Skip to main content
Log in

Temporal modulation of turbulence structure over progressive erosion boundary under influence of wave current combined flow

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

The action of wave dominated flow on river bank leads to retreatment of the bankline thereby causing intense erosion issues. The understanding of the bank erosion process mechanisms is of great importance in the context of protecting or controlling the progressive growth of bankline which imposes a direct threat on near bank fertile agricultural land and habitats. The present study emphasizes on acquiring improved understanding on the bank erosion processes related to wave action that severely impact the bank erosion rate. Turbulent fluctuations of the near bank flow were observed to be modulated due to the interplay between eroded bank wall and stream flow under the influence of wave following and against the current. The fluctuating turbulent velocity field was measured using micro acoustic Doppler velocimeter (ADV) at regions close to the bank wall during the different stages of the erosion progress. Streamwise turbulence intensity was found to be relatively large upto a particular undercut depth during the erosion progression. The integral time and length scales and Taylor microscales were determined for different temporal stages using autocorrelation function. Results depict that wave current combined flow in conjunction with rough wall surface formed by the erosion process amplifies the turbulent kinetic energy and turbulent dissipation rate at vicinity of the wall. The velocity fluctuations show large intermittency as evaluated from Gaussian pdf for wave current combined flows. This may affect the near wall turbulence structures which is a causative factor for enhancement of erosion rate as compared to current only flow.

Article highlights

  • Modulation of turbulence scales under wave current combined flow.

  • Interaction between wave current combined flow and roughness formed in bank wall due to erosion.

  • Turbulent structures and its effects on progressive bank erosion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Clark LA, Wynn TM (2007) Methods for determining stream bank critical shear stress and soil erodibility: implications for erosion rate predictions. Trans ASABE 50(1):95–106. https://doi.org/10.13031/2013.22415

    Article  Google Scholar 

  2. Jafarnejad M, Pfister M, Brühwiler E, Schleiss AJ (2017) Probabilistic failure analysis of riprap as riverbank protection under flood uncertainties. Stoch Environ Res Risk Assess 31(7):1839–1851. https://doi.org/10.1007/s00477-016-1368-6

    Article  Google Scholar 

  3. Faraci C, Scandura P, Musumeci RE, Foti E (2018) Waves plus currents crossing at a right angle: near-bed velocity statistics. J Hydraul Res. https://doi.org/10.1080/00221686.2017.1397557

    Article  Google Scholar 

  4. Buschman FA, Hoitink AJF, Van Der Vegt M, Hoekstra P (2009) Subtidal water level variation controlled by river flow and tides. Water Resour Res 45(10). https://doi.org/10.1029/2009WR008167

  5. LeBlond PH (1979) Forced fortnightly tides in shallow rivers. Atmos-Ocean 17(3):253–264. https://doi.org/10.1080/07055900.1979.9649064

    Article  Google Scholar 

  6. Godin G, Martínez A (1994) Numerical experiments to investigate the effects of quadratic friction on the propagation of tides in a channel. Cont Shelf Res 14(7–8):723–748. https://doi.org/10.1016/0278-4343(94)90070-1

    Article  Google Scholar 

  7. Umeyama M (2009) Changes in turbulent flow structure under combined wave-current motions. J Waterw Port Coast Ocean Eng 135(5): 213–227. https://doi.org/10.1061/(ASCE)0733-950X(2009)

  8. Grant WD, Madsen OS (1979) Combine wave and current interaction with rough bottom. J Geophys Res 84(4):1797–1808. https://doi.org/10.1029/JC084iC04p01797

    Article  Google Scholar 

  9. Lodahl CR, Sumer BM, Fredsoe J (1998) Turbulent combined oscillatory Cow and current in a pipe. J Fluid Mech 373:313–348. https://doi.org/10.1017/S0022112098002559

    Article  Google Scholar 

  10. Izadinia E, Heidarpour M, Schleiss AJ (2013) Investigation of turbulence flow and sediment entrainment around a bridge pier. Stoch Environ Res Risk Assess 27:1303–1314. https://doi.org/10.1007/s00477-012-0666-x

    Article  Google Scholar 

  11. LeBlond PH (1978) On tidal propagation in shallow rivers. J Geophys Res: Oceans 83(C9):4717–4721. https://doi.org/10.1029/JC083iC09p04717

