Skip to main content
Log in

Experimental Study on the Performance of a Solar Heat Pump System

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

A solar heat pump system was designed and built. In this paper, the operation performance of the system was investigated experimentally. The effects of significant parameters such as the water temperature at the inlet and outlet of the evaporator, collector, and condenser and the solar radiation intensity were considered. When the water temperature at the condenser inlet was set at different values, the water temperature at the evaporator inlet was found to be proportional to the suction pressure and discharge pressure of the compressor and inversely proportional to the compression ratio. At different water temperatures at the evaporator inlet, the influence of the water temperature at the condenser outlet on the suction pressure was not obvious; however, the maximum change in the suction pressure was 0.9MPa. The power consumption of the compressor was hardly affected. Lower water temperature at the collector inlet contributes to improvement of its heat collection efficiency, and various factors should be considered in the design of the collector. The higher was the water temperature at the evaporator inlet and the lower was the water temperature at the condenser outlet, the larger was the found coefficient of performance ( COP) of the heat pump unit COP \(_{hp}\) , as well as the found COP of system COP \(_{sys}\). In addition, as the solar radiation intensity grew, the heating capacity and COP \(_{sys}\) increased continuously, the maximum variation in COP \(_{sys}\) being 0.4. It is hoped that this research will offer valuable insights for designing advanced solar heat pump (SHP) systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

REFERENCES

  1. Sourbron, M.G. and Ozalp, N., Determination of Heat Transfer Characteristics of Solar Thermal Collectors as Heat Source for a Residential Heat Pump, J. Sol. Energy Eng., 2015, vol. 138, no. 4, pp. 13–19.

    Google Scholar 

  2. Liu, Z., Geng, Y., Lindner, S., Zhao, H.Y., Fujita T., and Guan, D.B., Embodied Energy Use in China’s Industrial Sectors, Energy Policy, 2012, vol. 49, pp. 751–758.

    Article  Google Scholar 

  3. Emmi, G., Zarrella, A., Decarli, M., and Galgaro, A., An Analysis of Solar Assisted Ground Source Heat Pumps in Cold Climates, Energy Convers. Manag., 2015, vol. 106, pp. 660–675.

    Article  Google Scholar 

  4. Panaras, G., Mathioulakis, E., and Belessiotis, V., Investigation of the Performance of a Combined Solar Thermal Heat Pump Hot Water System, Sol. Energy, 2013, vol. 93, pp. 169–182.

    Article  ADS  Google Scholar 

  5. Chyng, J.P., Lee, C.P., and Huang, B.J., Performance Analysis of a Solar-Assisted Heat Pump Water Heater, Sol. Energy, 2003, vol. 74, no. 1, pp. 33–44.

    Article  ADS  Google Scholar 

  6. Kuan, M., Shakir, Y., Mohanraj, M., Belyayev, Y., Jayaraj, S., and Kaltayev, A., Numerical Simulation of a Heat Pump Assisted Solar Dryer for Continental Climates, Renew. Energy, 2019, vol. 143, pp. 214–225.

    Article  Google Scholar 

  7. Molinaroli, L., Joppolo, C.M., and Antonellis, S.D., Numerical Analysis of the Use of R-407C in Direct Expansion Solar Assisted Heat Pump, Energy Procedia, 2014, vol. 48, pp. 938–945.

    Article  Google Scholar 

  8. Lerch, W., Heinz, A., and Heimrath, R., Evaluation of Combined Solar Thermal Heat Pump Systems Using Dynamic System Simulations, Energy Procedia, 2014, vol. 48, pp. 598–607.

    Article  Google Scholar 

  9. Cai, J.Y., Li, Z.H., Ji, J., and Zhou, F., Performance Analysis of a Novel Air Source Hybrid Solar Assisted Heat Pump, Renew. Energy, 2019, vol. 139, pp. 1133–1145.

    Article  Google Scholar 

  10. Caglar, A. and Yamali, C., Performance Analysis of a Solar-Assisted Heat Pump with an Evacuated Tubular Collector for Domestic Heating, Energy Build., 2012, vol. 54, pp. 22–28.

    Article  Google Scholar 

  11. Bunea, M., Perers, B., Eicher, S., Hildbrand, C., Bony, J., and Citherlet, S., Mathematical Modelling of Unglazed Solar Collectors under Extreme Operating Conditions, Sol. Energy, 2015, vol. 118, pp. 547–561.

    Article  ADS  Google Scholar 

  12. Filipovic, P., Dovic, D., Ranilovic, B., and Horvat, I., Numerical and Experimental Approach for Evaluation of Thermal Performances of a Polymer Solar Collector, Renew. Sustain. Energy Rev., 2019, vol. 112, pp. 127–139.

    Article  Google Scholar 

  13. Zhou, F., Ji, J., Yuan, W.Q., Cai, J.Y., Tang, W.X., and Modjinou, M., Numerical Study and Experimental Validation on the Optimization of the Large Size Solar Collector, Appl. Therm. Eng., 2018, vol. 133, pp. 8–20.

    Article  Google Scholar 

  14. Guldentops, G., Nejad, A.M., Vuye, C., and Vanden B.W., Performance of a Pavement Solar Energy Collector: Model Development and Validation, Appl. Energy, 2016, vol. 163, pp. 180–189.

