Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The ecological roles of bacterial chemotaxis

A Publisher Correction to this article was published on 01 April 2022

This article has been updated

Abstract

How bacterial chemotaxis is performed is much better understood than why. Traditionally, chemotaxis has been understood as a foraging strategy by which bacteria enhance their uptake of nutrients and energy, yet it has remained puzzling why certain less nutritious compounds are strong chemoattractants and vice versa. Recently, we have gained increased understanding of alternative ecological roles of chemotaxis, such as navigational guidance in colony expansion, localization of hosts or symbiotic partners and contribution to microbial diversity by the generation of spatial segregation in bacterial communities. Although bacterial chemotaxis has been observed in a wide range of environmental settings, insights into the phenomenon are mostly based on laboratory studies of model organisms. In this Review, we highlight how observing individual and collective migratory behaviour of bacteria in different settings informs the quantification of trade-offs, including between chemotaxis and growth. We argue that systematically mapping when and where bacteria are motile, in particular by transgenerational bacterial tracking in dynamic environments and in situ approaches from guts to oceans, will open the door to understanding the rich interplay between metabolism and growth and the contribution of chemotaxis to microbial life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemotactic bacterial motility across different environments.
Fig. 2: Relative cost of bacterial chemotaxis depends on the metabolic state of a cell.
Fig. 3: Importance of chemotaxis in individual and collective motility.
Fig. 4: Motility and chemotaxis can drive community diversity.

Similar content being viewed by others

Change history

References

  1. Wadhwa, N. & Berg, H. C. Bacterial motility: machinery and mechanisms. Nat. Rev. Microbiol. 20, 161–173 (2022). This recent review provides an excellent overview of the diversity in bacterial propulsion mechanisms.

    CAS  PubMed  Google Scholar 

  2. Burrows, L. L. Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu. Rev. Microbiol. 66, 493–520 (2012).

    CAS  PubMed  Google Scholar 

  3. Dufrêne, Y. F. & Persat, A. Mechanomicrobiology: how bacteria sense and respond to forces. Nat. Rev. Microbiol. 18, 227–240 (2020).

    PubMed  Google Scholar 

  4. Jarrell, K. F. & McBride, M. J. The surprisingly diverse ways that prokaryotes move. Nat. Rev. Microbiol. 6, 466–476 (2008).

    CAS  PubMed  Google Scholar 

  5. Berg, H. C. E. coli in Motion (Springer, 2004).

  6. Bi, S. & Sourjik, V. Stimulus sensing and signal processing in bacterial chemotaxis. Curr. Opin. Microbiol. 45, 22–29 (2018).

    CAS  PubMed  Google Scholar 

  7. Parkinson, J. S., Hazelbauer, G. L. & Falke, J. J. Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update. Trends Microbiol. 23, 257–266 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Porter, S. L., Wadhams, G. H. & Armitage, J. P. Signal processing in complex chemotaxis pathways. Nat. Rev. Microbiol. 9, 153–165 (2011).

    CAS  PubMed  Google Scholar 

  9. Colin, R. & Sourjik, V. Emergent properties of bacterial chemotaxis pathway. Curr. Opin. Microbiol. 39, 24–33 (2017).

    CAS  PubMed  Google Scholar 

  10. Brumley, D. R. et al. Cutting through the noise: bacterial chemotaxis in marine microenvironments. Front. Mar. Sci. 7, 527 (2020).

    Google Scholar 

  11. Hein, A. M., Carrara, F., Brumley, D. R., Stocker, R. & Levin, S. A. Natural search algorithms as a bridge between organisms, evolution, and ecology. Proc. Natl Acad. Sci. USA 113, 9413–9420 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wong-Ng, J., Celani, A. & Vergassola, M. Exploring the function of bacterial chemotaxis. Curr. Opin. Microbiol. 45, 16–21 (2018).

    CAS  PubMed  Google Scholar 

  13. Colin, R., Ni, B., Laganenka, L. & Sourjik, V. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol. Rev. 45, fuab038 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Schweinitzer, T. & Josenhans, C. Bacterial energy taxis: a global strategy? Arch. Microbiol. 192, 507–520 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Somavanshi, R., Ghosh, B. & Sourjik, V. Sugar influx sensing by the phosphotransferase system of Escherichia coli. PLoS Biol. 14, e2000074 (2016).

