Skip to main content
Log in

Differential responses of pear cultivars to Erwinia amylovora infection; evidences of involvement the hypersensitivity response in pear resistance to fire blight

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Fire blight, a disease caused by the bacterium Erwinia amylovora, is a serious threat for pear production worldwide. In order to shed light on the mechanisms underlying fire blight resistance, a comparable study was conducted using ‘Dargazi’ and ‘Duchess’, two pear cultivars displaying contrasting responses to fire blight. The activity of ascorbate peroxidase (APX), catalase (CAT), and guaiacol peroxidase (POD) as well as phenylalanine ammonia-lyase (PAL), the enzyme associated with phenolic metabolism, and the relevant biochemical compounds including total phenol and flavonoid contents were compared in two cultivars in response to E. amylovora. All biochemical parameters were affected by pathogen attack. However, the enzymatic responses of resistant and susceptible pear cultivars were completely different following E. amylovora infection. In ‘Dargazi’ the activity of CAT and APX were significantly suppressed in response to the pathogen attack during the early days after bacterial inoculation, while they were significantly activated in 'Duchess' at the same stages. The POD showed a different pattern of activity from two other antioxidant enzymes. Pathogen attack induced the phenylpropanoid metabolism and caused an increase in PAL activity as well as total phenol and flavonoid content in the two pear cultivars, but a significantly higher rise was recorded in 'Dargazi' than in 'Duchess'. Our data strongly suggest that the hypersensitivity response (HR) may contribute to the high resistance of 'Dargazi' to E. amylovora. Results of present study provide valuable information about the mechanisms underlying the fire blight resistance in 'Dargazi' cultivar which would be highly beneficial for engineering fire blight resistance Pyrus cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The authors declare that after acceptance, summary of data on which the conclusions of the paper rely will be deposited in the public repositories to be freely available to any researcher.

References

  • Ahmad, P., Abdul Jaleel, C., Salem, M. A., Nabi, G., & Sharma, S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 30(3), 161–175.

    Article  CAS  Google Scholar 

  • Al Hassan, M., Pacurar, A., López-Gresa, M. P., Donat-Torres, M. P., Llinares, J. V., Boscaiu, M., & Vicente, O. (2016). Effects of salt stress on three ecologically distinct Plantago Species. PLoS ONE, 11(8), e0160236. https://doi.org/10.1371/journal.pone.0160236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Dahmashi, M. S., & Khlaif, H. (2004). Fire blight of pome fruits in Jordan: Disease development and response of different fruit cultivars to the disease. Scientia Horticulturae, 101, 81–93.

    Article  Google Scholar 

  • Azemi-Ardakani, M., Dehestani-Ardakani, M., Zarei, A., & Soltani-Gerdfaramarzi, S. (2020). Influence of different soil amendments on drought stress tolerance of Maclura pomifera. Plant Physiology Reports. https://doi.org/10.1007/s40502-020-00524-6

    Article  Google Scholar 

  • Balint-Kurti, P. (2019). The plant hypersensitive response: Concepts, control and consequences. Molecular Plant Pathology, 20(8), 1163–1178. https://doi.org/10.1111/mpp.12821

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell, A. C., Ranney, T. G., Danehower, D. A., & Eaker, T. A. (2003). Levels of endogenous phenolics in Malus Taxa and their possible role in resistance to fire blight. Sna Research Conference, 48, 221–225.

    Google Scholar 

  • Bell, A. C., Ranney, T. G., Eaker, T. A., & Sutton, T. B. (2004). Resistance to fire blight among flowering pears and quince. Horticulture Science, 40, 413–415.

    Google Scholar 

  • Bellin, D., Asai, S., Delledonne, M., & Yoshioka, H. (2013). Nitric oxide as a mediator for defense responses. Molecular Plant-Microbe Interactions, 26, 271–277.

  • Berner, M., Krug, D., Bihlmaier, C., Vente, A., Müller, R., & Bechthold, A. (2006). Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrix espanaensis. Journal of Bacteriology, 188(7), 2666–2673.

