Skip to main content
Log in

Estimating the Statistics of Non-Uniform and Time-Varying Distributed Parameter Fluctuations in a Transmission Line

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

The problem of estimating the statistics of the distributed parameters of a transmission line which are random functions of time and spatial location is addressed in this paper. The main idea is to transform the spatial–temporal PDE (partial differential equation) problem into a purely temporal problem using spatial test functions and then apply first-order perturbation theory to express the random components of the line voltage and current as linear functional of the random distributed parameters. We then evaluate the line voltage and current statistical correlations in terms of the distributed parameters correlations. Simulation studies are carried out for variance estimation of the resistance per unit length, and appropriate results are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. C. R. Paul, Analysis of multiconductor transmission lines., Wiley, New York, NY, USA (1994).

    Google Scholar 

  2. H. Parthasarathy, Antennas and Wave Propagation., Ane books Pvt. Ltd., Delhi, INDIA (2015).

  3. L. A. Hayden and V. K. Tripathi, Nonuniform coupled microstrip transversal filters for analog signal processing, IEEE Trans. Microw. Theory Tech.,39 (1991) 47–53.

    Article  Google Scholar 

  4. P. Salem, C. Wu and M. Yagoub, Non-uniform tapered ultra wideband directional coupler design and modern ultra wideband balun integration, Asia Pacific Microw. Conf., Yokohama, Japan, (2006) 891–894.

  5. T. Dhaene, L. Martens and D. De Zutter, Transient simulation of arbitrary nonuniform interconnection structures characterized by scattering parameters, IEEE Circuits Syst. Mag., 39 (1992) 928–937.

    Article  Google Scholar 

  6. Y.W. Hsu and E. F. Kuester, Direct synthesis of passband impedance matching with nonuniform transmission lines, IEEE Trans. Microw.Theory Tech., 58 (2010) 1012–1021.

    Article  ADS  Google Scholar 

  7. P. Rulikowski and J. Barrett, Application of nonuniform transmission lines to ultra wideband pulse shaping, IEEE Microw. Wireless Compon.Lett., 19 (2009) 795–797.

    Article  Google Scholar 

  8. H. Haase, T. Steinmetz and J. Nitsch, New propagation models for electromagnetic waves along uniform and nonuniform cables, IEEE Trans.Electromagn. Compat., 46 (2004) 345–352.

    Article  Google Scholar 

  9. M. Khalaj-Amirhosseini, Analysis of coupled nonuniform transmission lines using Taylor's series expansion, IEEE Trans. Electromagn. Compat., 48, (2006) 594–600.

    Article  Google Scholar 

  10. M. Tang and J. Mao, A precise time-step integration method for transient analysis of lossy nonuniform transmission lines, IEEE Trans. Electromagn.Compat., 50 (2008) 166–174.

    Article  Google Scholar 

  11. G. Antonini, Spectral models of lossy and dispersive non-uniform transmission lines, IEEE Trans. Electromagn. Compat., 54 (2012) 474–481.

    Article  Google Scholar 

  12. K. Afrooz and A. Abdipour, Efficient method for time-domain analysis of lossy nonuniform multiconductor transmission line driven by a modulated signal using FDTD technique, IEEE Trans. Electromagn. Compat., 54 (2011) 482–494.

    Article  Google Scholar 

  13. R.N. Ghose, Exponential transmission lines as resonators and trans-formers, IRE Trans. Microw. Theory and Tech. 5 (1957) 213–217.

    Article  Google Scholar 

  14. R.E.Collin, Foundations for microwave engineering., John Wiley and Sons Inc., New York,USA (1996).

    Google Scholar 

  15. H. G. Brachtendorf and R.Laur, Simulation of skin effects and hysteresis phenomena in the time domain, IEEE Trans. On Magnetics 37 (2001) 3781–3789.

    Article  ADS  Google Scholar 

  16. M. Khalaj-Amirhosseini, Analysis of coupled or single nonuniform transmission lines using Taylor's series expansion, Progress In Electromagnetics Research, PIER 60 (2006) 107–117.

