Skip to main content
Log in

Responses of photosynthetic rates to temperature in two conifers dominating at different elevations

  • Short Communication
  • Published:
Landscape and Ecological Engineering Aims and scope Submit manuscript

Abstract

The elevational changes in vegetation are related to the changes in environmental factors, such as temperature. Evergreen conifers Abies veitchii and A. mariesii dominate the subalpine zone between 1600 and 2000 m and between 2000 and 2500 m above sea level (a.s.l.), respectively, in central Japan. This study examined why their dominating elevations are separated by investigating the temperature–photosynthesis relationship at high and low elevations (1600 m and 2300 m a.s.l.). This study tested two hypotheses: (1) the optimal temperature (Topt) for the maximum photosynthetic rate (Pmax) is lower in individuals grown at high elevation than at low elevation, and A. mariesii has lower Topt than A. veitchii at each elevation; and (2) Pmax of individuals grown at low elevation is greater in A. veitchii than in A. mariesii, while that of individuals grown at high elevation is greater in A. mariesii than in A. veitchii. Saplings of the two conifers were sampled at high and low elevations. The photosynthetic rate was measured at the laboratory. Contrary to the hypotheses, both species had the same Topt at two elevations, and Pmax was greater in A. veitchii than in A. mariesii, irrespective of the elevation where the individuals grew. The elevational distribution of the two species could not be explained by the temperature–photosynthesis relationship. Therefore, factors other than the temperature–photosynthesis relationship are important to understand the elevational separation of the two species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Aizawa M, Kaji M (2003) The natural distribution patterns of subalpine conifers in central Japan. Bull Univ for, Fac Agric Univ Tokyo 110:27–70 (in Japanese)

    Google Scholar 

  • Badger MR, Björkman O, Armond A (1982) An analysis of photosynthetic response and adaptation to temperature in higher plants: temperature acclimation in desert evergreen Nerium Oleander L. Plant Cell Environ 5:85–99

    CAS  Google Scholar 

  • Berry J, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Ann Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Bonan GB, Sirois L (1992) Air temperature, tree growth, and the northern and southern range limits to Picea mariana. J Veg Sci 3:495–506

    Article  Google Scholar 

  • Cunningham S, Read J (2002) Comparison of temperate and tropical rainforest tree species: photosynthetic responses to growth temperature. Oecologia 133:112–119

    Article  CAS  PubMed  Google Scholar 

  • Dreyer E, Roux LX, Montpied P, Daudet AF, Masson F (2001) Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species. Tree Physiol 21:223–232

    Article  CAS  PubMed  Google Scholar 

  • Gavin DG, Hu FS (2006) Spatial variation of climatic and non-climatic controls on species distribution: the range limit of Tsuga heterophylla. J Biogeogr 33:1384–1396

    Article  Google Scholar 

  • Harayama H, Uemura A, Kitaoka S, Utsugi H, Ohno Y, Kita K (2012) Temperature and vapor pressure deficit dependence of photosynthetic rate in saplings of tree Larix spp. Boreal for Res 60:29–30 (in Japanese)

    Google Scholar 

  • Hikosaka K (2004) Interspecific difference in the photosynthesis-nitrogen relationship: patterns, physiological causes, and ecological importance. J Plant Res 117:481–494

    Article  PubMed  Google Scholar 

  • Hikosaka K, Murakami A, Hirose T (1999) Balancing carboxylation and regeneration of ribulose-1,5- bisphosphate in leaf photosynthesis: temperature acclimation of an evergreen tree Quercus Myrsinaefolia. Plant Cell Environ 22:841–849

    Article  CAS  Google Scholar 

  • Hikosaka K, Ishikawa K, Borjigidai A, Muller O, Onoda Y (2006) Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. J Exp Bot 57:291–302

    Article  CAS  PubMed  Google Scholar 

  • Holaday AS, Martindale W, Alred R, Brooks A, Leegood RC (1992) Changes in activities of enzymes in carbon metabolism in leaves during exposure to low temperature. Plant Physiol 75:561–565