  • Bhattacharya, A., Sood, P., & Citovsky, V. (2010). The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Molecular Plant Pathology, 11(5), 705–719.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boller, T., & He, S. Y. (2009). Innate immunity in plants: An arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science, 324, 742–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonhoff, A., Rieth, B., Golecki, J., & Grisebach, H. (1987). Race cultivar-specific differences in callose deposition in soybean roots following infection with Phytophthora megaperma f. sp. glycinea. Planta, 172, 101–105.

    Article  CAS  PubMed  Google Scholar 

  • Bozso, Z., Ott, P. G., Szamari, A., Zelleng, A. C., Varga, G., & Besenyei, E. (2005). Early detection of Bacterium–induced basal resistance in Tobacco leaves with diaminobenzidine and dichlorofluorescein diacetate. Phytopathology, 153, 596–607.

    Article  CAS  Google Scholar 

  • Carter, C., Healy, R., O’Tool, N. M., Naqvi, S. M. S., Ren, G., Park, S., Beattie, G. A., Horner, H. T., & Thornburg, R. W. (2007). Tobacco nectarines express a novel NADPH implicated in the defense of floral reproductive tissues against microorganisms. Plant Physiology, 143, 389–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cesarino, I. (2019). Structural features and regulation of lignin deposited upon biotic and abiotic stresses. Current Opinion in Biotechnology, 56, 209–214.

    Article  CAS  PubMed  Google Scholar 

  • Conrath, U., Chen, Z. X., Ricigliano, J. R., & Klessig, D. F. (1995). Two inducers of plant defense responses, 2,6-dichloroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco. Proceedings of the National Academy of Science of the United States of America, 92, 7143–7147.

    Article  CAS  Google Scholar 

  • De Gara, L., de Pinto, M. C., & Tommasi, F. (2003). The antioxidant systems vis-à-vis reactive oxygen species during plant–pathogen interaction. Plant Physiology and Biochemistry, 41, 863–870.

    Article  Google Scholar 

  • Doke, N. (1997). The oxidative burst: Roles in signal transduction and plant stress. In J. G. Scandalios (Ed.), Oxidative stress and the molecular biology of antioxidant defenses (pp. 785–813). Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Duan, Z., Li, D., Chen, Y., & Sun, R. (2011). The influence of temperature, pressure, salinity and capillary force on the formation of methane hydrate. Geoscience Frontiers, 2(2), 125–135.

    Article  CAS  Google Scholar 

  • Durner, J., & Klessig, D. F. (1995). Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proceedings of the National Academy of Science of the United States of America, 92, 11312–11316.

    Article  CAS  Google Scholar 

  • Erfani-Moghadam, J., & Zarei, A. (2018). Evaluation of different pear species (Pyrus spp.) using apple-derived SSR and evidence of duplications in the pear genome. Biotechnology and Biotechnological Equipment, 32(3), 591–601. https://doi.org/10.1007/s13580-018-0019-x

    Article  CAS  Google Scholar 

  • Faghih, S., Ghobadi, C., & Zarei, A. (2017). Response of strawberry plant cv. ‘Camarosa’ to salicylic acid and methyl jasmonate application under salt stress condition. Plant Growth Regulations, 36(3), 651–659. https://doi.org/10.1007/s00344-017-9666-x

    Article  CAS  Google Scholar 

  • Faghih, S., Zarei, A., & Ghobadi, C. (2019). Positive effects of plant growth regulators on physiology responses of Fragaria × ananassa cv. ‘Camarosa’ under salt stress. International Journal of Fruit Science, 19(1), 104–114. https://doi.org/10.1080/15538362.2018.1462291.

  • Falcone Ferreyra, M., Rius, S. P., & Casati, P. (2012). Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Frontier in Plant Science. https://doi.org/10.3389/fpls.2012.00222

    Article  Google Scholar 

  • Foster-Hartnett, D., Danesh, D., Peñuela, S., Sharopova, N., Endre, G., Vandenbosch, K. A., Young, N. D., & Samac, D. A. (2007). Molecular and cytological responses of Medicago truncatula to Erysiphe pisi. Molecular Plant Pathology, 8, 307–319.