    Article  Google Scholar 

  17. A.Cheldavi, M.Kamarei and S. Safavi Naeini, Analysis of coupled transmission lines with power-law characteristic impedance, IEEE Trans. Electromagn. Compat. 42 (2000) 308–312.

  18. A. Cheldavi, Exact analysis of coupled nonuniform transmission lines with exponential power law characteristic impedance, IEEE Trans. Micro. Theory. and Tech. 49 (2001) 197–199.

    Article  ADS  Google Scholar 

  19. A.Cheldavi, Analysis of coupled Hermite transmission lines. IEE Proc. Micro. Anten. and Prop. 150 (2003) 279–284.

    Article  Google Scholar 

  20. K. A. Shamaileh and N.Dib, Design of compact dual-frequency Wilkinson power divider using non-uniform transmission lines, Prog. Electromagn. Res. C 19 (2011) 37–46.

    Article  Google Scholar 

  21. K. Shamaileh, M. Almalkawi, V. Devabhaktuni, N. Dib, B. Henin and A. Abbosh, Non-uniform transmission line ultra-wideband wilkinson power divider, Prog. Electromagn. Res. C 44 (2013) 1–11.

  22. M. Chernobryvko, D. Vande Ginste and D. De Zutter, A two-step perturbation technique for nonuniform single and differential lines, IEEE Trans. Microw. Theory Techn., 61 (2013) 1758–1767.

  23. M. Chernobryvko, D. De Zutter and D. Vande Ginste, Nonuniform multiconductor transmission line analysis by a two-step perturbation technique, IEEE Trans. Compon. Packag. Manuf. Techol., 4 (2014) 1838–1846.

  24. H. Yan, L. Yan, X. Zhao, H. Zhou and K. Huang, Analysis of electromagnetic field coupling to microstrip line connected with nonlinear components, Prog. Electromagn. Res. B. 51 (2013) 291–306.

  25. M.Khalaj-Amirhosseini, Analysis of periodic and aperiodic coupled nonuniform transmission lines using the Fourier series expansion, Prog. Electromagn. Res. B, PIER 65 (2006) 15–26.

    Article  Google Scholar 

  26. M. Khalaj-Amirhosseini, A closed form analytic solution for coupled nonuniform transmission lines, Prog. Electromagn. Res. C 1 (2008) 95–103.

    Article  Google Scholar 

  27. A. Amharech and H. Kabbaj, Wideband impedance matching in transient regime of active circuit using lossy nonuniform multiconductor transmission lines, Prog. Electromagn. Res. C 28 (2012) 27–45.

    Article  Google Scholar 

  28. M. Chernobryvko, Daniel De Zutter and Dries Vande Ginste, Nonuniform multiconductor transmission line analysis by a two-step perturbation technique, IEEE Trans. Compon. Packag. Manuf. Techol. 4 (2014) 1838–1846.

    Article  Google Scholar 

  29. L. Kumar, V.S. Pandey, H. Parthasarathy, V. Shrimali and G. Varshney, Effect of non-linear capacitance on a non-uniform transmission line, Eur. Phys. J. Plus 131 (2016) 1–17.

  30. P. Manfredi, Daniel De Zutter and Dries Vande Ginste, Analysis of nonuniform transmission lines with an iterative and adaptive perturbation technique, IEEE Trans. Electromagn. Compat. 58 (2016) 859–867.

    Article  Google Scholar 

  31. P. Rachakonda, V. Ramnath and V.S. Pandey, Uncertainty evaluation by Monte Carlo Method, MAPAN 34 (2019) 295–298.

    Article  Google Scholar 

  32. L. Kumar, V.S. Pandey, H. Parthasarathy and V. Shrimali, Hysteresis Effects on a Non-uniform Transmission Line with Induced Quantum Mechanical Atomic Transitions, J. Supercond. Novel Magn. 31 (2017) 1587–1605.