    PubMed  PubMed Central  Google Scholar 

  16. Cremer, J. et al. Chemotaxis as a navigation strategy to boost range expansion. Nature 575, 658–663 (2019). This work uses a quantitative approach to describe the classic assay of bacterial growth and migration in soft agar, and elucidates the distinct roles of attractant and nutrient in colony expansion.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Raina, J.-B., Fernandez, V., Lambert, B., Stocker, R. & Seymour, J. R. The role of microbial motility and chemotaxis in symbiosis. Nat. Rev. Microbiol. 17, 284–294 (2019). This study presents a comprehensive overview of the role of bacterial motility and chemotaxis in establishing and maintaining symbiotic relationships.

    CAS  PubMed  Google Scholar 

  18. Matilla, M. A. & Krell, T. The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol. Rev. 42, fux052 (2018). This work presents an extensive review of the role of bacterial motility and chemotaxis in host pathogenicity from plants to animals.

    Google Scholar 

  19. Perkins, A., Tudorica, D. A., Amieva, M. R., Remington, S. J. & Guillemin, K. Helicobacter pylori senses bleach (HOCl) as a chemoattractant using a cytosolic chemoreceptor. PLoS Biol. 17, e3000395 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tohidifar, P. et al. The unconventional cytoplasmic sensing mechanism for ethanol chemotaxis in Bacillus subtilis. mBio 11, e02177-20 (2020).

    PubMed  PubMed Central  Google Scholar 

  21. Kundu, P., Blacher, E., Elinav, E. & Pettersson, S. Our gut microbiome: the evolving inner self. Cell 171, 1481–1493 (2017).

    CAS  PubMed  Google Scholar 

  22. Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782–791 (2007).

    CAS  PubMed  Google Scholar 

  23. Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).

    CAS  PubMed  Google Scholar 

  24. Savageau, M. A. Escherichia coli habitats, cell types and molecular mechanisms of gene control. Am. Nat. 122, 732–744 (1983).

    CAS  Google Scholar 

  25. Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).

    CAS  PubMed  Google Scholar 

  26. Scharf, B. E., Hynes, M. F. & Alexandre, G. M. Chemotaxis signaling systems in model beneficial plant–bacteria associations. Plant. Mol. Biol. 90, 549–559 (2016).

    CAS  PubMed  Google Scholar 

  27. Stocker, R. & Seymour, J. R. Ecology and physics of bacterial chemotaxis in the ocean. Microbiol. Mol. Biol. Rev. 76, 792–812 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 11965 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Barbara, G. M. & Mitchell, J. G. Bacterial tracking of motile algae. FEMS Microbiol. Ecol. 44, 79–87 (2003).

    CAS  PubMed  Google Scholar 

  30. Garren, M. et al. A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J. 8, 999–1007 (2014).

    CAS  PubMed  Google Scholar 

  31. Szurmant, H. & Ordal, G. W. Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol. Mol. Biol. Rev. 68, 301–319 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wuichet, K. & Zhulin, I. B. Origins and diversification of a complex signal transduction system in prokaryotes. Sci. Signal. 3, ra50 (2010).

    PubMed  PubMed Central  Google Scholar 

  33. Zehr, J. P., Weitz, J. S. & Joint, I. How microbes survive in the open ocean. Science 357, 646–647 (2017).

    CAS  PubMed  Google Scholar 

  34. McDougald, D., Rice, S. A., Barraud, N., Steinberg, P. D. & Kjelleberg, S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat. Rev. Microbiol. 10, 39–50 (2012).

    CAS  Google Scholar 

  35. Yawata, Y., Carrara, F., Menolascina, F. & Stocker, R. Constrained optimal foraging by marine bacterioplankton on particulate organic matter. Proc. Natl Acad. Sci. USA 117, 25571–25579 (2020). This study reveals that a marine bacterium foraging on particulate nutrient hotspots optimizes nutrient uptake using rapid switches between chemotactic and non-motile lifestyles.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Paul, K., Nieto, V., Carlquist, W. C., Blair, D. F. & Harshey, R. M. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Mol. Cell 38, 128–139 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fenchel, T. Microbial behavior in a heterogeneous world. Science 296, 1068–1071 (2002).

    CAS  PubMed  Google Scholar 

  38. Stocker, R. Marine microbes see a sea of gradients. Science 338, 628–633 (2012).

    CAS  PubMed  Google Scholar 

  39. McDonald, D. E., Pethick, D. W., Mullan, B. P. & Hampson, D. J. Increasing viscosity of the intestinal contents alters small intestinal structure and intestinal growth, and stimulates proliferation of enterotoxigenic Escherichia coli in newly-weaned pigs. Br. J. Nutr. 86, 487–498 (2001).

