ices8-25-9-13.pdf. Accessed Feb 2022

  • Martinis N, Robles J (2012) Estado actual de los acuiferos en el oasis norte y centro de Mendoza a partir de la informacion piezometrica [Current state of the aquifers in the northern and central oasis of Mendoza based on piezometric information]. VI Jornadas de Actualizacion en Riego y Fertirriego. Practicas para incrementar la productividad y asegurar la sostenibilidad del uso del agua y del suelo, 15 pp. https://www.ina.gob.ar/cra/riego/fertirriego/pdf/Martinis.pdf. Accessed Feb 2022

  • Masiokas M, Villalba R, Luckman B, Le Quesne C, Aravena J (2006) Variaciones de la precipitacion nivea en los Andes centrales de Argentina y Chile 1951-2005: influencias atmosfericas de gran escala e implicancias Para los recursos hidricos en la region [Snowfall variations in the Central Andes of Argentina and Chile 1951–2005: large-scale atmospheric influences and implications for water resources in the region]. J Clim 19:6334–6352. https://doi.org/10.1175/JCLI3969.1

    Article  Google Scholar 

  • Masiokas M, Cara L, Villalba R, Pitte P, Luckman B, Toum E, Christie D, Le Quesne A, Mauget S (2019) Streamfow variations across the Andes (18°–55°S) during the instrumental era. Sci Rep Nat Geosci 9:178–179. https://doi.org/10.1038/s41598-019-53981-x

  • Massone H, Martinez D, Vich A, Quiroz Londoño O, Trombotto D, Grondona S (2016) Snowmelt contribution to the sustainability of the irrigated Mendoza’s oasis, Argentina: an isotope study. Environ Earth Sci 75(6):1–11. https://doi.org/10.1007/s12665-015-5141-9

    Article  Google Scholar 

  • Moreiras S, Giambiagi L, Spagnotto S, Nacif S, Mescua J, Toural R (2014) Caracterizacion de fuentes sismogenicas en el frente orogenico activo de los Andes Centrales a la latitud de la ciudad de Mendoza (32°50′–33° S) [Characterisation of seismogenic sources in the active orogenic front of the Central Andes at the latitude of the city of Mendoza]. Andean Geol 41(2):342–361. https://doi.org/10.5027/andgeoV41n2-a04

    Article  Google Scholar 

  • Moreiras S, Vergara I, Araneo D (2018) Were merely storm-landslides driven by the 2015–2016 Niño in the Mendoza River Valley? Landslides 15(5):997–1014. https://doi.org/10.1007/s10346-018-0959-3

    Article  Google Scholar 

  • Ortiz Maldonado G (2004) Variaciones de los niveles fraticos en funcion de la evapotranspiracion, precipitacion efectiva y volumenes distribuidos en los distritos de Costa de Araujo-Gustavo Andre. Determinaciones de las superficies afectadas con niveles freaticos. Departamento de Lavalle. Año 1983–2002 [Variations of phreatic levels as a function of evapotranspiration, effective precipitation and distributed volumes in the districts of Costa de Araujo-Gustavo Andre: determinations of the affected surfaces with phreatic levels in the Department of Lavalle]. MSc Thesis, Universidad Nacional de Cuyo, Mendoza, Argentina, 54 pp

  • Ortiz Maldonado G, Gomez H (2001) Middle part of the Mendoza River: water table level 1986–1996. Rev Facultad Cienc Agrar 33(1):53–63 https://bdigital.uncu.edu.ar/objetos_digitales/9995/tomo-33-1-cap8.pdf. Accessed Feb 2022

    Google Scholar 

  • Panarello H, Dapeña C (1996) Mecanismos de recarga y salinizacion en las cuencas de los rios Mendoza y Tunuyan, Mendoza, Republica Argentina: evidenciados por isotopos ambientales [Recharge and salinization mechanisms in the Mendoza and Tunuyan river basins, Mendoza, Argentina: evidenced by environmental isotopes]. XII Congreso Geologico de Bolivia, Tarija, Bolivia, October 1996, 18 pp

  • Pazos J, Bessone J, Vivas J, Vaca A, Wetten C, Valero C (1993) Parte V: Recursos Hidricos subterraneos y aguas termales [Part V: Groundwater resources and thermal springs]. XII Congreso Geologico Argentino y II Congreso de Exploracion de Hidrocarburos. Buenos Aires, Argentina. Relatorio Geol Recur Nat Mendoza V(1):551–599