    Article  CAS  PubMed  Google Scholar 

  • Friedman, M. (2007). Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Molecular Nutrition & Food Research, 51(1), 116–134.

    Article  CAS  Google Scholar 

  • Gaganidze, D. L., Aznarashvili, M. A., Sadunishvili, T. A., Abashidze, E. O., Gureilidze, M. A., & Gvritishvili, E. S. (2018). Fire blight in Georgia. Annals of Agrarian Science, 16, 12–16.

    Article  Google Scholar 

  • Gunen, Y., Misirli, A., & Gulcan, A. (2005). Leaf phenolic content of pear cultivars resistant or susceptible to fire blight. Scientia Horticulturae, 105, 213–221.

    Article  CAS  Google Scholar 

  • Hamdoun, S., Gao, M., Gill, M., Kwon, A., Norelli, J. L., & Lu, H. (2018). Signalling requirements for Erwinia amylovora-induced disease resistance, callose deposition and cell growth in the non-host Arabidopsis thaliana. Molecular Plant Pathology, 9(5), 1090–1103.

    Article  Google Scholar 

  • Hanaka, A., Lechowski, L., Mroczek-Zdyrska, M., & Strubińska, J. (2018). Oxidative enzymes activity during abiotic and biotic stresses in Zea mays leaves and roots exposed to Cu, methyl jasmonate and Trigonotylus caelestialium. Physiology Molecular Biology of Plants, 24(1), 1–5. https://doi.org/10.1007/s12298-017-0479-y

    Article  CAS  PubMed  Google Scholar 

  • Huiyan, N. H., Selvaraj, G., Wei, Y., & King, J. (2008). Gene expression profiling and silencing reveal that monolignol biosynthesis plays a critical role in penetration defense in wheat against powdery mildew invasion. Journal of Experimental Botany, 60, 509–521.

    Google Scholar 

  • Iakimova, E. T., Sobiczewski, P., Michalczuk, L., Wegrzynowicz-Lesiak, E., Mikicinski, A., & Woltering, E. J. (2013). Morphological and biochemical characterization of Erwinia amylovora induced hypersensitive cell death in apple leaves. Plant Physiology and Biochemistry, 63, 292–305.

    Article  CAS  PubMed  Google Scholar 

  • Jalilian, H., Zarei, A., & Erfani-Moghadam, J. (2018). Phylogeny relationship among commercial and wild pear species based on morphological characteristics and SCoT molecular markers. Scientia Horticulturae, 235, 323–333. https://doi.org/10.1016/j.scienta.2018.03.020

    Article  Google Scholar 

  • Jensen, P. J., Halbrendt, N., Fazio, G., Makalowska, I., Altman, N., Praul, C., & McNellis, T. W. (2012). Rootstock-regulated gene expression patterns associated with fire blight resistance in apple. BMC Genomics, 13(1), 1–17.

    Article  Google Scholar 

  • Keck, M., Richter, S., Suarez, B., Kopper, E., & Jungwirth, E. (2001). Activity of peroxidases in plant material infected with Erwinia amylovora. ISHS Acta Horticulturae 590: IX International Workshop on Fire Blighthttps://doi.org/10.17660/ActaHortic.2002.590.51.

  • Khan, M. A., Zhao, Y., & Korban, S. S. (2012). Molecular mechanisms of pathogenesis and resistance to the bacterial pathogen Erwinia amylovora, causal agent of fire blight disease in Rosaceae. Plant Molecular Biology Reporter, 30, 247–260.

    Article  CAS  Google Scholar 

  • Khokhani, D., Zhang, C., Li, Y., Wang, Q., Zeng, Q., Yamazaki, A., Hutchins, W., Zhou, S. S., Chen, X., & Yang, C. H. (2013). Discovery of plant phenolic compounds that act as type III secretion system inhibitors or inducers of the fire blight pathogen. Erwinia amylovora. Applied and Environmental Microbiology, 79, 5424–5436.

