Skip to main content
Log in

Heat Conduction of Superheated Mixtures: Relationship with Excess Volume

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The article elucidates the characteristic features of heat transfer from a fast-response heater probe to a pulse-heated liquid solution in the heat conduction mode. The heating time was 10 ms; the heat flux density increase was up to 10 MW/m2 by order of magnitude. The experiments confirmed the conclusion by L.P. Filippov on the appearance of additional (with respect to the additive values) thermal resistance of liquid with the addition of a second component to it. The verification of the conclusion based on a new material relying on the substantial expansion of the range of variation of the excess volume and temperature, including in not fully stable states, briefly superheated relative to the temperature of liquid-vapor and/or liquid-liquid equilibrium. The results indirectly indicate the excess volume at the initial temperature of the solution as a key factor determining the value of its additional thermal resistance in the superheated state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. Nakoryakov, V.E., Energy of Russia—A Key Factor in Its Industry and Financial Recovery, J. Eng. Therm., 2015, vol. 24, no. 3, pp. 207–209; https://doi.org/10.1134/S1810232815030029

    Article  Google Scholar 

  2. Kurganov, V.A., Zeigarnik, Yu.A., and Maslakova, I.V., Normal and Deteriorated Heat Transfer Under Heating Turbulent Supercritical Pressure Coolants Flows in Round Tubes. Handbook of Research on Advancements in Supercritical Fluids Applications for Sustainable Energy Systems, Chen, L., Ed., IGI Global, 2021, pp. 494–532; DOI: 10.4018/978-1-7998-5796-9.ch014

  3. Abdulagatov, I.M., Abdulagatova, Z.Z., Grigor’ev, B.A., et al., Thermal Diffusivity, Heat Capacity, and Thermal Conductivity of Oil Reservoir Rock at High Temperatures, Int. J. Thermophys., 2021, vol. 42, p. 135; https://doi.org/10.1007/s10765-021-02878-x

    Article  ADS  Google Scholar 

  4. Winterton, R.H.S., Early Study of Heat Transfer: Newton and Fourier, Heat Transf. Eng., 2001, vol. 22, no. 5, pp. 3–11.

    Article  ADS  Google Scholar 

  5. Volodin, O. A., Pecherkin, N. I., and Pavlenko, A. N., Heat Transfer Enhancement at Boiling and Evaporation of Liquids on Modified Surfaces—A Review, High Temp., 2021, vol. 59, no. 2, pp. 248–276.

    Google Scholar 

  6. Zhukov, V.E., Slesareva, E.Y., and Pavlenko, A.N., Effect of Modification of Heat-Release Surface on Heat Transfer in Nucleate Boiling at Free Convection of Freon, J. Eng. Therm., 2021, vol. 30, pp. 1–13; doi.org/10.1134/S181023282101001X

    Article  Google Scholar 

  7. Bergles, A.E. and Manglik, R.M., Current Progress and New Developments in Enhanced Heat and Mass Transfer, J. Enhanced Heat Transfer, 2013, vol. 20, no. 1, pp. 1–15; https://doi.org/10.1615/ JEnhHeatTransf.2013006989

    Article  Google Scholar 

  8. Xing, W., Ullmann, A., Brauner, N., Plawsky, J., and Peles, Y., Advancing Micro-Scale Cooling by Utilizing Liquid-Liquid Phase Separation, Sci. Rep., 2018, vol. 8, p. 12093; https://doi.org/10.1038/s41598-018-30584-6

    Article  ADS  Google Scholar 

  9. Igolnikov, A.A., Rutin, S.B., and Skripov, P.V., Short-Term Measurements in Thermally-Induced Unstable States of Mixtures with LCST, Thermochim. Acta, 2021, vol. 695, p. 178815; https://doi.org/10.1016/ j.tca.2020.178815