    Article  Google Scholar 

  12. Hidayat H, Vermeulen B, Sassi MG, Torfs PJJF, Hoitink AJF (2011) Discharge estimation in a backwater affected meandering river. Hydrol Earth Syst Sci 15(8):2717–2728. https://doi.org/10.5194/hess-15-2717-2011

    Article  Google Scholar 

  13. Faraci C, Foti E, Marini A, Scandura P (2012) Waves plus currents crossing at a right angle: sandpit case. J Waterway Port Coast Ocean Eng. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000140

    Article  Google Scholar 

  14. Faraci C, Musumeci RE, Marino M, Ruggeri A, Carlo L, Jensen B, Foti E, Barbaro G, Elsaßer B (2021) Wave- and currentdominated combined orthogonal flows over fixed rough beds. Cont Shelf Res. https://doi.org/10.1016/j.csr.2021.104403

    Article  Google Scholar 

  15. Lim KY, Madsen OS (2016) An experimental study on near-orthogonal wave–current interaction over smooth and uniform fixed roughness beds. Coastal Eng. https://doi.org/10.1016/j.coastaleng.2016.05.005

  16. Van Hoften JDA, Karaki S (1977) Interaction of waves and a turbulent current. Coast Eng 404–422. https://doi.org/10.1061/9780872620834.023

  17. Kemp PH, Simons RR (1982) The interaction between waves and a turbulent current: waves propagating with the current. J Fluid Mech 116:227–250. https://doi.org/10.1017/S0022112082000445

    Article  Google Scholar 

  18. Kemp PH, Simons RR (1983) The interaction of waves and a turbulent current: waves propagating against the current. J Fluid Mech 130:73–89. https://doi.org/10.1017/S0022112083000981

    Article  Google Scholar 

  19. Umeyama M (2005) Reynolds stresses and velocity distributions in a wave–current coexisting environment. J Waterw Port Coast Ocean Eng 131(5): 203–212. https://doi.org/10.1061/(asce)0733-950x(2005)131:5(203)

  20. Das VK, Roy S, Barman K, Chaudhuri S, Debnath K (2019) Study of clay–sand network structures and its effect on river bank erosion: An experimental approach. Environ Earth Sci 78(20):1–18. https://doi.org/10.1007/s12665-019-8613-5

    Article  Google Scholar 

  21. Shojaeizadeh A, Safaei MR, Alrashed AA, Ghodsian M, Geza M, Abbassi MA (2018) Bed roughness effects on characteristics of turbulent confined wall jets. Measurement 122:325–338. https://doi.org/10.1016/j.measurement.2018.02.033

    Article  Google Scholar 

  22. Krogstad PÅ, Antonia RA (1999) Surface roughness effects in turbulent boundary layers. Exp Fluids 27:450–460. https://doi.org/10.1007/s003480050370

    Article  Google Scholar 

  23. Bhaganagar K, Kim J, Coleman G (2004) Effect of roughness on wall-bounded turbulence. Flow Turbul Combust 72(2–4):463–492. https://doi.org/10.1023/B:APPL.0000044407.34121.64

    Article  Google Scholar 

  24. Corrsin S (1963) Estimates of the relations between Eulerian and Lagrangian scales in large Reynolds number turbulence. J Atmos Sci 20(2):115–119. https://doi.org/10.1175/1520-0469(1963)020%3c0115:EOTRBE%3e2.0.CO;2

    Article  Google Scholar 

  25. Sreenivasan KR (1984) On the scaling of the turbulence energy dissipation rate. Phys Fluids 27:1048. https://doi.org/10.1063/1.864731

    Article  Google Scholar 

  26. Antonia RA, Luxton RE (197l). The response of a turbulent boundarylaver to a step change in surface roughness. Part I. Smooth to rough. J Fluid Mech 48:721–761. https://doi.org/10.1017/S0022112071001824

  27. Keylock CJ, Singh A, Foufoula-Georgiou E (2013) The influence of migrating bed forms on the velocity-intermittency structure of turbulent flow over a gravel bed. Geophys Res Lett 40(7):1351–1355. https://doi.org/10.1002/grl.50337