    Article  CAS  PubMed  Google Scholar 

  • Korba, J., & Kudela, V. (2004). Evaluation of the fire blight susceptibility of pear genotypes following inoculation. Acta Fytotechnica Et Zootechnica, 7, 144–146.

    Google Scholar 

  • Korba, J., Sillerova, J., & Kudela, V. (2008). Resistance of apple varieties and selections to Erwinia amylovora in the Czech Republic. Plant Protection Science, 44, 91–96.

    Article  Google Scholar 

  • Kortekamp, A., & Zyprian, E. (2003). Characterization of plasmopara-resistance in grapevine using in vitro plants. Journal of Plant Physiology, 160(11), 1393–1400. https://doi.org/10.1078/0176-1617-01021

    Article  CAS  PubMed  Google Scholar 

  • Kovtun, Y., Chiu, W. L., Tena, G., & Sheen, J. (2000). Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proceedings of the National Academy of Sciences of the United States of America, 97, 2940–2945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Künstler, A., Bacsó, R., Gullner, G., Hafez, Y. M., & Király, L. (2016). Staying alive – is cell death dispensable for plant disease resistance during the hypersensitive response? Physiological and Molecular Plant Pathology. https://doi.org/10.1016/j.pmpp.2016.01.003

    Article  Google Scholar 

  • Lattanzio, V., Lattanzio, V. M. T., & Cardinali, A. (2006). Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry Advances in Research, 2006, 23–67.

    Google Scholar 

  • Lee, M. H., Jeon, H. S., Kim, S. H., Chung, J. H., Roppolo, D., Lee, H. J., Cho, H. J., Tobimatsu, Y., Ralph, J., & Park, O. K. (2019). Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. The EMBO Journal, 38, e101948, 1–17.

  • Lefevere, H., Bauters, L., & Heysen, G. (2020). Salicylic acid biosynthesis in plants. Frontier in Plant Science. https://doi.org/10.3389/fpls.2020.00338

    Article  Google Scholar 

  • Loureiro, A., Nicole, M. R., Varzea, V., Moncada, P., Bertrand, B., & Silva, M. C. (2012). Coffee resistance to Colletotrichum kahawae is associated with lignification, accumulation of phenols and cell death at infection sites. Physiological and Molecular Plant Pathology, 77, 23–32.

    Article  CAS  Google Scholar 

  • Malnoy, M., Martens, S., Norelli, J. L., Barny, M. A., Sundin, G. W., Smits, T. H. M., & Duffy, B. (2012). Fire blight: Applied genomic insights of the pathogen and host. Annual Review of Phytopathology, 50(1), 475–494. https://doi.org/10.1146/annurev-phyto-081211-172931.

    Article  CAS  PubMed  Google Scholar 

  • Marinova, D., Ribarova, F., & Atanassova, M. (2005). Total phenolics and flavonoids in Bulgarian fruits and vegetables. Journal of the University of Chemical Technology and Metallurgy, 40(3), 255–260.

    CAS  Google Scholar 

  • Matern, U., & Kneusel, R. (1988). Phenolic compounds in plant disease resistance. Phytoparasitica, 16, 153–170.

    Article  CAS  Google Scholar 

  • Miedes, E., Vanholme, R., Boerjan, W., & Molina, A. (2014). The role of the secondary cell wall in plant resistance to pathogens. Frontier in Plant Science, 5, 358.

    Google Scholar 

  • Mohamed, H. I., Abou-El-Enain, M. M., & Fawzi, E. M. (2019). The role of plant phenolics in induction of plant defense system. In: Agricultural Research Updates, 27: 978-1-53615-916-5 Editors: Nova Science Publishers, Inc.

  • Naglaa, A. A., & Mohamed, H. I. (2011). Impact of secondary metabolites and related enzymes in flax resistance and or susceptibility to Powdery Mildew. World Journal of Agricultural Sciences, 7, 78–85.

