Skip to main content
Log in

A Study of the Solids Mixing in a Bubbling Fluidized Bed Using the TFM Method. Part II. Solids Dispersion Coefficient

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Solids mixing plays an essential role in industrial processes. In this study, solids mixing in the bubbling fluidized bed were investigated numerically by the Eulerian-Eulerian method. The solids mixing behaviour in the bubbling fluidized bed was studied via comparison of the dispersion coefficient of particles (the mixing index). The study mainly compared the effects of design parameters (gas distributor and baffles) and operating conditions (superficial gas velocity) on the solids mixing in the bubbling fluidized bed. A baffle can improve the vertical dispersion coefficient in the upper section, while the inlet gas distributor configuration more affects the lower section. Combining both a baffle and a gas distributor does show noticeable improvement in the solids mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. Yates, J.G. and Lettieri, P., Fluidized-Bed Reactors: Processes and Operating Conditions, Berlin: Springer, 2016.

    Book  Google Scholar 

  2. Gómez-Barea, A., Leckner, B., Modeling of Biomass Gasification in Fluidized Bed, Progress Energy Combust. Sci., 2010, vol. 36, pp. 444–509.

    Article  Google Scholar 

  3. Cubero, A., Sánchez-Insa, A., and Fueyo, N., The Effect of Particle Polydispersion in a Gasifier Bed Dynamics Using Eulerian-Eulerian Models, Fuel Proc. Technol., 2020, vol. 198, pp. 106–216.

    Article  Google Scholar 

  4. Pallarès, D. and Johnsson, F., A Novel Technique for Particle Tracking in Cold 2-Dimensional Fluidized Beds—Simulating Fuel Dispersion, Chem. Engin. Sci., 2006, vol. 61, pp. 2710–2720.

    Article  Google Scholar 

  5. Yang, Z., Duan, L., Li, L., Liu, D., and Zhao, C., Movement and Mixing Behavior of a Single Biomass Particle during Combustion in a Hot Fluidized Bed Combustor, Powder Technol., 2020, vol. 370, pp. 88–95.

    Article  Google Scholar 

  6. Chalermsinsuwan, B., Gidaspow, D., and Piumsomboon, P., Two- and Three-Dimensional CFD Modeling of Geldart A Particles in a Thin Bubbling Fluidized Bed: Comparison of Turbulence and Dispersion Coefficients, Chem. Engin. J., 2011, vol. 171, pp. 301–313.

    Article  Google Scholar 

  7. Du, B., Fan, L.-S., Wei, F., and Warsito, W., Gas and Solids Mixing in a Turbulent Fluidized Bed, AIChE J., 2002, vol. 48, pp. 1896–1909.

    Article  Google Scholar 

  8. Fernandes, F.A. and Lona, L.M., Heterogeneous Modeling for Fluidized-Bed Polymerization Reactor, Chem. Engin. Sci., 2001, vol. 56, pp. 963–969.

    Article  Google Scholar 

  9. Li, Y., Rong, J., Zhang, K., and Fan, X., Impact of Solid and Gas Flow Patterns on Solid Mixing in Bubbling Fluidized Beds, Chem. Engin. Res. Design, 2018, vol. 132, pp. 1037–1053.

    Article  Google Scholar 

  10. Chen, Y.-M., Recent Advances in FCC Technology, Powder Technol., 2006, vol. 163, pp. 2–8.

    Article  Google Scholar 

  11. Shah, M.T., Pareek, V.K., Evans, G.M., and Utikar, R.P., Effect of Baffles on Performance of Fluid Catalytic Cracking Riser, Particuol., 2018, vol. 38, pp. 18–30.

    Article  Google Scholar 

  12. Wang, L., Yuan, W., Duan, S., Sun, J., and Xu, L., Experimental and Numerical Investigation of Heat Transfer Characteristics in an Internally Circulating Fluidized Bed, Heat Mass Transfer, 2019, vol. 55, pp. 1195–1205.

    Article  ADS  Google Scholar 

  13. Jiradilok, V., Gidaspow, D., and Breault, R.W., Computation of Gas and Solid Dispersion Coefficients in Turbulent Risers and Bubbling Beds, Chem. Engin. Sci., 2007, vol. 62, pp. 3397–3409.

    Article  Google Scholar 

  14. Oke, O., Lettieri, P., Salatino, P., Solimene, R., and Mazzei, L., Numerical Simulations of Lateral Solid Mixing in Gas-Fluidized Beds, Chem. Engin. Sci., 2014, vol. 120, pp. 117–129.

    Article  Google Scholar 

  15. Grace, J.R., Bi, X., and Ellis, N., Essentials of Fluidization Technology, 2020.

  16. Yang, W.-C., Handbook of Fluidization and Fluid-Particle Systems, New York: CRC Press, 2003.

    Book  Google Scholar 

  17. Godfroy, L., Chaouki, J., and Larachi, F., Position and Velocity of a Large Particle in a Gas/Solid Riser Using the Radioactive Particle Tracking Technique, Can. J. Chem. Eng., 1999, vol. 77, pp. 253–261.

    Article  Google Scholar 

  18. Kashyap, M. and Gidaspow, D., Measurements of Dispersion Coefficients for FCC Particles in a Free Board, Ind. Eng. Chem. Res., 2011, vol. 50, pp. 7549–7565.