    CAS  PubMed  Google Scholar 

  40. Berg, H. C. & Turner Movement of microorganisms in viscous environments. Nature 278, 349–351 (1979).

    CAS  PubMed  Google Scholar 

  41. Borer, B., Tecon, R. & Or, D. Spatial organization of bacterial populations in response to oxygen and carbon counter-gradients in pore networks. Nat. Commun. 9, 769 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Raynaud, X. & Nunan, N. Spatial ecology of bacteria at the microscale in soil. PLoS ONE 9, e87217 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Lindow, S. E. & Brandl, M. T. Microbiology of the phyllosphere. Appl. Env. Microbiol. 69, 9 (2003).

    Google Scholar 

  45. Fernandez, V. I., Yawata, Y. & Stocker, R. A foraging mandala for aquatic microorganisms. ISME J. 13, 563–575 (2019).

    PubMed  Google Scholar 

  46. Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45, 10 (1977).

    Google Scholar 

  47. Dusenbery, D. B. Living at Micro Scale: The Unexpected Physics of Being Small (Harvard Univ. Press, 2011).

  48. Phillips, R. & Milo, R. Cell Biology by the Numbers (Garland Science, 2015).

  49. Darnton, N. C., Turner, L., Rojevsky, S. & Berg, H. C. On torque and tumbling in swimming Escherichia coli. J. Bacteriol. 189, 1756–1764 (2007).

    CAS  PubMed  Google Scholar 

  50. Ryu, W. S., Berry, R. M. & Berg, H. C. Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403, 444–446 (2000).

    CAS  PubMed  Google Scholar 

  51. Chattopadhyay, S., Moldovan, R., Yeung, C. & Wu, X. L. Swimming efficiency of bacterium Escherichia coli. Proc. Natl Acad. Sci. USA 103, 13712–13717 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sowa, Y., Hotta, H., Homma, M. & Ishijima, A. Torque–speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus. J. Mol. Biol. 327, 1043–1051 (2003).

    CAS  PubMed  Google Scholar 

  53. Taylor, J. R. & Stocker, R. Trade-offs of chemotactic foraging in turbulent water. Science 338, 675–679 (2012).

    CAS  PubMed  Google Scholar 

  54. Govern, C. C. & ten Wolde, P. R. Optimal resource allocation in cellular sensing systems. Proc. Natl Acad. Sci. USA 111, 17486–17491 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sourjik, V. & Berg, H. C. Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proc. Natl Acad. Sci. USA 99, 12669–12674 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lan, G., Sartori, P., Neumann, S., Sourjik, V. & Tu, Y. The energy–speed–accuracy trade-off in sensory adaptation. Nat. Phys. 8, 422–428 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Stouthamer, A. H. & Bettenhaussen, C. W. A continuous culture study of an ATPase-negative mutant of Escherichia coli. Arch. Microbiol. 113, 185–189 (1977).

    CAS  PubMed  Google Scholar 

  58. Macnab, R. M. in Escherichia coli and Salmonella Typhimurium: Cellular and Molecular Biology Vol. 1 (eds Nerdhardt, F. et al.) 732–759 (American Society for Microbiology, 1987).

  59. Kempes, C. P. et al. Drivers of bacterial maintenance and minimal energy requirements. Front. Microbiol. 8, 31 (2017).

    PubMed  PubMed Central  Google Scholar 

  60. Lynch, M. & Marinov, G. K. The bioenergetic costs of a gene. Proc. Natl Acad. Sci. USA 112, 15690–15695 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hoehler, T. M. & Jørgensen, B. B. Microbial life under extreme energy limitation. Nat. Rev. Microbiol. 11, 83–94 (2013).

    CAS  PubMed  Google Scholar 

  62. Boehm, A. et al. Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141, 107–116 (2010).

    CAS  PubMed  Google Scholar 

  63. Fang, X. & Gomelsky, M. A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility: c-di-GMP-dependent flagellum rotation bias. Mol. Microbiol. 76, 1295–1305 (2010).

    CAS  PubMed  Google Scholar 

  64. Sathyamoorthy, R. et al. To hunt or to rest: prey depletion induces a novel starvation survival strategy in bacterial predators. ISME J. 15, 109–123 (2020).

    PubMed  PubMed Central  Google Scholar 

  65. Adler, J. & Templeton, B. The effect of environmental conditions on the motility of Escherichia coli. J. Gen. Microbiol. 46, 175–184 (1967).

    CAS  PubMed  Google Scholar 

  66. Berg, H. C. & Tedesco, P. M. Transient response to chemotactic stimuli in Escherichia coli. Proc. Natl Acad. Sci. USA 72, 3235–3239 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Mitchell, J. G. The influence of cell size on marine bacterial motility and energetics. Microb. Ecol. 22, 227–238 (1991).