    Article  Google Scholar 

  28. Frisch U (1995) Turbulence: the legacy of A. Cambridge University Press, Cambridge, N. Kolmogorov

    Book  Google Scholar 

  29. Hopkinson LC, Walburn CZ (2016) Near-boundary velocity and turbulence in depth-varying stream flows. Environ Fluid Mech 16(3):559–574. https://doi.org/10.1007/s10652-015-9440-1

    Article  Google Scholar 

  30. Azevedo R, Roja-Solórzano LR, Leal JB (2017) Turbulent structures, integral length scale and turbulent kinetic energy (TKE) dissipation rate in compound channel flow. Flow Meas Instrum 57:10–19. https://doi.org/10.1016/j.flowmeasinst.2017.08.009

    Article  Google Scholar 

  31. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  Google Scholar 

  32. Gole CV, Vaidyaraman PP (1966) Salinity distribution and effect of fresh water flows in the Hooghly River. Coast Eng 1412–1434

  33. Das VK, Barman K, Roy S, Chaudhuri S, Debnath K (2020) Near bank turbulence of a river bend with self-similar morphological structures. CATENA 191:104582. https://doi.org/10.1016/j.catena.2020.104582

    Article  Google Scholar 

  34. Kothyari UC, Jain RK (2008) InCuence of cohesion on incipient motion condition of sediment mixtures. Water Resour Res 44(4):1–15. https://doi.org/10.1029/2007WR006326

    Article  Google Scholar 

  35. Jain RK, Kothyari UC (2009) Cohesion influences on erosion and bed load transport. Water Resour Res 45(6):1–17. https://doi.org/10.1029/2008WR007044

    Article  Google Scholar 

  36. Debnath K, Chaudhuri S (2010) Laboratory experiments on local scour around cylinder for clay and clay–sand mixed beds. Eng Geol 111(1–4):51–61. https://doi.org/10.1016/j.enggeo.2009.12.003

    Article  Google Scholar 

  37. Debnath K, Chaudhuri S (2012) Local scour around non-circular piers in clay–sand mixed cohesive sediment beds. Eng Geol 151:1–14. https://doi.org/10.1016/j.enggeo.2012.09.013

    Article  Google Scholar 

  38. Das VK, Roy S, Barman K, Debnath K, Chaudhuri S, Mazumder BS (2019) Investigations on undercutting processes of cohesive river bank. Eng Geol 252:110–124. https://doi.org/10.1016/j.enggeo.2019.03.004

    Article  Google Scholar 

  39. Mitchener H, Torfs H (1996) Erosion of mud/sand mixtures. Coast Eng 29:1–25. https://doi.org/10.1016/S0378-3839(96)00002-6

  40. Ettema R, Melville BW, Barkdoll B (1998) Scale effect in pier-scour experiments. J Hydraul Eng 124(6):639–642. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:6(639)

    Article  Google Scholar 

  41. Ettema R, Kirkil G, Muste M (2006) Similitude of large-scale turbulence in experiments on local scour at cylinders. J Hydraul Eng 132(1):33–40. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:1(33)

    Article  Google Scholar 

  42. Lee SO, Sturm TW (2009) Effect of sediment size scaling on physical modeling of bridge pier scour. J Hydraul Eng 135(10):793–802. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000091

    Article  Google Scholar 

  43. Hjulstrom F (1935) Studies of the morphological activity of rivers as illustrated by the River Fyris, Bulletin. Geol Inst Upsalsa 25:221–527

    Google Scholar 

  44. Debnath K, Chaudhuri S (2011) Effect of suspended sediment concentration on local scour around cylinder for clay–sand mixed sediment beds. Eng Geol 117(3):236–245. https://doi.org/10.1016/j.enggeo.2010.11.003

    Article  Google Scholar 

  45. Roy S, Debnath K, Mazumder BS (2018) Distribution of turbulent eddies behind a monopile for vortex lock-on condition due to wave current combined flow. Coast Eng 131:70–87. https://doi.org/10.1016/j.coastaleng.2017.10.010

    Article  Google Scholar 

  46. García CM, Cantero MI, Niño Y, García MH (2005) Turbulence measurements with acoustic Doppler velocimeters. J Hydraul Eng 131(12):1062–1073. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:12(1062)

    Article  Google Scholar 

  47. Shinozuka M, Jan C (1972) Digital simulation of random processes and its applications. J Sound Vib 25(1):111–128. https://doi.org/10.1016/0022-460X(72)90600-1