    Google Scholar 

  • Nicaise, V., Roux, M., & Zipfel, C. (2009). Recent advances in PAMP-triggered immunity against bacteria: Pattern Recognition Receptors watch over and raise the alarm. Plant Physiology, 150, 1638–1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson, L. R. (1992). Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology, 30, 369–389.

    Article  CAS  Google Scholar 

  • Niebel, A., Heungens, K., Barthels, N., Inze, D., Van Montagu, M., & Gheysen, G. (1995). Characterization of a pathogen-induced potato catalase and its systemic expression upon nematode and bacterial infection. Molecular Plant-Microbe Interactions, 8, 371–378.

    Article  CAS  PubMed  Google Scholar 

  • Nimchuk, Z., Euglem, T., Holt, T. B. F., & Dangl, J. L. (2003). Recognition and response in the plant immune system. Annual Review of Genetics, 37, 579–609.

  • Norelli, J. L., Holleran, H. T., Johnson, W. C., Robinson, T. L., & Aldwinckle, H. S. (2003). Resistance of Geneva and other apple rootstocks to Erwinia amylovora. Plant Disease, 87, 26–32.

    Article  CAS  PubMed  Google Scholar 

  • Ortega, X., Velásquez, J. C., & Pérez, L. M. (2005). IP3 production in the hypersensitive response of lemon seedlings against Alternaria alternata involves active protein tyrosine kinases but not a G-protein. Biological Research, 38(1), 89–99.

    Article  CAS  PubMed  Google Scholar 

  • Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5(e47), 1–15. https://doi.org/10.1017/jns.2016.41

    Article  CAS  Google Scholar 

  • Pandey, S., Fartyal, D., Agarwal, A., Shukla, T., James, D., Kaul, T., Negi, Y. K., Arora, S., & Reddy, M. K. (2017). Abiotic stress tolerance in plants: Myriad roles of ascorbate peroxidase. Frontier in Plant Science, 8, 581. https://doi.org/10.3389/fpls.2017.00581

    Article  Google Scholar 

  • Passardi, F., Cosio, C., Penel, C., & Dunand, C. (2005). Peroxidases have more functions than a Swiss army knife. Plant Cell Reports, 24, 255–265.

    Article  CAS  PubMed  Google Scholar 

  • Pel, M. J. C., & Pieterse, C. M. J. (2013). Microbial recognition and evasion of host immunity. Journal of Experimental Botany, 64(5), 1237–1248.

    Article  CAS  PubMed  Google Scholar 

  • Petit-Houdenot, Y., & Fudal, I. (2017). Complex interactions between fungal avirulence genes and their corresponding plant resistance genes and consequences for disease resistance management. Frontier in Plant Science, 8, 1072. https://doi.org/10.3389/fpls.2017.01072

    Article  Google Scholar 

  • Pontais, I., Paulin, J. P., & Brisset, M. N. (2008). Are phenolic compounds involved in the differential responses of apple genotypes to Erwinia amylovora?. Proc. XIth IW on Fire Blight. Acta Horticulture, 793, 247–248.

    Article  CAS  Google Scholar 

  • Puławska, J., Kałużna, M., Warabieda, W., & Mikiciński, A. (2017). Comparative transcriptome analysis of a lowly virulent strain of Erwinia amylovora in shoots of two apple cultivars – susceptible and resistant to fire blight. BMC Genomics, 18, 868. https://doi.org/10.1186/s12864-017-4251-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan, L. J., Zhang, B., Shi, W. W., & Li, H. Y. (2008). Hydrogen peroxide in plants: A versatile molecule of the reactive oxygen species network. Journal of Integrative Plant Biology, 50(1), 2–18.

    Article  CAS  PubMed  Google Scholar 

  • Roemmelt, S., Plagge, J., Treutter, D., Gutmann, M., Feucht, W., Zeller, W., & Momol, M. T. (1998). Defense reaction of apple against fire blight: Histological and biochemical studies. Acta Horticulture, 489, 335–336.