    CAS  PubMed  Google Scholar 

  68. Castro-Sowinski, S., Burdman, S., Matan, O. & Okon, Y. in Plastics from Bacteria Vol. 14 (ed. Chen, G. G.-Q.) 39–61 (Springer, 2010).

  69. Walter, J. M., Greenfield, D., Bustamante, C. & Liphardt, J. Light-powering Escherichia coli with proteorhodopsin. Proc. Natl Acad. Sci. USA 104, 2408–2412 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gude, S. et al. Bacterial coexistence driven by motility and spatial competition. Nature 578, 588–592 (2020). This work presents evidence for a trade-off between motility and growth, which supports bacterial diversity through spatial segregation.

    CAS  PubMed  Google Scholar 

  71. Ni, B., Colin, R., Link, H., Endres, R. G. & Sourjik, V. Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. Proc. Natl Acad. Sci. USA 117, 595–601 (2020). This work systematically compares the cost and benefit of chemotaxis in spatially extended and well-mixed environments.

    CAS  PubMed  Google Scholar 

  72. Li, M. & Hazelbauer, G. L. Cellular stoichiometry of the components of the chemotaxis signaling complex. J. Bacteriol. 186, 3687–3694 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Neumann, S., Hansen, C. H., Wingreen, N. S. & Sourjik, V. Differences in signalling by directly and indirectly binding ligands in bacterial chemotaxis. EMBO J. 29, 3484–3495 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Akashi, H. & Gojobori, T. Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc. Natl Acad. Sci. USA 99, 3695–3700 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Basan, M. et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99–104 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ni, B. et al. Evolutionary remodeling of bacterial motility checkpoint control. Cell Rep. 18, 866–877 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Fraebel, D. T. et al. Environment determines evolutionary trajectory in a constrained phenotypic space. eLife 6, e24669 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. Honda, T. et al. Coordination of gene expression with cell size enables Escherichia coli to efficiently maintain motility across conditions. Preprint at bioRxiv https://doi.org/10.1101/2021.05.12.443892 (2021).

    Article  Google Scholar 

  79. Zampieri, M., Hörl, M., Hotz, F., Müller, N. F. & Sauer, U. Regulatory mechanisms underlying coordination of amino acid and glucose catabolism in Escherichia coli. Nat. Commun. 10, 3354 (2019).

    PubMed  PubMed Central  Google Scholar 

  80. Zhao, Z. et al. Frequent pauses in Escherichia coli flagella elongation revealed by single cell real-time fluorescence imaging. Nat. Commun. 9, 1885 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. Zhuang, X. et al. Live‐cell fluorescence imaging reveals dynamic production and loss of bacterial flagella. Mol. Microbiol. 114, 279–291 (2020).

    CAS  PubMed  Google Scholar 

  82. Chevance, F. F. V. & Hughes, K. T. Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol. 6, 455–465 (2008). This work presents a classic overview of the gene regulatory pathway that controls flagella assembly in Gram-negative bacteria.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Amsler, C. D., Cho, M. & Matsumura, P. Multiple factors underlying the maximum motility of Escherichia coli as cultures enter post-exponential growth. J. Bacteriol. 175, 6238–6244 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lopes, J. G. & Sourjik, V. Chemotaxis of Escherichia coli to major hormones and polyamines present in human gut. ISME J. 12, 2736–2747 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang, J. et al. Biphasic chemotaxis of Escherichia coli to the microbiota metabolite indole. Proc. Natl Acad. Sci. USA 117, 6114–6120 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Matz, C. & Jürgens, K. High motility reduces grazing mortality of planktonic bacteria. Appl. Environ. Microbiol. 71, 921–929 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Cummings, L. A., Wilkerson, W. D., Bergsbaken, T. & Cookson, B. T. In vivo, fliC expression by Salmonella enterica serovar Typhimurium is heterogeneous, regulated by ClpX, and anatomically restricted. Mol. Microbiol. 61, 795–809 (2006).

    CAS  PubMed  Google Scholar 

  88. Yuan, J. & Berg, H. C. Ultrasensitivity of an adaptive bacterial motor. J. Mol. Biol. 425, 1760–1764 (2013).

    CAS  PubMed  Google Scholar 

  89. Lestas, I., Vinnicombe, G. & Paulsson, J. Fundamental limits on the suppression of molecular fluctuations. Nature 467, 174–178 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Frankel, N. W. et al. Adaptability of non-genetic diversity in bacterial chemotaxis. eLife 3, e03526 (2014).