    Article  Google Scholar 

  48. Heskestad G (1965) A generalized Taylor hypothesis with application for high Reynolds number turbulent shear flows. J Appl Mech 32:735–739. https://doi.org/10.1115/1.3627310

    Article  Google Scholar 

  49. Engel FL, Rhoads BL (2017) Velocity profiles and the structure of turbulence at the outer bank of a compound meander bend. Geomorphology 295:191–201. https://doi.org/10.1016/j.geomorph.2017.06.018

    Article  Google Scholar 

  50. Goda Y (2000) Random seas and design of maritime structures. World Scientific Publishing Company, Singapore

    Book  Google Scholar 

  51. Dean RG, Dalrymple RA (1991) Water wave mechanics for engineers and scientists. World Scientific Publishing Company, Singapore

    Book  Google Scholar 

  52. Goring DG, Nikora VI (2002) Despiking acoustic Doppler velocimeter data. J Hydraul Eng 128(1):117–126. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(117)

    Article  Google Scholar 

  53. Schlicting H (1960) Boundary layer theory. McGraw Hill, New York

    Google Scholar 

  54. Guan D, Melville B, Friedrich H (2014) Flow patterns and turbulence structures in a scour hole downstream of a submerged weir. J Hydraul Eng 140(1):68–76. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000803

  55. Sanford L, Maa JPY (2001) A unified erosion formulation for fine sediments. Mar Geol 1791(2):9–23. https://doi.org/10.1016/S0025-3227(01)00201-8

    Article  Google Scholar 

  56. Amos CL, Daborn GR, Christian HA, Atkinson A, Robertson A (1992) In situ erosion measurements on fine-grained sediments from the Bay of Fundy. Mar Geol 1082:175–196. https://doi.org/10.1016/0025-3227(92)90171-D

    Article  Google Scholar 

  57. Das VK, Roy S, Barman K, Chaudhuri S, Debnath K (2020) Cohesive River bank erosion mechanism under wave-current interaction: a flume study. J Earth Sys Sci 129(1):1–20. https://doi.org/10.1007/s12040-020-1363-7

    Article  Google Scholar 

  58. Das VK, Hansda S, Debnath K, Chaudhuri S, Mazumder BS (2020b) Assessing the hydraulic performance of bamboo logs in riverbank stabilization: case study of Sundarbans, India. Hydrolog Sci J 1–18. https://doi.org/10.1080/02626667.2020.1851692

  59. Hansda S, Barman K, Roy S, Debnath K (2019) Quantification of turbulent eddies in time-space and frequency domain for wave-current combined flow over side-wall roughness. Ocean Eng 186:106080. https://doi.org/10.1016/j.oceaneng.2019.05.062

    Article  Google Scholar 

  60. Mazurek KA, Rajaratnam N, Sego DC (2001) Scour of cohesive soil by submerged circular turbulent impinging jets. J Hydraul Eng 127:598–606

    Article  Google Scholar 

  61. Esfahani FS, Keshavarzi A (2013) Dynamic mechanism of turbulent flow in meandering channels: considerations for deflection angle. Stoch Environ Res Risk Assess 27(5):1093–1114. https://doi.org/10.1007/s00477-012-0647-0

    Article  Google Scholar 

  62. Kean JW, Smith JD (2006) Form drag in rivers due to small scale natural topographic features: 2. Irregular sequences. J Geophys Res Earth Surf 111(F4). https://doi.org/10.1029/2006JF000490

  63. Sleath JFA (1987) Turbulent oscillatory flow over rough beds. J Fluid Mech 182:369–409. https://doi.org/10.1017/S0022112087002374

    Article  Google Scholar 

  64. McCaffrey K, Fox-Kemper B, Hamlington PE, Thomson J (2015) Characterization of turbulence anisotropy, coherence, and intermittency at a prospective tidal energy site: Observational data analysis. Renew Energy 76:441–453. https://doi.org/10.1016/j.renene.2014.11.063

    Article  Google Scholar 

  65. Novo PG, Kyozuka Y (2016) Field measurement and numerical study of tidal current turbulence intensity in the Kobe Strait of the Goto Islands. Nagasaki Prefecture J Mar Sci Technol 22(2):335–350. https://doi.org/10.1007/s00773-016-0414-x