    Article  Google Scholar 

  15. Long, J.B., Zhang, R.C., Lu, J., and Xu, F., Heat Transfer Performance of an Integrated Solar-Air Source Heat Pump Evaporator, Energy Convers. Manag., 2019, vol. 184, pp. 626–635.

    Article  Google Scholar 

  16. Suleman, F., Dincer, I., and Agelin-Chaab, M., Energy and Exergy Analyses of an Integrated Solar Heat Pump System, Appl. Therm. Eng., 2014, vol. 73, no. 1, pp. 559–566.

    Article  Google Scholar 

  17. Ruschenburg, J., Herkel, S., and Henning, H.M., A Statistical Analysis on Market-Available Solar Thermal Heat Pump Systems, Sol. Energy, 2013, vol. 95, pp. 79–89.

    Article  ADS  Google Scholar 

  18. Mohanraj, M., Belyayev, Y., Jayaraj, S., and Kaltayev, A., Research and Developments on Solar Assisted Compression Heat Pump Systems–A Comprehensive Review (Part A: Modeling and Modifications), Renew. Sustain. Energy Rev., 2018, vol. 83, pp. 90–123.

    Article  Google Scholar 

  19. Mathioulakis, E., Panaras, G., and Belessiotis, V., Uncertainty in Estimating the Performance of Solar Thermal Systems, Sol. Energy, 2012, vol. 86, no. 11, pp. 3450–3459.

    Article  ADS  Google Scholar 

  20. Ni, L., Qv, D.H., Yao, Y., Niu, F.X., and Hu, W.J., An Experimental Study on Performance Enhancement of a PCM Based Solar-Assisted Air Source Heat Pump System under Cooling Modes, Appl. Therm. Eng., 2016, vol. 100, pp. 434–452.

    Article  Google Scholar 

  21. Kuang, Y.H. and Wang, R.Z., Performance of a Multi-Functional Direct-Expansion Solar Assisted Heat Pump System, Sol. Energy, 2006, vol. 80, no. 7, pp. 795–803.

    Article  ADS  Google Scholar 

  22. Stojanovic, B. and Akander, J., Build-up and Long-Term Performance Test of a Full-Scale Solar-Assisted Heat Pump System for Residential Heating in Nordic Climatic Conditions, Appl. Therm. Eng., 2010, vol. 30, nos. 2/3, pp. 188–195.

    Article  Google Scholar 

  23. Karagiorgas, M., Galatis, K., Tsagouri, M., Tsoutsos, T., and Botzios-Valaskakis, A., Solar Assisted Heat Pump on Air Collectors: A Simulation Tool, Sol. Energy, 2010, vol. 84, no. 1, pp. 66–78.

    Article  ADS  Google Scholar 

  24. Fernandez-seara, J., Pineiro, C., Dopazo, J.A., Fernandes, F., and Sousa, P., Experimental Analysis of a Direct Expansion Solar Assisted Heat Pump with Integral Storage Tank for Domestic Water Heating under Zero Solar Radiation Conditions, Energy Convers. Manag., 2012, vol. 59, pp. 1–8.

    Article  Google Scholar 

  25. Ji, W.A., Cai, J.Y., Ji, J., and Huang, W.Z., Experimental Study of a Direct Expansion Solar-Assisted Heat Pump (DX-SAHP) with Finned-Tube Evaporator and Comparison with Conventional DX-SAHP, Energy Build., 2020, vol. 207, p. 109632; https://doi.org/10.1016/j.enbuild.2019.109632.

    Article  Google Scholar 

  26. Kim, T., Choi, B.I., Han, Y.S., and Do, K.H., A Comparative Investigation of Solar-Assisted Heat Pumps with Solar Thermal Collectors for a Hot Water Supply System, Energy Convers. Manag., 2018, vol. 172, pp. 472–484.

    Article  Google Scholar 

  27. Zhou, J.Z., Ma, X.L., Zhao, X.D., Yuan, Y.P., Yu, M., and Li, J., Numerical Simulation and Experimental Validation of a Micro-Channel PV/T Modules Based Direct-Expansion Solar Heat Pump System, Renew. Energy, 2020, vol. 145, pp. 1992–2004.

    Article  Google Scholar 

  28. Lee, S.J., Shon, B.H., Jung, C.W., and Kang, Y.T., A Novel Type Solar Assisted Heat Pump Using a Low GWP Refrigerant (R-1233zd(E)) with the Flexible Solar Collector, Energy, 2018, vol. 149, pp. 386–396.

    Article  Google Scholar 

  29. Liu, F.Z., Wang, L., Wang, Q., and Wang, H.F., Experiment Study on Heating Performance of Solar-Air Source Heat Pump Unit, Procedia Eng., 2017, vol. 205, pp. 3873–3878.

    Article  Google Scholar 

  30. Chow, T.T., Pei, G., Fong, K.F., Lin, Z., Chan, A.L.S., and He, M., Modeling and Application of Direct-Expansion Solar-Assisted Heat Pump for Water Heating in Subtropical Hong Kong, Appl. Energy, 2010, vol. 87, no. 2, pp. 643–649.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Lang, Y.L., Mehendale, S. et al. Experimental Study on the Performance of a Solar Heat Pump System. J. Engin. Thermophys. 31, 156–172 (2022). https://doi.org/10.1134/S181023282201012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181023282201012X

Navigation