    PubMed Central  Google Scholar 

  91. Goldbeter, A. & Koshland, D. E. An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl Acad. Sci. USA 78, 6840–6844 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Waite, A. J. et al. Non‐genetic diversity modulates population performance. Mol. Syst. Biol. 12, 895 (2016).

    PubMed  PubMed Central  Google Scholar 

  93. Fu, X. et al. Spatial self-organization resolves conflicts between individuality and collective migration. Nat. Commun. 9, 2177 (2018). This sophisticated microfluidic study reveals that a chemotactic population may travel as a cohesive unit despite strong phenotypic heterogeneity within the population.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Long, Z., Quaife, B., Salman, H. & Oltvai, Z. N. Cell–cell communication enhances bacterial chemotaxis toward external attractants. Sci. Rep. 7, 12855 (2017).

    PubMed  PubMed Central  Google Scholar 

  95. Laganenka, L., Colin, R. & Sourjik, V. Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli. Nat. Commun. 7, 12984 (2016). This study demonstrates that bacteria may chase self-generated gradients by producing quorum-sensing molecules.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Park, S. et al. Influence of topology on bacterial social interaction. Proc. Natl Acad. Sci. USA 100, 13910–13915 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Phan, T. V. et al. Bacterial route finding and collective escape in mazes and fractals. Phys. Rev. X 10, 031017 (2020).

    CAS  Google Scholar 

  98. Waite, A. J., Frankel, N. W. & Emonet, T. Behavioral variability and phenotypic diversity in bacterial chemotaxis. Annu. Rev. Biophys. 47, 595–616 (2018). This work presents a review of the mechanisms underlying behavioural variation in bacterial chemotaxis and the consequences for chemotactic performance.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ackermann, M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 13, 497–508 (2015).

    CAS  PubMed  Google Scholar 

  100. Bódi, Z. et al. Phenotypic heterogeneity promotes adaptive evolution. PLoS Biol. 15, e2000644 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).

    CAS  PubMed  Google Scholar 

  102. Weber, L., Gonzalez‐Díaz, P., Armenteros, M. & Apprill, A. The coral ecosphere: a unique coral reef habitat that fosters coral–microbial interactions. Limnol. Oceanogr. 64, 2373–2388 (2019).

    CAS  Google Scholar 

  103. Salek, M. M., Carrara, F., Fernandez, V., Guasto, J. S. & Stocker, R. Bacterial chemotaxis in a microfluidic T-maze reveals strong phenotypic heterogeneity in chemotactic sensitivity. Nat. Commun. 10, 1877 (2019).

    PubMed  PubMed Central  Google Scholar 

  104. Ford, R. M. & Lauffenburger, D. A. Measurement of bacterial random motility and chemotaxis coefficients: II. Application of single-cell-based mathematical model. Biotechnol. Bioeng. 37, 661–672 (1991).

    CAS  PubMed  Google Scholar 

  105. Lambert, B. S., Fernandez, V. I. & Stocker, R. Motility drives bacterial encounter with particles responsible for carbon export throughout the ocean. Limnol. Oceanogr. Lett. 4, 113–118 (2019).

    Google Scholar 

  106. Słomka, J., Alcolombri, U., Secchi, E., Stocker, R. & Fernandez, V. I. Encounter rates between bacteria and small sinking particles. N. J. Phys. 22, 043016 (2020).

    Google Scholar 

  107. Hein, A. M. & Martin, B. T. Information limitation and the dynamics of coupled ecological systems. Nat. Ecol. Evol. 4, 82–90 (2020).

    PubMed  Google Scholar 

  108. Kiorboe, T., Grossart, H.-P., Ploug, H. & Tang, K. Mechanisms and rates of bacterial colonization of sinking aggregates. Appl. Environ. Microbiol. 68, 3996–4006 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Viswanathan, G. M. et al. Optimizing the success of random searches. Nature 401, 911–914 (1999).

    CAS  PubMed  Google Scholar 

  110. Korobkova, E., Emonet, T., Vilar, J. M. G., Shimizu, T. S. & Cluzel, P. From molecular noise to behavioural variability in a single bacterium. Nature 428, 574–578 (2004).

    CAS  PubMed  Google Scholar 

  111. Tu, Y. & Grinstein, G. How white noise generates power-law switching in bacterial flagellar motors. Phys. Rev. Lett. 4, 208101 (2005).

