Skip to main content
Log in

Insights into the Molecular Structure of Yangchangwan Subbituminous Coal Based on the Combination of Experimental and Multi-Scale Computational Descriptions

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

This study aims to investigate the molecular structure of Yangchangwan (YCW) subbituminous coal using state-of-the-art, multi-scale computer-aided modeling methods and several chemical/physical techniques, such as proximate analysis and chemical composition analysis, FT-IR, 13C NMR, and XPS analyses. Based on the characterizations obtained, pivotal information concerning the elements and chemical bonding in the structure of the coal is obtained. The results reveal that the content of aromatic carbon of the YCW coal is 71.33%. The ratio of aromatic bridge carbon to peripheral carbon in the YCW coal is 0.32, indicating that the proportion of naphthalene in the coal structure is higher than that of anthracene and benzene. Oxygen mainly exists in the form of carbonyl, ether and carboxyl functional groups. Nitrogen is present as both pyridine and pyrrole. Methyne group is mostly in cyclic and aliphatic hydrocarbons. The single molecular formula of YCW coal is founded as C323H232O42N4S, which is attained using the average molecular structure according to the structural information obtained. Two- and three-dimensional molecular models of the YCW coal are built via multi-scale molecular modeling. The model is optimized and further confirmed by spectra simulation produced by QM calculations. Thus, this study illustrates the molecular structure and provides an understanding of the YCW coal at the atomic level through experimental and multi-scale computational descriptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Feng, Z., Pang, K., Bai, Z., Hou, R., and Li, W., Fuel, 2021, vol. 286, no. 10, p. 119489.

    Article  CAS  Google Scholar 

  2. Si, T., Hong, D., Li, P., and Guo, X., J. Anal. Appl. Pyrol., 2021, vol. 156, no. 6, p. 105098.

    Article  CAS  Google Scholar 

  3. Xqab, C., Di, W. B., Jia, W. B., and Sc, B., Resour. Pol., 2019, p. 101447.

  4. Dai, X., Bai, J., Huang, Q., Liu, Z., Bai, X., Lin, C.T., Li, W., Guo, W.P., Wen, X.D. and Du, S.Y., Fuel, 2018, vol. 216, p. 760.

    Article  CAS  Google Scholar 

  5. Peng, Z.W., Lin, X.L., Li,Z.Z., Hwang, J.Y., Kim, B.G., Zhang, Y.B., Li, G.H., and Jiang,T., Fuel Process. Technol., 2017, vol. 156, p. 171.

    Article  CAS  Google Scholar 

  6. Ohkawa, T., Sasai, T., Komoda, N., Murata, S., and Nomura, M., Energy Fuels, 1997, vol. 11, p. 937.

    Article  CAS  Google Scholar 

  7. Liu, J.X., Jiang, Y.Z., Yao, W., Jiang, X., and Jiang, X.M., Energy Fuels, 2019, vol. 33, p. 6215.

    Article  CAS  Google Scholar 

  8. Zhang, Z.Q., Kang, Q.N., Wei, S., Yun, T., Yan, G.C., and Yan, K.F., Energy Fuels, 2017, vol. 31, p. 1310.

    Article  CAS  Google Scholar 

  9. Feng, W., Li, Z., Gao, H., Wang, Q., Bai, H., and Li, P., Green Energy Environ., 2021, vol. 6, no.1, p. 150.

    Google Scholar 

  10. Mathews, J.P. and Sharma, A., Fuel, 2012, vol. 95, p. 19.

    Article  CAS  Google Scholar 

  11. Mathews, J.P. and Chaffee, A.L., Fuel, 2012, vol. 96, p. 1.

    Article  CAS  Google Scholar 

  12. Janjua, M.R.S.A., Open Chem., 2018, vol. 16, p. 978.

    Article  CAS  Google Scholar 

  13. Gyul’maliev, A. M., and Gagarin, S. G., Solid Fuel Chem., 2010, vol. 44, p. 154.

    Article  Google Scholar 

  14. Zheng, M., Li, X.X., Liu, J., and Guo, L., Energy Fuels, 2013, vol. 27, p. 2942.

    Article  CAS  Google Scholar 

  15. Xiang, J.H., Zeng, F.G., Liang, H.Z., Sun, B.L., Zhang, L., Li, M.F., and Jia, J.B., J. Chem. Technol. Biotechnol., 2011, vol. 39, p. 481.