    Article  Google Scholar 

  10. Grigull, U. and Sandner, H., Heat Conduction, Berlin: Springer, 1984.

    Book  Google Scholar 

  11. Rutin, S.B., Galkin, D.A., and Skripov, P.V., Investigation of Not Fully Stable Fluids by the Method of Controlled Pulse Heating. 3. Attainable Superheat of Solutions with Different Types of Critical Curve, Thermochim. Acta, 2017, vol. 651, pp. 47–52; https://doi.org/10.1016/j.tca.2017.02.017

    Article  Google Scholar 

  12. Igolnikov, A.A., Rutin, S.B., and Skripov, P.V., Investigation of Binary Liquids in Unstable States—An Experimental Approach, Liquids, 2021, vol. 1, pp. 36–46; https://doi.org/10.3390/liquids1010003

    Article  Google Scholar 

  13. Skripov, P.V., Igolnikov, A.A., Rutin, S.B., and Melkikh, A.V., Heat Transfer by Unstable Solution Having the Lower Critical Solution Temperature, Int. J. Heat Mass Transfer, 2022, vol. 184, p. 122290; https://doi.org/10.1016/

    Article  Google Scholar 

  14. Skripov, V.P. and Faizullin, M.Z., in Crystal–Liquid–Gas Phase Transition and Thermodynamic Similarity, Weinheim: Wiley–VCH Verlag GmbH & Co. KGaA, 2006, pp. 11–19.

  15. Hammerschmidt, U., and Sabuga, W., Transient Hot Strip (THS) Method: Uncertainty Assessment, Int. J. Thermophys., 2000, vol. 21, no. 1, pp. 217–248; https://doi.org/10.1023/A:1006621324390

    Article  Google Scholar 

  16. Sengers, J.V., Encountering Surprises in Thermophysics, Int. J. Thermophys., 2020, vol. 41, p. 117; https://doi.org/10.1007/s10765-020-02696-7

    Article  ADS  Google Scholar 

  17. Phylippov, L.P. and Kravchun, S.N., Thermal Conductivity of Liquid Solutions, Zh. Fiz. Khim., 1982, vol. 56, no. 11, pp. 2753–2756.

    Google Scholar 

  18. Kravchun, S.N., Thermal Conductivity of Binary Liquid Systems, Zh. Fiz. Khim., 1986, vol. 60, pp. 2176–2179.

    Google Scholar 

  19. Phylippov, L.P., Nefedov, S.N., and Kravchoon, S.N., The Investigation of Thermophysical Properties of Fluids by an Alternating Current Hot-Wire Method, Int. J. Thermophys., 1980, vol. 1, pp. 141–146; https://doi.org/10.1007/BF00504516

    Article  ADS  Google Scholar 

  20. Skripov, P.V., Starostin, A.A., and Volosnikov, D.V., Heat Transfer in Pulse-Superheated Liquids, Dokl. Phys., 2003, vol. 48, no. 5, pp. 228–231; https://doi.org/10.1134/1.1581317

    Article  ADS  MATH  Google Scholar 

  21. Rutin, S.B., Volosnikov, D.V., and Skripov, P.V., Heat Transfer under High-Power Heating of Liquids: 3. Threshold Decrease of Heat Conduction in Supercritical Region, Int. J. Heat Mass Transfer, 2015, vol. 91, pp. 1–6; https://doi.org/10.1615/InterfacPhenomHeatTransfer.2018025453

    Article  Google Scholar 

  22. Rutin, S.B., Igolnikov, A.A., and Skripov, P.V., High-Power Heat Release in Supercritical Water: Insight into the Heat Transfer Deterioration Problem, J. Eng. Therm., 2020, vol. 29, pp. 67–74; https://doi.org/10.1134/ S1810232820010063

    Article  Google Scholar 

  23. Marcos, M.A., Cabaleiro, D., Guimarey, M.J.G., Comunas, M.J.P, Fedele L., Fernandez J., and Lugo, L., PEG 400-Based Phase Change Materials Nano-Enhanced with Functionalized Graphene Nanoplatelets, Nanomaterials, 2018, vol. 8; https://doi.org/10.3390/nano8010016