    Article  Google Scholar 

  19. Bellgardt, D. and Werther, J., A Novel Method for the Investigation of Particle Mixing on Gas-Solid Systems, Powder Technol., 1986, vol. 48, pp. 173–180.

    Article  Google Scholar 

  20. Chirone, R., Miccio, F., and Scala, F., On the Relevance of Axial and Transversal Fuel Segregation during the FB Combustion of a Biomass, Energy Fuels, 2004, vol. 18, pp. 1108–1117.

    Article  Google Scholar 

  21. Avidan, A. and Yerushalmi, J., Solids Mixing in an Expanded Top Fluid Bed, AIChE J., 1985, vol. 31, pp. 835–841.

    Article  Google Scholar 

  22. Van der Hoef, M.A., Ye, M., van Sint Annaland, M., Andrews, A.T., et al., Adv. Chem. Engin., Elsevier, 2006, vol. 31 pp. 65–149.

  23. Abramzon, B., Fluent Theory Guide, 2017.

  24. Yu, L., Lu, J., Zhang, X., and Zhang, S., Numerical Simulation of the Bubbling Fluidized Bed Coal Gasification by the Kinetic Theory of Granular Flow (KTGF), Fuel, 2007, vol. 86, pp. 722–734.

    Article  Google Scholar 

  25. Yang, L. (Lei), Padding, J.T. (Johan), and Kuipers, J.A.M. (Hans), Modification of Kinetic Theory of Granular Flow for Frictional Spheres, Part I: Two-Fluid Model Derivation and Numerical Implementation, Chem. Engin. Sci., 2016, vol. 152, pp. 767–782.

    Article  Google Scholar 

  26. Cloete, S., Zaabout, A., Johansen, S.T., van Sint Annaland, M., et al., The Generality of the Standard 2D TFM Approach in Predicting Bubbling Fluidized Bed Hydrodynamics, Powder Technol., 2013, vol. 235, pp. 735–746.

    Article  Google Scholar 

  27. Peng, B., Study on the Hydrodynamics and Flow Mechanisms in CFB Risers, Thesis, 2010.

  28. Goldschmidt, M.J.V. and Kuipers, J.A.M., Hydrodynamic Modelling of Dense Gas-Fluidized Beds Using the Kinetic Theory of Granular Flow: Effect of Coefficient of Restitution on Bed Dynamics, Chem. Engin. Sci., 2001, vol. 56, pp. 571–578.

    Article  Google Scholar 

  29. Liu, D. and Chen, X., Lateral Solids Dispersion Coefficient in Large-Scale Fluidized Beds, Combust. Flame, 2010, vol. 157, pp. 2116–2124.

    Article  Google Scholar 

  30. Dinh, C.-B., Liao, C.-C., and Hsiau, S.-S., Numerical Study of Hydrodynamics with Surface Heat Transfer in a Bubbling Fluidized-Bed Reactor Applied to Fast Pyrolysis of Rice Husk, Adv. Powder Technol., 2017, vol. 28, pp. 419–429.

    Article  Google Scholar 

  31. Banaei, M., Jegers, J., van Sint Annaland, M., Kuipers, J.A.M., and Deen, N.G., Tracking of Particles Using TFM in Gas-Solid Fluidized Beds, Adv. Powder Technol., 2018, vol. 29, pp. 2538–2547.

    Article  Google Scholar 

  32. Hernández-Jiménez, F., Sánchez-Prieto, J., Cano-Pleite, E., and Soria-Verdugo, A., Lateral Solids Meso-Mixing in Pseudo-2D Fluidized Beds by Means of TFM Simulations, Powder Technol., 2018, vol. 334, pp. 183–191.

    Article  Google Scholar 

  33. Rossbach, V., Utzig, J., Decker, R.K., Noriler, D., et al., Gas-Solid Flow in a Ring-Baffled CFB Riser: Numerical and Experimental Analysis, Powder Technol., 2019, vol. 345, pp. 521–531.

    Article  Google Scholar 

  34. Liu, Y., Lan, X., Xu, C., Wang, G., and Gao, J., CFD Simulation of Gas and Solids Mixing in FCC Strippers, AIChE J., 2012, vol. 58, pp. 1119–1132.

    Article  Google Scholar 

  35. Sriniketh, A. and Ashraf Ali, B., Computational Investigation of Hydrodynamics and Solid Circulation in Fluidized Bed Column, Chem. Engin. Comm., 2019, vol. 208, pp. 843–850.

    Article  Google Scholar 

  36. Li, N., Zhang, Y., Jiang, F., Qi, G., et al., Effect of Distributor Structure on the Particle Distribution in a Vertical Two-Pass Circulating Fluidized Bed Evaporator with a Baffle, Powder Technol., 2020, vol. 374, pp. 409–420.

    Article  Google Scholar 

  37. Xing, X., Zhang, C., Jiang, B., Sun, Y., et al., Numerical Study of the Effect of the Inlet Gas Distributor on the Bubble Distribution in a Bubbling Fluidized Bed, Chem. Engin. Res. Design, 2022, vol. 177, pp. 70–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, X., Zhang, C., Jiang, B. et al. A Study of the Solids Mixing in a Bubbling Fluidized Bed Using the TFM Method. Part II. Solids Dispersion Coefficient. J. Engin. Thermophys. 31, 144–155 (2022). https://doi.org/10.1134/S1810232822010118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232822010118

Navigation