    CAS  Google Scholar 

  16. Zheng, M., LI, X.X., Liu, J., Wang, Z., Gong, X.M., Guo, L., and Song, W.L., Energy Fuels, 2013, vol. 28, p. 522.

    Article  Google Scholar 

  17. Niekerk, D.V. and Mathews, J.P., Fuel, 2010, vol. 89, p. 73.

    Article  Google Scholar 

  18. Domazetis, G. and James, B.D., Org. Geochem., 2006, vol. 37, p. 244.

    Article  CAS  Google Scholar 

  19. Wang, J.P., Li, G.Y., Guo, R., Li, A.Q., and Liang, Y.H., Energy Fuels, 2016, vol. 31, p. 124.

    Article  Google Scholar 

  20. Gao, M., Li, X., and Guo, L., Fuel Process. Technol., 2018, vol. 178, p. 197.

    Article  CAS  Google Scholar 

  21. Everson, R. C., Okolo, G. N., Neomagus, H. W., and Santos, J. D., Fuel, 2013, vol. 109, p. 148.

    Article  CAS  Google Scholar 

  22. Patrakov, Y. F., Schastlivtsev, E. L., and Mandrov, G. A., Solid Fuel Chem., 2010, vol. 44, no. 5, p. 293.

    Article  Google Scholar 

  23. Wang, J., He, Y.Q., Li, H., Yu, J.D., Xie, W.N., and Wei, H., Fuel, 2017, vol. 203, p. 764.

    Article  CAS  Google Scholar 

  24. Zhao, Y. and Truhlar, D.G., Theor. Chem. Acc., 2008, vol. 120, p. 215.

    Article  CAS  Google Scholar 

  25. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., and Cheeseman, J.R., Gaussian 09, Pittsburgh: Gaussian Inc., 2009.

    Google Scholar 

  26. Van Duin, A.C.T., Goddard, W.A., Van Schoot, H., and Reax, F.F., Theoretical Chemistry, Amsterdam: SCM, 2017.

    Google Scholar 

  27. Chenoweth, K., Duin, A., and Goddard, W. A., J. Phys. Chem. A, 2008, vol. 112, p. 1040.

    Article  CAS  PubMed  Google Scholar 

  28. Weismiller, M.R., Van Duin, A.C.T., Lee, J.G. and Yetter, R.A., J. Phys. Chem. A, 2010, vol. 114, p. 5485.

    Article  CAS  PubMed  Google Scholar 

  29. Solum, M.S., Sarofim, A.F., Pugmire, R.J., Fletcher, T.H., and Zhang, H.F., Energy Fuels, 2001, vol. 15, p. 961.

    Article  CAS  Google Scholar 

  30. Gao, M.J., Li, X.X., Ren, C.X., Wang, Z., Pan, Y., and Guo, L., Energy Fuels, 2019, vol. 33, p. 2848.

    Article  CAS  Google Scholar 

  31. Kelemen, S. R., Afeworki, M., Gorbaty, M. L., and Cohen, A. D., Energy Fuels, 2002, vol.16, no.6, p. 1450.

    Article  CAS  Google Scholar 

  32. Kozlowski, M., Fuel, 2004, vol. 83, p. 259.

    Article  CAS  Google Scholar 

  33. Wang, Y. G., Wei, X. Y., Wang, S. K., Li, Z. K., Li, P., Liu, F. J., and Zong, Z.M., Fuel Process. Technol., 2016, vol.144, p. 248.

    Article  CAS  Google Scholar 

  34. Mu, X. G., Jin, Z. X., Deng, C. B., and Gao, F., Solid Fuel Chem., 2020, vol.54, no.5, p. 326.

    Article  CAS  Google Scholar 

  35. Budinova, T., Petrov, N., Minkova, V., and Razvigorova, M., Fuel, 1998, vol.77, no. 6, p. 577.

    Article  CAS  Google Scholar 

  36. Fujimoto, H., Carbon, 2003, vol. 41, no. 8, p. 1585.

    Article  CAS  Google Scholar 

  37. Bo, F., Bhatia, S. K., and Barry, J.C., Energy Fuels, 2003, vol. 17, p. 744.

    Article  Google Scholar 

  38. Feng, L., Zhao, G., Zhao, Y., Zhao, M., and Tang, J., Fuel, 2017, vol.203, p. 924.

    Article  CAS  Google Scholar 

  39. Liu, X., Song, D., He, X., Nie, B., and Wang, L., Fuel, 2019, vol. 245, p. 188.

    Article  CAS  Google Scholar 

  40. He, X., Liu, X., Nie, B., and Song, D., Fuel, 2017, vol. 206, p. 555.

    Article  CAS  Google Scholar 

  41. Vandenbroucke M. and Largeau. C., Org. Geochem., 2007, vol. 38, p. 719.

    Article  CAS  Google Scholar 

  42. Xiang, J., Zeng, F., Li, B., Zhang, L., Li, M., and Liang, H. Z., J. Chem. Technol. Biotechnol., 2013,vol. 41, p. 391.

    CAS  Google Scholar 

  43. Bunte, S. W., and Sun, H., J. Phys. Chem. B, 2000, vol. 104, p. 2477.

    Article  CAS  Google Scholar 

  44. Wolinski, K., Haacke, R., Hinton, J.F., and Pulay, P., J. Comput. Chem., vol. 18, no. 6, p. 816.

  45. Jia, J. B., Wang, Y., Li, F. H., Yi, G. Y., Zeng, F. G., and Guo, H. Y., Spectrosc. Spectral Anal., 2014, vol. 34, p. 47.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is mainly supported by Natural Science Foundation of China (no. 52006110), and Students Innovation Program of Ningxia University (no. GIP2020054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongcun Bai.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

These authors are contributed equally to this work

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, Y., Feng, W. et al. Insights into the Molecular Structure of Yangchangwan Subbituminous Coal Based on the Combination of Experimental and Multi-Scale Computational Descriptions. Solid Fuel Chem. 56, 67–77 (2022). https://doi.org/10.3103/S0361521922010116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521922010116

Keywords:

Navigation