    Google Scholar 

  • Sang, S., Li, S., Fan, W., Wang, N., Gao, M., & Wang, Z. (2019). Zinc thiazole enhances defense enzyme activities and increases pathogen resistance to Ralstonia solanacearum in peanut (Arachis hypogaea) under salt stress. PLoS ONE, 14(12), e0226951. https://doi.org/10.1371/journal.pone.0226951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheit, K., & Bauer, G. (2015). Direct and indirect inactivation of tumor cell protective catalase by salicylic acid and anthocyanidins reactivates intercellular ROS signaling and allows for synergistic effects. Carcinogenesis, 36(3), 400–411. https://doi.org/10.1093/carcin/bgv010

    Article  CAS  PubMed  Google Scholar 

  • Schoofs, H., Delalieux, S., Deckers, T., & Bylemans, D. (2020). Fire blight monitoring in pear orchards by unmanned airborne vehicles (UAV) systems carrying spectral sensors. Agronomy, 10, 615. https://doi.org/10.3390/agronomy10050615

    Article  Google Scholar 

  • Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24, 2452. https://doi.org/10.3390/molecules24132452

    Article  CAS  PubMed Central  Google Scholar 

  • Shi, H., Wang, X., Ye, T., Cheng, F., Deng, J., Yang, P., Zhang, Y., & Zhulong, C. (2014). The Cysteine2/Histidine2- type transcription factor ZINC FINGER of Arabidopsis thaliana 6 modulates biotic and abiotic stress responses by activating salicylic acid-related genes and C-REPEAT-BINDING FACTOR genes in Arabidopsis. Plant Physiology, 165, 1367–1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sies, H. (2017). Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biology, 11, 613–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobiczewski, P., Iakimova, E. T., Mikicinski, A., Wegrzynowicz-Lesiak, E., & Dyki, B. (2017). Necrotrophic behaviour of Erwinia amylovora in apple and tobacco leaf tissue. Plant Pathology, 66, 842–855.

    Article  CAS  Google Scholar 

  • Somssich, I. E., & Hahlbrock, K. (1998). Pathogen defence in plants - a paradigm of biological complexity. Trends in Plant Science, 3, 86–90.

    Article  Google Scholar 

  • Stewart, P. J., Clark, J. R., & Fenn, P. (2003). Evaluation of resistance to Erwinia amylovora and Botryosphaeria dothidea in Eastern U.S. Blackberry Cultivars. AA Research Series, 520, 32–34.

    Google Scholar 

  • Thipyapong, P., Hunt, M. D., & Steffens, J. C. (2004). Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility. Planta, 220(1), 105–117.

    Article  CAS  PubMed  Google Scholar 

  • Torres, M. A. (2010). ROS in biotic interactions. Physiologia Plantarum, 138, 414–429.

    Article  CAS  PubMed  Google Scholar 

  • Treutter, D. (2005). Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Boilogy, 7(06), 581–591.

    CAS  Google Scholar 

  • Trujillo, M., Altschmeid, L., Schweizer, P., Kogel, K. H., & Huckelhoven, R. (2006). Respiratory burst oxidase homologue A of barley contributes to penetration by the powdery mildew fungus Blumeria graminis f. sp. hordei. Journal of Experimental Botany, 57, 3781–3791.

    Article  CAS  PubMed  Google Scholar 

  • Uarrota, V. G., Moresco, R., Schmidt, E. C., Bouzon, Z. L., da Costa Nunes, E., de Oliveira Neubert, E., Peruch, L. A. M., Rocha, M., & Maraschin, M. (2016). The role of ascorbate peroxidase, guaiacol peroxidase, and polysaccharides in cassava (Manihot esculenta Crantz) roots under postharvest physiological deterioration. Food Chemistry, 197, 737–746.

    Article  CAS  PubMed  Google Scholar 

  • Van der Zwet, T., & Beer, S. V. (1995). Fire blight – its nature, prevention and control. USDA Washington, Agriculture Information Bulletins, 631.

  • Van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.