  • Potter J (2002) The potential impacts of climate change on transportation: workshop summary. Federal Research Partnership Workshop, DOT Center for Climate Change and Environmental Forecasting, Washington, DC, 3 pp

  • Rivera J, Arnould G (2020) Evaluation of the ability of CMIP6 models to simulate precipitation over southwestern South America: climatic features and long-term trends (1901–2014). Atmos Res 241:104953. https://doi.org/10.1016/j.atmosres.2020.104953

    Article  Google Scholar 

  • Rivera J, Penalba O, Villalba R, Araneo D (2017) Threshold level approach for streamflow droughts analysis in the Central Andes of Argentina: a climatological assessment. Hydrol Sci J 62:1949–1964. https://doi.org/10.1080/02626667.2017.1367095

    Article  Google Scholar 

  • Rivera J, Otta S, Lauro C, Zazulie N (2021) A decade of hydrological drought in Central-Western Argentina. Front Water 3:640544. https://doi.org/10.3389/frwa.2021.640544

    Article  Google Scholar 

  • Robillard J, Cossart E, Tallet B (2009) Des glaciers au vignoble: gestion de l’eau et strate’gies d’irrigation dans les terroirsvitivinicoles de l’oasis de Valle de Uco (Mendoza, Argentine) [From glaciers to vineyards: water management and irrigation strategies in the wine-growing areas of the oasis of Valle de Uco (Mendoza, Argentina)]. UFR de geographie. Universite Paris 1, Pantheon, Sorbonne, France, 1–15 pp

  • Rodriguez E (1968) Estudio hidrogeologico del sector nor-este de Mendoza [Hydrogeological study of the north-eastern sector of Mendoza]. Rev Asoc Geol Argentina 21(1):39–60

    Google Scholar 

  • Rozanski K, Araguas L (1995) Spatial and temporal variability of stable isotope composition of precipitation over the South American continent. Bull Inst Fr Etudes Andines 24(3):379–390

    Google Scholar 

  • Saha C, Li J, Thring R, Hirshfield F, Paul S (2017) Temporal dynamics of groundwater-surface water interaction under the effects of climate change: a case study in the Kiskatinaw River watershed, Canada. J Hydrol 551:440–452. https://doi.org/10.1016/j.jhydrol.2017.06.008

    Article  Google Scholar 

  • Saldi L, Wagner L, Escolar D (2014) Social discourses on environmental themes: water and mining in central West Argentina. Ambiente Sociedade 17(1):97–114. https://doi.org/10.1590/1809-44220004371

    Article  Google Scholar 

  • Salomon M, Farinos-Dasi J (2019) A new water governance model aimed at supply–demand management for irrigation and land development in the Mendoza River basin, Argentina. Water 11(463):1–17. https://doi.org/10.3390/w11030463

    Article  Google Scholar 

  • Schwank J, Escobar R, Giron G, Moran-Tejeda E (2014) Modeling of the Mendoza River watershed as a tool to study climate change impacts on water availability. Environ Sci Pol 43:91–97. https://doi.org/10.1016/j.envsci.2014.01.002

    Article  Google Scholar 

  • Sepulveda E (2001) Hoja Geologica 3369-II. Mendoza, provincias de Mendoza y San Juan. [Geological Sheet 3369-II. Mendoza, provinces of Mendoza and San Juan]. Servicio Programa de Cartas Geologicas de la Republica Argentina. Esc. 1:250.000. Servicio Geologico Minero Argentino (SEGEMAR), Villa Maipú, Argentina, 34 pp

  • Sileo N, Trombotto D, Dapeña C (2015) Preliminary studies of water, snow and ice in the Vallecitos River basin, Mendoza, Argentina. Acta Geol Lilloana 27:1–12 http://hdl.handle.net/11336/70891. Accessed Feb 2022

    Google Scholar 

  • Sileo N, Dapeña C, Trombotto D (2020) Isotopic composition and hydrogeochemistry of a periglacial Andean catchment and its relevance in the knowledge of water resources in mountainous areas. Isot Environ Health Stud 56(5–6):1–13. https://doi.org/10.1080/10256016.2020.1814278

    Article  Google Scholar 

  • Singhal B, Gupta R (2010) Applied hydrogeology of fractured rocks: e-book. Springer, Dordrecht, The Netherlands, 401 pp

    Book  Google Scholar 

  • Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10(1):52–67. https://doi.org/10.1007/s10040-001-0170-8

    Article  Google Scholar 

  • Tapia-Baldis C Trombotto D (2020) Permafrost debris-model in Central Andes of Argentina (28°–33° S). Cuadern Invest Geogra. https://doi.org/10.18172/cig.3802