    Article  Google Scholar 

  66. Imamura J, Takagi K, Nagaya S (2019) Engineering analysis of turbulent flow measurements near Kuchinoshima Island. J Mar Sci Technol 24(2):329–337. https://doi.org/10.1007/s00773-018-0573-z

    Article  Google Scholar 

  67. Krogstad PÅ, Antonia RA (1994) Structure of turbulent boundary layers on smooth and rough walls. J Fluid Mech 277:1–21. https://doi.org/10.1017/S0022112094002661

    Article  Google Scholar 

  68. Das VK, Hansda S, Debnath K, Chaudhuri S (2021) Riverbank stabilization based on the modulation of the near bank turbulence scales. Environ Dev Sustain 1–24. https://doi.org/10.1007/s10668-021-01298-z

  69. Venditti JG, Church MA, Bennett SJ (2005) Bed form initiation from a flat sand bed. J Geophys Res Earth Surf 110(F1). https://doi.org/10.1029/2004JF000149

  70. Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press

  71. Heydari N, Diplas P (2020) Flow dynamics in the vicinity of a gravel embedded vertical retaining wall: conditions corresponding to the initial stages of local erosion. Environ Fluid Mech 20(1):203–225. https://doi.org/10.1007/s10652-019-09715-8

    Article  Google Scholar 

  72. Roy S, Das VK, Debnath K (2019) Characteristics of intermittent turbulent structures for river bank undercut depth increment. CATENA 172:356–368. https://doi.org/10.1016/j.catena.2018.09.008

    Article  Google Scholar 

  73. Petti M, Longo S (2001) Turbulence experiments in the swash zone. Coast Eng 43(1):1–24. https://doi.org/10.1016/S0378-3839(00)00068-5

    Article  Google Scholar 

  74. Bewley GP, Chang K, Bodenschatz E (2012) On integral length scales in anisotropic turbulence. Phys Fluids 24(6):061702. https://doi.org/10.1063/1.4726077

    Article  Google Scholar 

  75. Nezu I, Nakagawa H (1993) Turbulence in open-channel flows. IAHR Monogr Ser

  76. Falcon E, Fauve S, Laroche C (2007) Observation of intermittency in wave turbulence. Phys Rev Lett 98(15):154501. https://doi.org/10.1103/PhysRevLett.98.154501

    Article  Google Scholar 

  77. Böttcher F, Peinke J (2007) Small and large scale fluctuations in atmospheric wind speeds. Stoch Environ Res Risk Assess 21(3):299–308. https://doi.org/10.1007/s00477-006-0065-2

    Article  Google Scholar 

  78. Coscarella F, Penna N, Servidio S, Gaudio R (2020) Turbulence anisotropy and intermittency in open-channel flows on rough beds. Phys Fluids 32(11):115127. https://doi.org/10.1063/5.0028119

    Article  Google Scholar 

  79. Pouquet A (2018) Intermittent turbulence in a global ocean model. Physics 11:21. https://physics.aps.org/articles/v11/21

  80. Jiménez J (2007) Intermittency in turbulence. In: Proceedings of 15th “Aha Huliko” a winter workshop, extreme events, pp 81–90

  81. She ZS, Leveque E (1994) Universal scaling laws in fully developed turbulence. Phys Rev Lett 72(3):336. https://doi.org/10.1103/PhysRevLett.72.336

    Article  Google Scholar 

  82. Cheng YS (2002) Exponential formula for bedload transport. J Hydraul Eng ASCE 128(10):942–946. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:10(942)

    Article  Google Scholar 

  83. Yang SY (2005) Formula for sediment transport in rivers, estuaries, and coastal waters. J Hydraul Eng ASCE 131(11):968–979. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:11(968)

Download references

Acknowledgements

The authors would like to acknowledge the Science & Engineering Research Board, Department of Science and Technology, Government of India for the financial support for this research (Contract No. EMR/2015/000266).

Funding

This work was supported by Department of Science and Technology, Government of India (Contract No. EMR/2015/000266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koustuv Debnath.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansda, S., Das, V.K. & Debnath, K. Temporal modulation of turbulence structure over progressive erosion boundary under influence of wave current combined flow. Environ Fluid Mech 22, 683–713 (2022). https://doi.org/10.1007/s10652-022-09846-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-022-09846-5

Keywords

Navigation