  33. M. Farahani and S.M.A Nezhad, A novel UWB printed monopole MIMO antenna with non-uniform transmission line using nonlinear model predictive, Engineering Science and Technology, Int. J. 23 (2020) 1385–1396.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix-1

Appendix-1

We could, in principle, carry out a simulation along the same line when all the distributed parameters have just a single mode fluctuation, i.e.,

$$\begin{aligned} \delta R\left( t,z\right)&=\delta R\left( t\right) \varphi _1 \left( z\right) \end{aligned}$$
(56)
$$\begin{aligned} \delta L\left( t,z\right)&=\delta L\left( t\right) \varphi _1 \left( z\right) \end{aligned}$$
(57)
$$\begin{aligned} \delta G\left( t,z\right)&=\delta G\left( t\right) \varphi _1 \left( z\right) \end{aligned}$$
(58)
$$\begin{aligned} \delta C\left( t,z\right)&=\delta C\left( t\right) \varphi _1 \left( z\right) \end{aligned}$$
(59)

The line equations become

$$\begin{aligned} \frac{-\partial i\left( t,z\right) }{\partial z}&= \left( G_0+\delta G\left( t,z\right) \right) \upsilon \left( t,z\right) \nonumber \\&\quad +C_0\frac{\partial \upsilon \left( t,z\right) }{\partial t}+\frac{\partial \left( \delta C\left( t,z\right) \upsilon \left( t,z\right) \right) }{\partial t} \end{aligned}$$
(60)
$$\begin{aligned} \frac{-\partial \upsilon \left( t,z\right) }{\partial z}&= \left( R_0+\delta R\left( t,z\right) \right) i \left( t,z\right) \nonumber \\&\quad +L_0\frac{\partial i\left( t,z\right) }{\partial t}+\frac{\partial \left( \delta L\left( t,z\right) i\left( t,z\right) \right) }{\partial t} \end{aligned}$$
(61)

and the first-order perturbed equation is

$$\begin{aligned} \frac{-\partial \delta i\left( t,z\right) }{\partial z}= G_0\delta \upsilon \left( t,z\right) \nonumber \\&\quad +\delta G\left( t\right) \varphi _1\left( z\right) \upsilon ^{\left( 0\right) }\left( t,z\right) \nonumber \\&\quad +C_0\frac{\partial \delta \upsilon \left( t,z\right) }{\partial t}+\frac{\partial \left( \delta C\left( t\right) \upsilon ^{\left( 0\right) }\left( t,z\right) \right) }{\partial t}\varphi _1\left( z\right) \end{aligned}$$
(62)
$$\begin{aligned} \frac{-\partial \delta \upsilon \left( t,z\right) }{\partial z}&= R_0\delta i\left( t,z\right) +L_0 \frac{ \partial \delta i\left( t,z\right) }{ \partial t} \nonumber \\&\quad +\delta R\left( t\right) i^{\left( 0\right) }\left( t,z\right) \varphi _1\left( z\right) \nonumber \\&\quad +\frac{\partial \left( \delta L\left( t\right) i^{\left( 0\right) }\left( t,z\right) \right) }{\partial t}\varphi _1\left( z\right) \end{aligned}$$
(63)

or in terms of test function expansion, we have

$$\begin{aligned} -\sum _n \delta i_n \left( t\right) \varphi _n^{'}\left( z\right)&=G_0\sum _n \delta \upsilon _n \left( t\right) \varphi _n\left( z\right) \nonumber \\&\quad +\delta G\left( t\right) \sum _n \varphi _1\left( z\right) \varphi _n\left( z\right) \upsilon _n^ {\left( 0\right) }\left( t\right) \nonumber \\&\quad +C_0\sum _n \delta \upsilon _n^{'} \left( t\right) \varphi _n\left( z\right) \nonumber \\&\quad +\sum _n \left( \delta C\left( t\right) \upsilon _n^{\left( 0\right) }\left( t\right) \right) ^{'}\varphi _1\left( z\right) \varphi _n\left( z\right) \end{aligned}$$
(64)
$$\begin{aligned} -\sum _n \delta \upsilon _n \left( t\right) \varphi _n^{'}\left( z\right)&=R_0\sum _n \delta i_n \left( t\right) \varphi _n\left( z\right) \nonumber \\&\quad +L_0\sum _n \delta i_n^{'}\left( t\right) \varphi _n\left( z\right) \nonumber \\&\quad +\delta R\left( t\right) \sum _n \varphi _1\left( z\right) \varphi _n\left( z\right) i_n^ {\left( 0\right) }\left( t\right) \nonumber \\&\quad +\sum _n \left( \delta L\left( t\right) i_n^{\left( 0\right) }\left( t\right) \right) ^{'}\varphi _1\left( z\right) \varphi _n\left( z\right) \end{aligned}$$
(65)