    Article  PubMed  Google Scholar 

  • Venisse, J. S., Gullner, G., & Brisset, M. N. (2001). Evidence for the involvement of an oxidative stress in the initiation of infection of pear by Erwinia amylovora. Plant Physiology, 125, 2164–2172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venisse, J. S., Malnoy, M., Faize, M., Paulin, J. P., & Brisset, M. N. (2002). Modulation of defense responses of Malus spp. during compatible and incompatible interactions with Erwinia amylovora. Molecular Plant-Microbe Interaction, 15, 1204–1212.

    Article  CAS  Google Scholar 

  • Vrancken, K., Holtappels, M., Schoofs, H., Deckers, T., & Valcke, R. (2013). Pathogenicity and infection strategies of the fire blight pathogen Erwinia amylovora in Rosaceae: state of the art. Microbiology, 159(Pt_5), 823–832.

    Article  CAS  PubMed  Google Scholar 

  • Wada, K. C., Mizuuchi, K., Koshio, A., Kaneko, K., Mitsui, T., & Takeno, K. (2014). Stress enhances the gene expression and enzyme activity of phenylalanine ammonia-lyase and the endogenous content of salicylic acid to induce flowering in pharbitis. Journal of Plant Physiology, 171(11), 895–902. https://doi.org/10.1016/j.jplph.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  • Wallis, C. M., & Galarneau, E. R. A. (2020). Phenolic compound induction in plant-microbe and plant-insect interactions: A meta-analysis. Frontier in Plant Science, 11, 580753. https://doi.org/10.3389/fpls.2020.580753

    Article  Google Scholar 

  • Yakura, H. (2020). Cognitive memory functions in plant immunity. Vaccines, 8, 541. https://doi.org/10.3390/vaccines8030541

    Article  CAS  PubMed Central  Google Scholar 

  • Zarei, A., Zamani, Z., Fatahi, R., Mousavi, A., Salami, S. A., Avila, C., & Canovas, F. M. (2016). Differential expression of cell wall related genes in the seeds of soft-and hard-seeded pomegranate genotypes. Scientia Horticulturae, 205, 7–16. https://doi.org/10.1016/j.scienta.2016.03.043

    Article  CAS  Google Scholar 

  • Zarei, A., Erfani-Moghadam, J., & Jalilian, H. (2019). Assessment of variability within and among four Pyrus species using multivariate analysis. Flora, 250, 27–36. https://doi.org/10.1016/j.flora.2018.11.016

    Article  Google Scholar 

  • Zhang, Z., Nakano, K., & Maezawa, S. (2009). Comparison of the antioxidant enzymes of broccoli after cold or heat shock treatment at different storage temperatures. Postharvest Biology and Technology, 54(2), 101–105.

    Article  CAS  Google Scholar 

  • Zurn, J. D., Norelli, J. L., Montanari, S., Bell, R., & Bassil, N. V. (2020). Genetic resistance to fire blight in three pear populations. Phytopathology, 110(7), 1305–1311. https://doi.org/10.1094/PHYTO-02-20-0051-R

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this work provided by Ilam University, Iran. We also are grateful to Dr. H. Abdollahi (Seed and Plant Improvement Institute, Karaj, Iran) for providing two pear cultivars and bacterial strain.

Funding

This work was supported by Ilam University, Iran [grant number: 04-IRILU-Ag-000032-21].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by Abdolkarim Zarei and Javad Erfani-Moghadam. Data analysis were performed by Javad Erfani-Moghadam.The first draft of the manuscript was written by Abdolkarim Zarei, revised by Javad Erfani-Moghadam and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Javad Erfani-Moghadam or Abdolkarim Zarei.

Ethics declarations

Informed consent

Not applicable.

Human participants and/or animals

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erfani-Moghadam, J., Zarei, A. Differential responses of pear cultivars to Erwinia amylovora infection; evidences of involvement the hypersensitivity response in pear resistance to fire blight. Eur J Plant Pathol 162, 927–943 (2022). https://doi.org/10.1007/s10658-021-02448-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02448-9

Keywords

Navigation