    Article  Google Scholar 

  24. Sun, T.F., and Teja, A.S., Density, Viscosity and Thermal Conductivity of Aqueous Ethylene, Diethylene and Triethylene Glycol Mixtures between 290 K and 450 K, J. Chem. Eng. Data, 2003, vol. 48, pp. 198–202; https://doi.org/10.1021/je025610o

    Article  Google Scholar 

  25. Sun, T.F. and Teja, A.S., Density, Viscosity and Thermal Conductivity of Aqueous Propylene, Dipropylene and Tripropylene Glycol Mixtures between 290 K and 460 K, J. Chem. Eng. Data, 2004, vol. 48, pp. 1311–1317; https://doi.org/10.1021/je049960h

    Article  Google Scholar 

  26. Shruti, T., Chhavi, B., and Siddharth, P., Densities of {Poly(ethylene Glycol) + Water} over the Temperature Range (283.15 to 363.15) K, J. Chem. Thermodyn., 2010, vol. 42, pp. 1367–1371; https://doi.org/ 10.1016/j.jct.2010.06.001

    Article  Google Scholar 

  27. Mohammed, T.Z-M. and Alireza, S., Measurement and Correlation of Viscosities, Densities, and Water Activities for the System Poly(propylene Glycol) + MgSO4 + H2O at 25°C, J. Solution Chem., 1998, vol. 27, no. 7, pp. 663–673; https://doi.org/10.1021/je990255w

    Article  Google Scholar 

  28. Lexin, M.A., Yagov, V.V., Zabirov, A.R., Kanin, P.K., Vinogradov, M.M., and Molotova, I.A., Investigation of Intensive Cooling of High-Temperature Bodies in Binary Water-Isopropanol Mixture, High Temp., 2020, vol. 58, no. 3, pp. 369–376; https://doi.org/10.1134/S0018151X20030116

    Article  Google Scholar 

  29. Shamirzaev, A.S., Mordovskoi, A.S. and Kuznetsov, V.V., Heat Transfer during Flow Boiling of Water in Short Microchannel with High Aspect Ratio, J. Eng. Therm., 2021, vol. 30, no. 2, pp. 200–206, https://doi.org/10.1134/S181023282102003X

    Article  Google Scholar 

  30. Pavlenko, A.N. and Kuznetsov, D.V., Development of Methods for Heat Transfer Enhancement During Nitrogen Boiling to Ensure the Stabilization of HTS Devices, J. Eng. Therm., 2021, vol. 30, no. 4, pp. 526–562.

    Article  Google Scholar 

  31. Starostin, A.A., Luk’yanov, K.V., Smotritskiy, A.A., and Skripov, P.V., Investigation of Not Fully Stable Fluids by the Method of Controlled Pulse Heating. 4. Evaluation of PMMA Thermophysical Properties up to 673 K, Thermochim. Acta, 2019, vol. 682, p. 178416; https://doi.org/10.1016/j.tca.2019.178416

    Article  Google Scholar 

  32. Ruan, B., Kai, Y., Xiaowei, G., and Miao C., Estimation of Thermophysical Properties of a Hydrocarbon Fuel at a Supercritical Pressure, Appl. Therm. Eng., 2020, vol. 171, p. 115032; https://doi.org/10.1016/ j.applthermaleng.2020.115032

    Article  Google Scholar 

  33. King, Jr., A.D., The Solubility of Gases in Aqueous Solutions of Poly(propylene Glycol), J. Colloid Interface Sci., 2001, vol. 243, no. 2, pp. 457–462; https://doi.org/10.1006/jcis.2001.7913

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Skripov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Povolotskiy, I.I., Volosnikov, D.V. & Skripov, P.V. Heat Conduction of Superheated Mixtures: Relationship with Excess Volume. J. Engin. Thermophys. 31, 19–31 (2022). https://doi.org/10.1134/S1810232822010039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232822010039

Navigation