  • Taylor R, Scanlon B, Döll P, Rodell M, Van Beek R, Wada Y (2013) Groundwater and climate change. Nat Clim Chang 3(4):322–329. https://doi.org/10.1038/nclimate1744

    Article  Google Scholar 

  • Treidel H, Martin-Bordes L, Gurdak J (2012) Climate change effects on groundwater resources: a global synthesis of findings and recommendations. Taylor and Francis, London, 414 pp

    Google Scholar 

  • Trombotto D Lenzano M Castro M (2012) Inventory and monitoring of rock glaciers and cryogenic processes in the Central Andes of Mendoza, Argentina: birth and extinction of a periglacial lake. Proceedings of the Tenth International Conference on Permafrost, Salekhard, Russia, June 2012, 6 pp

  • Trombotto D, Sileo N, Dapeña C (2020) Periglacial water paths within a rock glacier-dominated catchment in the Stepanek area, Central Andes, Mendoza, Argentina. Permafr Periglac Process 31(2):311–323. https://doi.org/10.1002/ppp.2044

    Article  Google Scholar 

  • Valero C (1993a) Sistemas Hidrotermales. Parte V: Recursos Hidricos subterraneos y aguas termales [Hydrothermal Systems, part V: groundwater resources and thermal water]. In: XII Congreso Geologico Argentino y II Congreso de Exploracion de Hidrocarburos. Buenos Aires, Argentina. Relatorio Geol Recur Nat Mendoza V(1):593–596

  • Valero C (1993b) Cuenca Hidrogeologica de Mendoza Norte [North Mendoza hydrogeological Basin]. In: XII Congreso Geologico Argentino y II Congreso de Exploracion de Hidrocarburos. Buenos Aires, Argentina. Relatorio Geol Recur Nat Mendoza V(1):155–165

  • van der Gun J (2012) Groundwater and global change: trends, opportunities and challenges. UNESCO, United Nations World Water Assessment Programme, Perugia, Italy, 44 pp

  • Villalba R, Boningseña J (2009) Cambios climaticos regionales en el contexto del calentamiento global (IANIGLA) [Regional climate change in the context of global warming, vol 1]. CONICET Informe Ambiental, Secretaría de Ambiente, Gobierno de Mendoza, Argentina, 11–14 pp

  • Viviroli D, Dürr H, Messerli B, Meybeck M, Weingartner R (2007) Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resour Res 43:1–13. https://doi.org/10.1029/2006WR005653

    Article  Google Scholar 

  • Vogel J, Llerman W, Mook W (1972) Natural isotopes in the groundwater of the Tulum Valley, San Juan, Argentina. Hydrol Sci J 17(1):85–96. https://doi.org/10.1080/02626667209493805

    Article  Google Scholar 

  • Vogel J, Lerman J, Mook W (1975) Natural isotopes in surface and groundwater from Argentina. Hydrol Sci-Bull Sci Hydrol 20:2–6

    Google Scholar 

  • World Bank (2000) Argentina: water resources management—policy elements for sustainable development, 21st century, Argentina. World Bank, Washington, DC. http://documents.worldbank.org/curated/en/662731468768607886/Argentina-Gestion-de-los-recursos-hidricos-elementos-de-politica-para-su-desarrollo-sustentable-en-el-siglo-XXI-informe-principal. Accessed Feb 2022

  • Zazulie N, Rusticucci M, Raga G (2017) Regional climate of the subtropical Central Andes using high-resolution CMIP5 models-part I: past performance (1980–2005). Clim Dyn 49(11–12):3937–3957. https://doi.org/10.1007/s00382-017-3560-x

    Article  Google Scholar 

Download references

Acknowledgements

Our special thanks to Amilcar Alvarez, Matias Martinis, Jorge Bartolomeo, Maximo Velga, Aldo Mosuchi, Jose Zuluaga, Alejandro Drovandi, professionals of the INA-CRA-Mendoza for providing the data and studies used in this paper. We would like to thank the two anonymous, excellent and committed reviewers, for their thoughtful comments and efforts towards improving our manuscript. We acknowledge Claudia Bottero for English revision and Mariano Tagua for DEM construction. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Laura Gomez.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, M.L., Hoke, G., D’Ambrosio, S. et al. Review: Hydrogeology of Northern Mendoza (Argentina), from the Andes to the eastern plains, in the context of climate change. Hydrogeol J 30, 725–750 (2022). https://doi.org/10.1007/s10040-022-02462-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-022-02462-z

Keywords

Navigation