    Google Scholar 

  • Horikawa Y (1972) Atlas of the Japanese flora. Gakken, Tokyo

    Google Scholar 

  • Hurry VM, Keerberg O, Parnik T, Gardestrom P, Oquist G (1995) Cold hardening results in increased activity of enzymes involved in carbon metabolism in leaves of winter rye (Secale cereale L.). Planta 195:554–562

    Article  CAS  Google Scholar 

  • Ishizuka W, Goto S (2012) Modeling intraspecific adaptation of Abies sachalinensis to local altitude and response to global warming, based on a 36-year reciprocal transplant experiment. Evol Appl 5:229–244

    Article  PubMed  Google Scholar 

  • Kaji M (1982) Studies on the ecological geography of subalpine conifers—distribution pattern of Abies mariesii in relation to the effect of climate in the postglacial warm period-. Bull Univ for Fac Agric Univ Tokyo 72:31–120 (in Japanese)

    Google Scholar 

  • Kajimoto T (1990) Photosynthesis and respiration of Pinus pumila needles in relation to needle age and season. Ecol Res 5:333–340

    Article  Google Scholar 

  • Kuroiwa S (1960) Ecological and physiological studies on the vegetation of Mt. Shimagare IV. Some physiological functions concerning matter production in young Abies trees. Bot Mag Tokyo 73:133–141

    Article  Google Scholar 

  • Martindale W, Leegood RC (1997) Acclimation of photosynthesis to low temperature in Spinacia oleracea L. I. Effects of acclimation on CO2 assimilation and carbon partitioning. J Exp Bot 48:1865–1872

    Article  CAS  Google Scholar 

  • Miyajima Y, Takahashi K (2007) Changes with altitude of the stand structure of temperate forests on Mount Norikura, central Japan. J for Res 12:187–192

    Article  Google Scholar 

  • Miyajima Y, Sato T, Takahashi K (2007) Altitudinal changes in vegetation of tree, herb and fern species on Mount Norikura, central Japan. Veg Sci 24:29–40

    Google Scholar 

  • Momose Y (1975) Traits of the genus Abies and snow damage. Ann Rep Gov For Kiso Exp Station 58‒63 (in Japanese)

  • Mori A, Takeda H (2004) Functional relationships between crown morphology and within-crown characteristics of understory saplings of three codominant conifers in a subalpine forest in central Japan. Tree Physiol 24:661–670

    Article  PubMed  Google Scholar 

  • Niinemets Ü, Kull O, Tenhunen JD (1999) Variability in leaf morphology and chemical composition as a function of canopy light environment in coexisting deciduous trees. Int J Plant Sci 160:837–848

    Article  CAS  PubMed  Google Scholar 

  • Niu S, Li Z, Xia J, Han Y, Wu M, Wan S (2008) Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China. Env Exp Bot 63:91–101

    Article  Google Scholar 

  • O’Neil RV, Goldstein RA, Shugart HH, Mankin JB (1972) Terrestrial ecosystem energy model. US International Biology Program, Eastern Deciduous Forest Biome Memo Report, pp 72‒19

  • Ohdo T, Takahashi K (2020) Plant species richness and community assembly along gradients of elevation and soil nitrogen availability. AoB Plants 12:plaa014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohsawa M (1991) Structural comparison of tropical montane rain forests along latitudinal and altitudinal gradients in south and east Asia. Plant Ecol 97:1–10

    Article  Google Scholar 

  • Pisek A, Larcher W, Moser W, Pack I (1969) Kardinale Temperaturbereiche der Photosynthese und Grenztemperaturen des Lebens der Blätter verschiedener Spermatophyten. III. Temperaturabhängigkeit und optimaler Temperaturbereich der Netto-Photosynthese. Flora Abt B 158:S608-630

    Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Reich PB, Walters MB, Ellsworth D (1992) Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol Monogr 62:365–392

    Article  Google Scholar 

  • Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086–1106

    Article  CAS  PubMed  Google Scholar 

  • Sakai A, Kurahashi A (1975) Freezing resistance of conifers in Japan with special reference to their distributions. Jpn J Ecol 25:192–200 (in Japanese)

    Google Scholar 

  • Sendall KM, Reich PB, Zhao C, Jihua H, Wei X, Stefanski A, Rice K, Rich RL, Montgomery RA (2015) Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming. Glob Change Biol 21:1342–1357

    Article  Google Scholar 

  • Shimada R, Takahashi K (2022) Diurnal and seasonal variations in photosynthetic rates of dwarf pine Pinus pumila at the treeline in central Japan. Arc Antarc Alp Res 54:1–12

    Article  Google Scholar 

  • Slatyer RO (1977) Altitudinal variation in the photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb. ex Spreng. IV. Temperature response of four populations grown at different temperatures. Aust J Plant Physiol 4:583–594

    CAS  Google Scholar 

  • Slot M, Winter K (2017) Photosynthetic acclimation to warming in tropical forest tree seedlings. J Exp Bot 68:2275–2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparks JP, Ehleringer JR (1997) Leaf carbon isotope discrimination and nitrogen content for riparian trees along elevational transects. Oecologia 109:362–367

    Article  CAS  PubMed  Google Scholar 

  • Stitt M, Hurry V (2002) A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr Opin Plant Biol 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Strand A, Hurry V, Gustafsson P, Gardestrom P (1999) Acclimation of Aradidopsis leaves developing at low temperatures. Increasing cytoplasmic volume accompanies increased activities of enzymes in the Calvin cycle and in the sucrose biosynthesis pathway. Plant Physiol 119:1387–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki R, Takahashi K (2020) Effects of leaf age, elevation and light conditions on photosynthesis and leaf traits in saplings of two evergreen conifers, Abies veitchii and A. mariesii. J Plant Ecol 13:460–469

    Article  Google Scholar 

  • Takahashi K (2021) Productivity does not decrease at the climate extremes of tree ranges in the Japanese archipelago. Oecologia 197:259–269

    Article  PubMed  Google Scholar 

  • Takahashi K, Koike S (2014) Altitudinal differences in bud burst and onset and cessation of cambial activity of four subalpine tree species. Landsc Ecol Eng 10:349–354

    Article  Google Scholar 

  • Takahashi K, Miyajima Y (2008) Relationships between leaf life span, leaf mass per area, and leaf nitrogen cause different altitudinal changes in leaf δ13C between deciduous and evergreen species. Botany 86:1233–1241

    Article  CAS  Google Scholar 

  • Takahashi K, Obata Y (2014) Growth, allometry and shade tolerance of understory saplings of four subalpine conifers in central Japan. J Plant Res 127:329–338

    Article  PubMed  Google Scholar 

  • Takahashi K, Hirosawa T, Morishima R (2012) How the timberline formed: altitudinal changes in stand structure and dynamics around the timberline in central Japan. Ann Bot 109:1165–1174

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Otsubo S, Kobayashi H (2018) Comparison of photosynthetic traits of codominant subalpine conifers Abies veitchii and A. mariessi in central Japan. Landsc Ecol Eng 14:91–97

    Article  Google Scholar 

  • Takahashi K, Ikeda K, Okuhara I, Kurasawa R, Kobayashi S (2022) Competition and disturbance affect elevational distribution of two congeneric conifers. Ecol Evol (in press)

  • Terashima I, Funayama S, Konoike K (1994) The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not photosystem II. Planta 193:300–306

    Article  CAS  Google Scholar 

  • Wieser G, Oberhuber W, Walder L, Spieler D, Gruber A (2010) Photosynthetic temperature adaptation of Pinus cembra within the timberline ecotone of the Central Austrian Alps. Ann for Sci 67:201–201

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamori W, Noguchi K, Hanba TY, Terashima I (2006) Effects of internal conductance on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant Cell Physiol 47:1069–1080

    Article  CAS  PubMed  Google Scholar 

  • Zaka S, Frak E, Julier B, Gastal F, Louarn G (2016) Intraspecific variation in thermal acclimation of photosynthesis across a range of temperatures in a perennial crop. AoB Plants 8:plw035

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the Japan Society for the Promotion of Science (21K06331).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Takahashi.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 222 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, R., Takahashi, K. Responses of photosynthetic rates to temperature in two conifers dominating at different elevations. Landscape Ecol Eng 18, 389–395 (2022). https://doi.org/10.1007/s11355-022-00500-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11355-022-00500-2

Keywords

Navigation