    Google Scholar 

  112. Huo, H., He, R., Zhang, R. & Yuan, J. Swimming Escherichia coli explore the environment by Lévy walk. Appl. Environ. Microbiol. 87, e02429–20 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Keegstra, J. M. et al. Phenotypic diversity and temporal variability in a bacterial signaling network revealed by single-cell FRET. eLife 6, e27455 (2017).

    PubMed  PubMed Central  Google Scholar 

  114. Colin, R. & Sourjik, V. Multiple sources of slow activity fluctuations in a bacterial chemosensory network. eLife 6, e26796 (2017).

    PubMed  PubMed Central  Google Scholar 

  115. Karin, O. & Alon, U. Temporal fluctuations in chemotaxis gain implements a simulated tempering strategy for efficient navigation in complex environments. SSRN Electron. J. 24, 102796 (2021).

    CAS  Google Scholar 

  116. Carey, J. N. et al. Regulated stochasticity in a bacterial signaling network permits tolerance to a rapid environmental change. Cell 173, 196–207.e14 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kamino, K., Keegstra, J. M., Long, J., Emonet, T. & Shimizu, T. S. Adaptive tuning of cell sensory diversity without changes in gene expression. Sci. Adv. 6, eabc1087 (2020). This study shows that a bacterial population increases chemotactic bed-hedging when environmental signals are unavailable, but suppresses the sensory diversity when a traceable signal is presented.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Bassler, B. L. & Losick, R. Bacterially speaking. Cell 125, 237–246 (2006).

    CAS  PubMed  Google Scholar 

  119. Mukherjee, S. & Bassler, B. L. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 17, 371–382 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Budrene, E. O. & Berg, H. C. Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376, 49–53 (1995).

    CAS  PubMed  Google Scholar 

  121. Ben-Jacob, E., Cohen, I. & Levine, H. Cooperative self-organization of microorganisms. Adv. Phys. 49, 395–554 (2000).

    CAS  Google Scholar 

  122. Adler, J. Chemotaxis in bacteria. Science 153, 708–716 (1966).

    CAS  PubMed  Google Scholar 

  123. Keller, E. F. & Segel, L. A. Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971).

    CAS  PubMed  Google Scholar 

  124. Saragosti, J. et al. Directional persistence of chemotactic bacteria in a traveling concentration wave. Proc. Natl Acad. Sci. USA 108, 16235–16240 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Mattingly & Emonet, T. The balancing act of growth and expansion. Nature 575, 602–603 (2019).

    CAS  PubMed  Google Scholar 

  126. Liu, W., Cremer, J., Li, D., Hwa, T. & Liu, C. An evolutionarily stable strategy to colonize spatially extended habitats. Nature 575, 664–668 (2019). This study reveals that chemotactic strains selected for different speeds of range expansion in semi-solid agar can stably coexist.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Hui, S. et al. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol. Syst. Biol. 11, 784 (2015).

    PubMed  PubMed Central  Google Scholar 

  128. Maser, A., Peebo, K., Vilu, R. & Nahku, R. Amino acids are key substrates to Escherichia coli BW25113 for achieving high specific growth rate. Res. Microbiol. 171, 185–193 (2020).

    CAS  PubMed  Google Scholar 

  129. Yang, Y. et al. Relation between chemotaxis and consumption of amino acids in bacteria. Mol. Microbiol. 96, 1272–1282 (2015). This study is a pioneering work on the relation between chemotaxis and metabolism, where the relationship between amino acid uptake preference and chemotactic affinity in E. coli and B. subtilis is studied.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Cadotte, M. W. et al. On testing the competition–colonization trade-off in a multispecies assemblage. Am. Nat. 168, 704–709 (2006).

    PubMed  Google Scholar 

  131. Amarasekare, P. Competitive coexistence in spatially structured environments: a synthesis. Ecol. Lett. 6, 1109–1122 (2003).

    Google Scholar 

  132. Levins, R. & Culver, D. Regional coexistence of species and competition between rare species. Proc. Natl Acad. Sci. USA 68, 1246–1248 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Yawata, Y. et al. Competition–dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations. Proc. Natl Acad. Sci. USA 111, 5622–5627 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Narla, A. V., Cremer, J. & Hwa, T. A traveling-wave solution for bacterial chemotaxis with growth. Proc. Natl Acad. Sci. USA 118, e2105138118 (2021). This work develops a comprehensive mathematical framework describing migrating bands of bacteria driven by growth and chemotaxis that is applicable to many environments.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Bassler, B. L., Gibbons, P. J., Yu, C. & Roseman, S. Chemotaxis to chitin oligosaccharides by Vibrio furnissi. J. Biol. Chem. 266, 24268–24275 (1991).