Taking the inner product with \(\varphi _m\left( z\right)\) and using the definitions \(a\left( m,n\right) = \langle \varphi _n^{'}\varphi _m\rangle ,\langle \varphi _n\varphi _m\rangle =\delta \left[ n-m\right]\) and \(b\left( m,n\right) = \langle \varphi _1\varphi _n\varphi _m\rangle\), we get

$$\begin{aligned}&\sum _n a\left( m,n\right) \delta i_n \left( t\right) +G_0\delta \upsilon _m \left( t\right) \nonumber \\&\quad + \delta G\left( t\right) \sum _n b\left( m,n\right) \upsilon _n^ {\left( 0\right) }\left( t\right) \nonumber \\&\quad +C_0\delta \upsilon _m^{'}\left( t\right) +\sum _n b\left( m,n\right) \left( \delta C\left( t\right) \upsilon _n^{\left( 0\right) }\left( t\right) \right) ^{'}=0 \end{aligned}$$
(66)

Similarly,

$$\begin{aligned}&\sum _n a\left( m,n\right) \delta \upsilon _n \left( t\right) +R_0\delta i_m \left( t\right) \nonumber \\&\quad + \delta R\left( t\right) \sum _n b\left( m,n\right) i_n^ {\left( 0\right) }\left( t\right) \nonumber \\&\quad +L_0\delta i_m^{'}\left( t\right) +\sum _n b\left( m,n\right) \left( \delta L\left( t\right) i_n^{\left( 0\right) }\left( t\right) \right) ^{'}=0 \end{aligned}$$
(67)

We assume that \(\delta R \left( t\right) ,\delta L\left( t\right) ,\delta G\left( t\right)\) and \(\delta C\left( t\right)\) have just two frequencies \(\omega _1\) and \(\omega _2\) of variation. Such a situation can, for example, occur when there are periodic environmental disturbances acting on the line. Thus, we can write

$$\begin{aligned} \delta R\left( t\right)&=\delta R_1\sin \left( \omega _1t\right) +\delta R_2\sin \left( \omega _2t\right) \end{aligned}$$
(68)
$$\begin{aligned} \delta L\left( t\right)&=\delta L_1\sin \left( \omega _1t\right) +\delta L_2\sin \left( \omega _2t\right) \end{aligned}$$
(69)
$$\begin{aligned} \delta G\left( t\right)&=\delta G_1\sin \left( \omega _1t\right) +\delta G_2\sin \left( \omega _2t\right) \end{aligned}$$
(70)
$$\begin{aligned} \delta C\left( t\right)&=\delta C_1\sin \left( \omega _1t\right) +\delta C_2\sin \left( \omega _2t\right) \end{aligned}$$
(71)

Thus, Eqs. \(\left( 66\right)\) and \(\left( 67\right)\) assume the form

$$\begin{aligned}&\sum _n a\left( m,n\right) \delta i_n \left( t\right) \nonumber \\&\quad +G_0\delta \upsilon _m \left( t\right) \nonumber \\&\quad + \delta G_1 \psi _{G_1}\left( m,t\right) \nonumber \\&\quad +\delta G_2 \psi _{G_2}\left( m,t\right) \nonumber \\&\quad +C_0\delta \upsilon _m^{'}\left( t\right) \nonumber \\&\quad +\delta C_1 \psi _{C_1}\left( m,t\right) \nonumber \\&\quad +\delta C_2 \psi _{C_2}\left( m,t\right) =0 \end{aligned}$$
(72)
$$\begin{aligned}&\sum _n a\left( m,n\right) \delta \upsilon _n \left( t\right) \nonumber \\&\quad +R_0\delta i_m \left( t\right) \nonumber \\&\quad + \delta R_1 \psi _{R_1}\left( m,t\right) \nonumber \\&\quad +\delta R_2 \psi _{R_2}\left( m,t\right) \nonumber \\&\quad +L_0\delta i_m^{'}\left( t\right) \nonumber \\&\quad +\delta L_1 \psi _{L_1}\left( m,t\right) \nonumber \\&\quad +\delta L_2 \psi _{L_2}\left( m,t\right) =0 \end{aligned}$$
(73)

with,

$$\begin{aligned} \psi _{G_k}\left( m,t\right)&=\sum _n b\left( m,n\right) \upsilon _n^{\left( 0\right) }\left( t\right) \sin \left( \omega _k t\right) ; {k=1,2} \end{aligned}$$
(74)
$$\begin{aligned} \psi _{C_k}\left( m,t\right)&=\sum _n b\left( m,n\right) \left( \upsilon _n^{\left( 0\right) }\left( t\right) \sin \left( \omega _k t\right) \right) ^{'}; {k=1,2} \end{aligned}$$
(75)
$$\begin{aligned} \psi _{R_k}\left( m,t\right)&=\sum _n b\left( m,n\right) i_n^{\left( 0\right) }\left( t\right) \sin \left( \omega _k t\right) ; {k=1,2} \end{aligned}$$
(76)
$$\begin{aligned} \psi _{L_k}\left( m,t\right)&=\sum _n b\left( m,n\right) \left( i_n^{\left( 0\right) }\left( t\right) \sin \left( \omega _k t\right) \right) ^{'}; {k=1,2} \end{aligned}$$
(77)

These equations are of the form

$$\begin{aligned} \frac{d}{{dt}}\left[ \begin{array}{l} \delta \underline{i} \left( t \right) \\ \delta \underline{\upsilon }\left( t \right) \end{array} \right] = - \underline{\underline{K}} \left[ \begin{array}{l} \delta \underline{i} \left( t \right) \\ \delta \underline{\upsilon }\left( t \right) \end{array} \right] + \underline{\underline{\psi }} \left( t \right) \left[ \begin{array}{l} \delta {R_1}\\ \delta {R_2}\\ \delta {L_1}\\ \delta {L_2}\\ \delta {C_1}\\ \delta {C_2}\\ \delta {G_1}\\ \delta {G_2} \end{array} \right] \end{aligned}$$
(78)

writing, \(\underline{\theta }= \left[ \begin{array}{l} \delta {R_1}\\ \delta {R_2}\\ \delta {L_1}\\ \delta {L_2}\\ \delta {C_1}\\ \delta {C_2}\\ \delta {G_1}\\ \delta {G_2} \end{array} \right] \in \mathbb {R}^8\) and \(\underline{\xi }\left( t \right) = \left[ \begin{array}{l} \delta \underline{i} \left( t \right) \\ \delta \underline{\upsilon }\left( t \right) \end{array} \right]\)

We can express eq.\(\left( 78 \right)\) as:

$$\begin{aligned} \frac{d}{{dt}}\underline{\xi }\left( t \right)&= - \underline{\underline{K}}~ \underline{\xi }\left( t \right) \nonumber \\&\quad + \underline{\underline{\psi }} \left( t \right) \underline{\theta }\end{aligned}$$
(79)

so,

$$\begin{aligned} \underline{\xi }\left( t \right)&= \left( {\int \limits _0^t {\underline{\underline{\Phi }} \left( {t - \tau } \right) \underline{\underline{\psi }} \left( \tau \right) d\tau } } \right) \nonumber \\&\quad \underline{\theta }\buildrel \Delta \over = \underline{\underline{Q}} \left( t \right) \underline{\theta }\end{aligned}$$
(80)

where \(\underline{\underline{\Phi }} \left( {t} \right) =\exp \left( -t\underline{\underline{K} }\right)\). So

$$\begin{aligned} {\underline{\underline{R}} _{\xi \xi }}\left( t \right)&= \mathbb {E}\left( {\underline{\xi }\left( t \right) . \underline{\xi }{{\left( t \right) }^T}} \right) \nonumber \\&\quad = \underline{\underline{Q} } \left( t \right) \mathbb {E}\left( {\underline{\theta }\,\,{{\underline{\theta }}^T}} \right) \underline{\underline{Q} } {\left( t \right) ^T} \nonumber \\&\quad = \underline{\underline{Q} } \left( t \right) {\underline{\underline{R}} _{\theta \theta }}\underline{\underline{Q} } {\left( t \right) ^T} \end{aligned}$$
(81)

or

$$\begin{aligned} {\left[ {{R_{\xi \xi }}\left( t \right) } \right] _{\alpha \beta }} = \sum \limits _{\gamma \rho = 1}^\infty {{{\left[ {{{\underline{\underline{R}} }_{\theta \theta }}} \right] }_{\gamma \rho }}{Q_{\alpha \gamma }}\left( t \right) } \,\,{Q_{\beta \rho }}\left( t \right) \end{aligned}$$
(82)

writing, eq.\(\left( 82 \right)\) as:

$$\begin{aligned} {\underline{\underline{R}} _{\xi \xi }}\left( t \right) = \underline{\underline{Q}} \left( t \right) \,{\underline{\underline{R}} _{\theta \theta }}\underline{\underline{Q}} {\left( t \right) ^T} \end{aligned}$$
(83)

or equivalently as

$$\begin{aligned} Vec\left( {{{\underline{\underline{R}} }_{\xi \xi }}\left( t \right) } \right) = \left( {\underline{\underline{Q}} \left( t \right) \otimes \underline{\underline{Q}} \left( t \right) . Vec\left( {{{\underline{\underline{R}} }_{\theta \theta }}} \right) } \right) \end{aligned}$$
(84)

We can estimate \({{{\underline{\underline{R}} }_{\theta \theta }}}\) as:

$$\begin{aligned}&Vec\left( {{{\widehat{R}}_{\theta \theta }}} \right) \nonumber \\&\quad = {{\mathrm{argmin}} _{\underline{\eta }}}\,{\sum \limits _t {\left\| {Vec\left( {{{\widehat{R }}_{\xi \xi }}\left( t \right) } \right) - \left( {\underline{\underline{Q}} \left( t \right) \otimes \underline{\underline{Q}} \left( t \right) } \right) \underline{\eta }} \right\| } ^2} \nonumber \\&\quad = {\left[ {\sum \limits _t {\left( {\underline{\underline{Q}} {{\left( t \right) }^T} \otimes \underline{\underline{Q}} {{\left( t \right) }^T}} \right) \left( {\underline{\underline{Q}} \left( t \right) \otimes \underline{\underline{Q}} \left( t \right) } \right) } } \right] ^{ - 1}} \nonumber \\&\qquad \left[ {\sum \limits _t {\left( {\underline{\underline{Q}} {{\left( t \right) }^T} \otimes \underline{\underline{Q}} {{\left( t \right) }^T}} \right) } \,. Vec\left( {{{\underline{\underline{R}} }_{\xi \xi }}\left( t \right) } \right) } \right] \end{aligned}$$
(85)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, L., Pandey, V.S., Parthasarathy, H. et al. Estimating the Statistics of Non-Uniform and Time-Varying Distributed Parameter Fluctuations in a Transmission Line. MAPAN 37, 367–377 (2022). https://doi.org/10.1007/s12647-022-00540-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-022-00540-x

Keywords

Navigation