    CAS  PubMed  Google Scholar 

  136. Konishi, H., Hio, M., Kobayashi, M., Takase, R. & Hashimoto, W. Bacterial chemotaxis towards polysaccharide pectin by pectin-binding protein. Sci. Rep. 10, 3977 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Alcolombri, U. et al. Sinking enhances the degradation of organic particles by marine bacteria. Nat. Geosci. 14, 775–780 (2021).

    CAS  Google Scholar 

  138. D’Souza, G. G., Povolo, V. R., Keegstra, J. M., Stocker, R. & Ackermann, M. Nutrient complexity triggers transitions between solitary and colonial growth in bacterial populations. ISME J. 1, 1 (2021).

    Google Scholar 

  139. Nesper, J. et al. Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators. eLife 6, e28842 (2017).

    PubMed  PubMed Central  Google Scholar 

  140. Basan, M. et al. A universal trade-off between growth and lag in fluctuating environments. Nature 584, 470–474 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Nguyen, J. et al. A distinct growth physiology enhances bacterial growth under rapid nutrient fluctuations. Nat. Commun. 12, 3662 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. M. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Cordero, O. X. & Datta, M. S. Microbial interactions and community assembly at microscales. Curr. Opin. Microbiol. 31, 227–234 (2016).

    PubMed  PubMed Central  Google Scholar 

  144. Rusconi, R., Garren, M. & Stocker, R. Microfluidics expanding the frontiers of microbial ecology. Annu. Rev. Biophys. 43, 65–91 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Lambert, B. S. et al. A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nat. Microbiol. 2, 1344–1349 (2017).

    CAS  PubMed  Google Scholar 

  146. Clerc, E. E., Raina, J.-B., Lambert, B. S., Seymour, J. & Stocker, R. In situ chemotaxis assay to examine microbial behavior in aquatic ecosystems. J. Vis. Exp. 159, e61062 (2020).

    Google Scholar 

  147. Pleška, M., Jordan, D., Frentz, Z., Xue, B. & Leibler, S. Nongenetic individuality, changeability, and inheritance in bacterial behavior. Proc. Natl Acad. Sci. USA 118, e2023322118 (2021).

    PubMed  PubMed Central  Google Scholar 

  148. Figueroa-Morales, N. et al. 3D spatial exploration by E. coli echoes motor temporal variability. Phys. Rev. X 10, 021004 (2020).

    CAS  Google Scholar 

  149. Hazelbauer, G. L. Bacterial chemotaxis: the early years of molecular studies. Annu. Rev. Microbiol. 66, 285–303 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Adler, J., Hazelbauer, G. L. & Dahl, M. M. Chemotaxis toward sugars in Escherichia coli. J. Bacteriol. 115, 824–847 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Mesibov, R. & Adler, J. Chemotaxis toward amino acids in Escherichia coli. J. Bacteriol. 112, 12 (1972).

    Google Scholar 

  152. Dekel, E. & Alon, U. Optimality and evolutionary tuning of the expression level of a protein. Nature 436, 588–592 (2005).

    CAS  PubMed  Google Scholar 

  153. Erickson, D. W. et al. A global resource allocation strategy governs growth transition kinetics of Escherichia coli. Nature 551, 119–123 (2017).

    PubMed  PubMed Central  Google Scholar 

  154. Berg, H. C. & Purcell, E. M. Physics of chemoreception. Biophys. J. 20, 193–219 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Mora, T. & Wingreen, N. S. Limits of sensing temporal concentration changes by single cells. Phys. Rev. Lett. 104, 248101 (2010).

    PubMed  Google Scholar 

  156. Brumley, D. R. et al. Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proc. Natl Acad. Sci. USA 116, 10792–10797 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Mattingly, H. H., Kamino, K., Machta, B. B. & Emonet, T. Escherichia coli chemotaxis is information limited. Nat. Phys. 17, 1426–1431 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Clausznitzer, D., Micali, G., Neumann, S., Sourjik, V. & Endres, R. G. Predicting chemical environments of bacteria from receptor signaling. PLoS Comput. Biol. 10, e1003870 (2014).

    PubMed  PubMed Central  Google Scholar 

  159. Flores, M., Shimizu, T. S., ten Wolde, P. R. & Tostevin, F. Signaling noise enhances chemotactic drift of E. coli. Phys. Rev. Lett. 109, 148101 (2012).

    PubMed  Google Scholar 

  160. Okubo, A. & Levin, S. A. Diffusion and Ecological Problems: Modern Perspectives Vol. 14 (Springer, 2001).

  161. Fisher, R. A. The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937).

    Google Scholar 

  162. Kolmogorov, A., Petrovskii, I. & Piskunov, N. Study of a diffusion equation that is related to the growth of a quality of matter and its application to a biological problem. Mosc. Univ. Math. Bull. 1, 1–26 (1937).

    Google Scholar 

  163. Giometto, A., Rinaldo, A., Carrara, F. & Altermatt, F. Emerging predictable features of replicated biological invasion fronts. Proc. Natl Acad. Sci. USA 111, 297–301 (2014).

    CAS  PubMed  Google Scholar 

  164. Gandhi, S. R., Yurtsev, E. A., Korolev, K. S. & Gore, J. Range expansions transition from pulled to pushed waves as growth becomes more cooperative in an experimental microbial population. Proc. Natl Acad. Sci. USA 113, 6922–6927 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Painter, K. J. Mathematical models for chemotaxis and their applications in self-organisation phenomena. J. Theor. Biol. 481, 162–182 (2019).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all cited authors for the work highlighted in this Review and apologize to those not cited for length reasons. They are grateful to U. Alcolombri, Z. Landry, J. Nguyen, C. Martinez-Pérez and J. Wheeler for critical reading of the manuscript, and to V. Fernandez, N. Norris and U. Sauer for stimulating discussions. They thank R. Naisbit for scientific editing. The authors were supported by the Simons Foundation through the Principles of Microbial Ecosystems (PriME) collaboration (grant 542395) and the Swiss National Science Foundation’s National Centre of Competence in Research (NCCR) Microbiomes (no. 51NF40_180575 to R.S.).

Author information

Authors and Affiliations

Authors

Contributions

J.M.K. and F.C. researched data for the article. All authors contributed to the discussion of the content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Johannes M. Keegstra or Roman Stocker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology and the authors acknowledge Terence Hwa and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Dedication

We dedicate this work to the memory of Howard C. Berg (1934–2021), a true giant in illuminating the microscale world of microorganisms, who unravelled the mechanisms of bacterial sensing and locomotion to an unprecedented level. His creative insights have represented the foundation for countless chemotaxis studies over the past decades and will remain an inspiration for future discoveries in the motile lives of bacteria.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Flagella

Elongated, thin and stiff filaments that generate forward thrust by rotating. Multiple filaments together may form a flagellar bundle.

Random walk

Movement in which steps are taken in random directions. It can be biased if the step length or orientation favours a certain direction.

Chemoattractants

Chemicals that attract an organism, inducing movement towards higher concentrations of the chemical.

Metabolism

The chemical reactions required to sustain living systems: breakdown of chemicals to release energy (catabolism), synthesis of biomass (anabolism) and elimination of waste chemicals.

Chemorepellents

Chemicals that repel an organism, inducing movement towards lower concentrations of the chemical.

Flagellar motor

A transmembrane protein complex connecting to the flagellar filaments, which converts a protonic or ionic gradient into rotary motion.

Sensory adaptation

The (partial) restoration of pre-stimulus behaviour during prolonged stimulation.

Chemoreceptors

Elongated transmembrane proteins in which binding to a ligand molecule induces a conformational change that affects downstream pathway activity.

Trade-off

A situation in which a certain trait cannot increase without a decrease in another trait because of certain physical or biological constraints. When the constraint is lifted, the trade-off disappears.

Adaptation time

The time required for the pathway activity and tumble bias to restore to pre-stimulus levels after prolonged stimulation.

Phenotypic diversity

The variation in the biological traits among members of an isogenic population due to biochemical noise.

Tumble bias

The relative proportion of time that a bacterium spends reorienting during motility. Cells with high tumble bias reorient more frequently.

Pathway gain

How strongly a cell amplifies the signal from a given chemical gradient. The amplification is determined by the properties of the signal transduction machinery.

Effective diffusivity

The rate at which a randomly swimming cell explores space.

Brownian random walk

A type of random walk of small particles in a fluid, driven by thermal effects, which results in diffusive behaviour.

Lévy flight

A type of superdiffusive random walk in which the step-length distribution is heavy tailed, leading to increased spatial exploration compared with Brownian motion.

Allee effect

A positive density dependence of individual fitness which arises from cooperation or facilitation among individuals in the population.

Glycolytic

Using the glycolysis pathway to generate energy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keegstra, J.M., Carrara, F. & Stocker, R. The ecological roles of bacterial chemotaxis. Nat Rev Microbiol 20, 491–504 (2022). https://doi.org/10.1038/s41579-022-00709-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-022-00709-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing