Skip to main content
Log in

Provenances of the Upper Precambrian Clay Rocks in the Southern Urals: Results of Geochemical and Sm–Nd Isotope Geochemical Investigations

  • Published:
Stratigraphy and Geological Correlation Aims and scope Submit manuscript

Abstract

Changes in (La/Yb)N, Eu/Eu*, tNd(DM), and εNd(t) values in Upper Precambrian clay rocks on the western slope of the Southern Urals are considered. The (La/Yb)N, Eu/Eu*, and εNd(t) average values in Riphean and Vendian clay rocks are 5.7–15.1, 0.58–0.74, and –14.6 to –5.1, respectively. This reflects the change in the composition of the source areas and fits well into the general outline of subglobal events established by traditional geological methods in the conjunction area of the eastern regions of the East European Platform and the modern Southern Urals. The Early and Middle Riphean sedimentary sequences (1750–1250 Ma) were formed mainly owing to the erosion products of the mature continental crust of the East European Platform (tNd(DM) = 2.8–2.4 Ga). However, the pre-Upper Riphean hiatus led, probably, to a significant change in the composition of source areas about 1 Ga. The increase in magnitude of εNd(t) to –5.9 and decrease in tNd(DM) to 2.0 Ga in clay rocks of the Biryan Subformation of the Upper Riphean Zilmerdak Formation compared to underlying deposits suggest the appearance of the juvenile crust in the erosion area. This indicates the accumulation of fine-grained sediments at the beginning of the Late Riphean under the influence of active rifting processes, which is not recorded by traditional geological methods. The significant increase in (La/Yb)N (to 13.1 on average), decrease in εNd(t) to –14.6, and increase in tNd(DM) up to 2.5 Ga in clay rocks of the Vendian Bakeevo Formation compared to the Riphean rocks are interpreted as the result of the accumulation of the Bakeevo deposits due to the supply of the products of glacial exaration of the basement mature rocks during the Marino glacial period. The significant increase in εNd(t) to –6.8 and rejuvenation of tNd(DM) to 1.8 Ga in Vendian mudstones of the Basa and Zigan formations compared to the rocks of the lower part of the Asha Group reflect the appearance of a new mantle or volcanogenic material in the catchment areas during the Middle Vendian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. AM—additional materials.

REFERENCES

  1. Akimova, G.N., Cross bedding in deposits of the Zilmerdak Formation (Southern Urals), in Materialy po stratigrafii i tektonike Urala (Materials on Stratigraphy and Tectonics of the Urals), Leningrad: Vseross. Nauchno-Issled. Geol. Inst., 1967, pp. 36–65.

  2. Bartley, J.K., Khan, L.C., McWilliams, J.L., and Stagner, A.F., Carbon isotope chemostratigraphy of the Middle Riphean type section (Avzyan Formation, Southern Urals, Russia): Signal recovery in a fold-and-thrust belt, Chem. Geol., 2007, vol. 237, pp. 211–232.

    Google Scholar 

  3. Bayon, G., Toucanne, S., Skonieczny, C., Andre, L., Bermell, S., Cheron, S., Dennielou, B., Etoubleau, J., Freslon, N., Gauchery, T., Germain, Y., Jorry, S.J., Menot, G., Monin, L., Ponzevera, E., Rouget, M.-L., Tachikawa, K., and Barrat, J.A., Rare earth elements and neodymium isotopes in world river sediments revisited, Geochim. Cosmochim. Acta, 2015, vol. 170, pp. 17–38.

    Google Scholar 

  4. Bekker, Yu.R., Pozdnedokembriiskaya molassa Yuzhnogo Urala (Late Precambrian Molasse of the Southern Urals), Leningrad: Nedra, 1968 [in Russian].

  5. Bogdanova, S.V., Zemnaya kora Russkoi plity v rannem dokembrii (na primere Volgo-Ural’skogo segmenta) (The Earth’s Crust of the Russian Platform in the Early Precambrian: Evidence from the Volga-Ural Segment), Moscow: Nauka, 1986 [in Russian].

  6. Bogdanova, S.V., The East European Craton: Key stages of the Precambrian evolution, in Mater. LI Tekton. soveshch. “Problemy tektoniki kontinentov i okeanov” (Proc. LI Tecton. Conf. “Problems of Tectonics of Continents and Oceans”), Moscow: GEOS, 2019, pp. 64–70.

  7. Bogdanova, S.V., Bingen, B., Gorbatschev, R., Kheraskova, T.N., Kozlov, V.I., Puchkov, V.N., and Volozh, Yu.A., The East European Craton (Baltica) before and during the assembly of Rodinia, Precambrian Res., 2008, vol. 160, pp. 23–45.

    Google Scholar 

  8. Braccialli, L., Marroni, M., Pandolfi, L., and Rocchi, S., Geochemistry and petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): From source areas to configuration of margins, in Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry, Arribas, J., Critelli, S., and Johnsson, M.J., Eds., Spec. Pap.—Geol. Soc. Am., 2007, vol. 420, pp. 73–93.

    Google Scholar 

  9. Chamov, N.P., Stroenie i razvitie Srednerussko-Belomorskoi provintsii v neoproterozoe (Structure and Evolution of the Central Russian–Belomorian Province in the Neoproterozoic), Moscow: GEOS, 2016 [in Russian].

  10. Chugaev, A.V., Budyak, A.E., Chernyshev, I.V., Shatagin, K.N., Oleinikova, T.I., Tarasova, Yu.I., and Skuzovatov, S.Yu., Sources of clastic material of the Neoproterozoic metasedimentary rocks of the Baikal–Patom belt, Northern Transbaikalia: Evidence from Sm–Nd isotope data, Geochem. Int., 2017, vol. 55, no. 1, pp. 60–68.

    Google Scholar 

  11. Chumakov, N.M., On the stratigraphy of upper horizons of the Precambrian in the Southern Urals, Izv. Akad. Nauk SSSR. Ser. Geol., 1978, no. 12, pp. 35–48.

  12. Condie, K.C., Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales, Chem. Geol., 1993, vol. 104, pp. 1–37.

    Google Scholar 

  13. Condie, K.C. and Wronkiewicz, D.A., The Cr/Th ratio in Precambrian pelites from the Kaapvaal Craton as an index of craton evolution, Earth Planet. Sci. Lett., 1990, vol. 97, pp. 256–267.

    Google Scholar 

  14. Cullers, R.L., The control on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado, U.S.A., Chem. Geol., 1995, vol. 123, pp. 107–131.

    Google Scholar 

  15. Cullers, R.L., Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA, Chem. Geol., 2002, vol. 191, pp. 305–327.

    Google Scholar 

  16. Ernst, R.E., Large Igneous Provinces, Cambridge: Cambridge Univ. Press, 2014.

    Google Scholar 

  17. Fagel, N., Not, C., Gueibe, J., Mattielli, N., and Bazhenova, E., Late Quaternary evolution of sediment provenances in the Central Arctic Ocean: mineral assemblage, trace element composition and Nd and Pb isotope fingerprints of detrital fraction from the Northern Mendeleev Ridge, Quat. Sci. Rev., 2014, vol. 92, pp. 140–154.

    Google Scholar 

  18. Formirovanie zemnoi kory Urala (Formation of the Earth’s Crust in the Urals), Ivanov, S.N. and Samygin, S.G., Eds., Moscow: Nauka, 1986 [in Russian].

    Google Scholar 

  19. Geochemistry of Sediments and Sedimentary Rocks: Evolutionary Considerations to Mineral Deposit-Forming Environments. Lentz, D.R., Ed., Geol. Ass. Canada, GeoText 4, 2003.

  20. Geologiya i perspektivy neftegazonosnosti Urala (Geology and Petroleum Potential of the Urals), Yusupov, B.M., Ed., Moscow: Nauka, 1988 [in Russian].

    Google Scholar 

  21. Gorokhov, I.M., Mel’nikov, N.N., Kuznetsov, A.B., Konstantinova, G.V., and Turchenko, T.L., Sm-Nd systematics of fine-grained fractions of the Lower Cambrian blue clay in northern Estonia, Lithol. Miner. Resour., 2007, vol. 42, no. 5, pp. 482–495.

    Google Scholar 

  22. Gorokhov, I.M., Zaitseva, T.S., Kuznetsov, A.B., Ovchinnikova, G.V., Arakelyants, M.M., Kovach, V.P., Konstantinova, G.V., Turchenko, T.L., and Vasil’eva, I.M., Isotope systematics and age of authigenic minerals in shales of the Upper Riphean Inzer Formation, South Urals, Stratigr. Geol. Correl., 2019, vol. 27, no. 2, pp. 133–158.

    Google Scholar 

  23. Grazhdankin, D.V. and Maslov, A.V., The room for the Vendian in the International Chronostratigraphic Chart, Russ. Geol. Geophys., 2015, vol. 56, no. 4, pp. 549–559.

    Google Scholar 

  24. Interpretatsiya geokhimicheskikh dannykh (Interpretation of Geochemical Data), Sklyarov, E.V., Ed., Moscow: Intermet Inzh., 2001 [in Russian].

    Google Scholar 

  25. Ivanov, S.N., Krasnobaev, A.A., and Rusin, A.I., The Precambrian of the Urals, in Dokembrii v fanerozoiskikh skladchatykh poyasakh (The Precambrian in Phanerozoic Fold Belts), Leningrad: Nauka, 1982, pp. 81–94 [in Russian].

  26. Ivanov, S.N., Koroteev, V.A., and Puchkov, V.N., Stages of tectonic development and metallogeny of the Urals, in Aktual’nye problemy tektoniki SSSR (Actual Problems of Tectonics of the USSR), Moscow: Nauka, 1988, pp. 72–78 [in Russian].

  27. Jacobsen, S.B. and Wasserburg, G.J., Sm–Nd isotopic evolution of chondrites and achondrites, II, Earth Planet. Sci. Lett., 1984, vol. 67, pp. 137–150.

    Google Scholar 

  28. Karta dokembriiskikh formatsii Russkoi platformy i ee skladchatogo obramleniya (so snyatymi fanerozoiskimi otlozheniyami). Masshtab 1 : 2 500 000. Ob’’yasnitel’naya zapiska (The 1 : 2 500 000 Map of Precambrian Formations in the Russian Platform and Its Folded Framing without the Phanerozoic Cover. Explanatory Note), Leningrad: Vseross. Nauchno-Issled. Geol. Inst., 1983 [in Russian].

  29. Keller, B.M., Veis, A.F., and Gorozhanin, V.M., Tolparovo section of the Upper Precambrian (Southern Urals), Izv. Akad. Nauk SSSR. Ser. Geol., 1984, no. 9, pp. 119–124 [in Russian].

  30. Khudolei, A.K., Kontinental’nyi riftogenez i passivnye okrainy: tektonika i evolyutsiya osadochnykh basseinov (Continental Rifting and Passive Margins: Tectonics and Evolution of Sedimentary Basins), St. Petersbug: Sankt-Peterburg. Gos. Univ., 2004 [in Russian].

  31. Kovalev, S.G., Maslov, A.V., Kovalev, S.S., and Vysotsky, S.I., Sm–Nd age of picrites of the Lysogorsk complex (Southern Urals): Evidence of initial Middle Riphean magmatism, Dokl. Earth Sci., 2019, vol. 488, no. 1, pp. 58–61.

    Google Scholar 

  32. Kozlov, V.I., Verkhnii rifei i vend Yuzhnogo Urala (Upper Riphean and Vendian in the Southern Urals), Moscow: Nauka, 1982 [in Russian].

  33. Krasnobaev, A.A., Kozlov, V.I., Puchkov, V.N., Sergeeva, N.D., Busharina, S.V., and Lepekhina, E.N., Zirconology of Navysh volcanic rocks of the Ai Suite and the problem of the age of the Lower Riphean boundary in the Southern Urals, Dokl. Earth Sci., 2013a, vol. 448, no.2, pp. 185–190.

    Google Scholar 

  34. Krasnobaev, A.A., Kozlov, V.I., Puchkov, V.N., Busharina, S.V., Sergeeva, N.D., and Paderin, I.P., Zircon geochronology of the Mashak volcanic rocks and the problem of the age of the lower-middle Riphean boundary (Southern Urals), Stratigr. Geol. Correl., 2013b, vol. 21, no. 5, pp. 465–481.

    Google Scholar 

  35. Kuzmin, M.I., Yarmolyuk, V.V., and Kravchinskii, V., Deep geodynamics is the main mechanism of the Earth’s evolution, Nauka v Rossii, 2013, no. 6, pp. 10–19 [in Russian].

  36. Kuznetsov, A.B., Ovchinnikova,G.V., Gorokhov, I.M., Kaurova, O.K., Krupenin, M.T., and Maslov, A.V., Sr isotope signature and Pb–Pb age of the Bakal Limestone (Lower Riphean stratotype, Southern Urals), Dokl. Earth Sci., 2003, vol. 391, no. 6, pp. 819–822.

    Google Scholar 

  37. Kuznetsov, A.B., Ovchinnikova, G.V., Krupenin, M.T., Gorokhov, I.M., Maslov, A.V., Kaurova, O.K., and Ellmies, R., Diagenesis of carbonate and siderite deposits of the Lower Riphean Bakal Formation, the Southern Urals: Sr isotope characteristic and Pb–Pb age, Lithol. Miner. Resour., 2005, vol. 40, no. 3, pp. 195–215.

    Google Scholar 

  38. Kuznetsov, A.B., Ovchinnikova, G.V., Semikhatov, M.A., Gorokhov, I.M., Kaurova, O.K., Krupenin, M.T., Vasil’eva, I.M., Gorokhovskii, B.M., and Maslov, A.V., The Sr isotopic characterization and Pb–Pb age of carbonate rocks from the Satka formation, the Lower Riphean Burzyan Group of the Southern Urals, Stratigr. Geol. Correl., 2008, vol. 16, no. 2, pp. 120–137.

    Google Scholar 

  39. Kuznetsov, A.B., Bekker, A., Ovchinnikova, G.V., Gorokhov, I.M., and Vasilyeva, I.M., Unradiogenic strontium and moderate-amplitude carbon isotope variations in early Tonian seawater after the assembly of Rodinia and before the Bitter Springs Excursion, Precambrian Res., 2017, vol. 298, pp. 157–173.

    Google Scholar 

  40. Kuznetsov, A.B., Semikhatov, M.A., and Gorokhov, I.M., Strontium isotope stratigraphy: Principles and state of the art, Stratigr. Geol. Correl., 2018, vol. 26, no. 4, pp. 367–386.

    Google Scholar 

  41. Kuznetsov, N.B., Romanyuk, T.V., Shatsillo, A.V., Golovanova, I.V., Danukalov, K.N., and Meert, J., Age of detrital zircons from the Asha Group of the South Urals: Confirmation of spatial junction of the Uralian margin of Baltica and Queensland margin of Australia in Rodinia structure (“Australia upside down conception”), Litosfera, 2012, no. 4, pp. 59–77 [in Russian].

  42. Kuznetsov, N.B., Maslov, A.V., Belousova, E.A., Romanyuk, T.V., Krupenin, M.T., Gorozhanin, V.M., Gorozhanina, E.N., Seregina, E.S., and Tsel’movich, V.A., The first U–Pb (LA-ICP-MS) isotope data of detrital zircons from the basal levels of the Riphean stratotype, Dokl. Earth Sci., 2013, vol. 451, no. 1, pp. 724–728.

    Google Scholar 

  43. Kuznetsov, N.B., Meert, J.G., and Romanyuk, T.V., Ages of detrital zircons (U/Pb, LA-ICP-MS) from the Latest Neoproterozoic-Middle Cambrian(?) Asha Group and Early Devonian Takaty Formation, the Southwestern Urals: a test of an Australia–Baltica connection within Rodinia, Precambrian Res., 2014, vol. 244, pp. 288–305.

    Google Scholar 

  44. Kuznetsov, N.B., Belousova, E.A., Romanyuk, T.V., Degtyarev, K.E., Maslov, A.V., Gorozhanin, V.M., Gorozhanina, E.N., and Pyzhova, E.S., The first results of U/Pb dating detrital zircons from sandstones of the Zigalga Formation (Middle Riphean, the South Urals, Dokl. Earth Sci., 2017, vol. 475, no. 2, pp. 863–867.

    Google Scholar 

  45. Kuznetsov, N.B., Romanyuk, T.V., Maslov, A.V., Gorozhanin, V.M., Gorozhanina, E.N., Kanygina, N.A., Dubenskii, A.S., and Belousova, E.A., First results of U/Pb dating of detrital zircons from Upper Vendian sandstones of the Bakeevo Formation (Bashkir Uplift, Southern Urals), in Mater. LI Tekton. soveshch. “Problemy tektoniki kontinentov i okeanov” (Proc. LI Tecton. Conf. “Problems of Tectonics of Continents and Oceans”), Moscow: GEOS, 2019, pp. 305–310 [in Russian].

  46. Levashova, N.M., Bazhenov, M.L., Meert, J.G., Kuznetsov, N.B., Golovanova, I.V., Danukalov, K.N., and Fedorova, N.M., Paleogeography of Baltica in the Ediacaran: Paleomagnetic and geochronological data from the clastic Zigan Formation, South Urals, Precambrian Res., 2013, vol. 236, pp. 16–30.

    Google Scholar 

  47. Maccali, J., Hillaire-Marcel, C., and Not, C., Radiogenic isotope (Nd, Pb, Sr) signatures of surface and sea ice-transported sediments from the Arctic Ocean under the present interglacial conditions, Polar Res., 2018, vol. 37, 1442982. https://doi.org/10.1080/17518369.2018.1442982

    Article  Google Scholar 

  48. Maslov, A.V., Litologiya verkhnerifeiskikh otlozhenii Bashkirskogo megantiklinoriya (Lithology of Upper Riphean Deposits of the Bashkir Meganticlinorium), Moscow: Nauka, 1988 [in Russian].

  49. Maslov, A.V., Lithogeochemical properties of rocks of the Vendian Asha Group on the western slope of the Southern Urals, Litosfera, 2014, no. 1, pp. 13–32 [in Russian].

  50. Maslov, A.V., The reconstruction of categories of rivers formed Riphean sedimentary basins in the conjunction zone between the East European Platform and modern Southern Urals, Izv. Vuzov. Geol. Razved., 2019, no. 5, pp. 28–36 [in Russian].

  51. Maslov, A.V., Types of provenance areas of the Upper Precambrian deposits of the Volga-Ural Region, Vestn. Perm. Univ. Geol., 2020a, vol. 19, no. 2, pp. 101–110 [in Russian].

    Google Scholar 

  52. Maslov, A.V., Formation of sedimentary associations of the Riphean basal levels (Ai Formation): New data, in Mater. Dokl. 13 Mezhregional. nauchno-prakt. konf. “Geologiya, poleznye iskopaemye i problemy geoekologii Bashkortostana, Urala i sopredel’nykh territorii” (Proc. 13rd Interreg. Sci.-Pract. Conf. “Geology, Mineral Resources, and Geoecological Problems of Bashkortostan, Russia, and Adjacent Areas”), Ufa: Mir Pechati, 2020b, pp. 88–93 [in Russian].

  53. Maslov, A.V. and Krupenin, M.T., Razrezy rifeya Bashkirskogo megantiklinoriya (zapadnyi sklon Yuzhnogo Urala) (Riphean Sections of the Bashkirian Meganticlinorium on the Western Slope of the Southern Urals), Sverdlovsk: Ural. Otd. Akad. Nauk SSSR, 1991 [in Russian].

  54. Maslov, A.V., Krupenin, M.T., Gareev, E.Z., and Anfimov, L.V., Rifei zapadnogo sklona Yuzhnogo Urala (klassicheskie razrezy, sedimento- i litogenez, minerageniya, geologicheskie pamyatniki prirody). T. I (The Riphean on the Western Slope of the Southern Urals: Classic Sections, Sedimentogenesis, Lithogenesis, Minerageny, and Geological Monuments of Nature. Vol. 1), Ekaterinburg: Inst. Geol. Geofiz. Ural. Otd. Ross. Akad. Nauk, 2001 [in Russian].

  55. Maslov, A.V., Olovyanishnikov, V.G., and Isherskaya, M.V., Riphean deposits of eastern, north-eastern and northern periphery of the Russian Platform and western megazone of the Urals: Lithostratigraphy, formation conditions and types of sedimentary sequences, Litosfera, 2002, no. 2, pp. 54–95 [in Russian].

  56. Maslov, A.V., Ronkin, Yu.L., Krupenin, M.T., and Gareev, E.Z., The εNd(T) variations in shales of Upper Precambrian sedimentary sequences of Siberia, southeastern China, and the Urals as a possible evidence of supply of fresh juvenile mantle material to the crust, in Geologiya, poleznye iskopaemye i problemy ekologii Bashkortostana. T. 1 (Geology, Mineral Resources, and Ecological Problems of Bashkortostan), Ufa: Inst. Geol. Ufimsk. Nauchn. Tsentr Ross. Akad. Nauk, 2003, pp. 50–53 [in Russian].

  57. Maslov, A.V., Krupenin, M.T., Ronkin, Yu.L., Gareev, E.Z., Lepikhina, O.P., and Popova, O.Yu., Fine-grained aluminosiliciclastic rocks of the Middle Riphean stratotype section in the Southern Urals: formation conditions, composition and provenance evolution, Lithol. Miner. Resour., 2004a, vol. 39, no. 4, pp. 357–381.

    Google Scholar 

  58. Maslov, A.V., Ronkin, Yu.L., Krupenin, M.T., Gareev, E.Z., and Lepikhina, O.P., The Lower Riphean fine-grained aluminosilicate clastic rocks of the Bashkir anticlinorium in the Southern Urals: Composition and evolution of their provenance, Geochem. Int., 2004b, vol. 42, no. 6, pp. 561–578.

    Google Scholar 

  59. Maslov, A.V., Gareev, E.Z., and Podkovyrov, V.N., Upper Riphean and Vendian sandstones of the Bashkirian anticlinorium, Lithol. Miner. Resour., 2010, vol. 45, no. 3, pp. 285–301.

    Google Scholar 

  60. Maslov, A.V., Podkovyrov, V.N., Gareev, E.Z., and Ronkin, Yu.L., Contribution of Grenvillian events to the formation of most complete Riphean sedimentary successions in Northern Eurasia, Stratigr. Geol. Correl., 2014, vol. 22, no. 2, pp. 160–174.

    Google Scholar 

  61. Maslov, A.V., Mizens, G.A., Vovna, G.M., Kiselev, V.I., and Ronkin, Yu.L., Some general features of the Western Urals terrigenous deposits formation: Synthesis of U–Pb isotopic age data of detrital zircons and geochemical investigation of the shales and mudstones, Litosfera, 2016, no. 3, pp. 27–46 [in Russian].

  62. Maslov, A.V., Gareev, E.Z., Podkovyrov, V.N., and Kotova, L.N., Synrift deposits of the lower part of the Riphean stratotype, Southern Urals (a short lithochemical characterization), Vestn. SPbGU. Nauki Zemle, 2018a, vol. 63, no. 1, pp. 36–55.

    Google Scholar 

  63. Maslov, A.V., Gareev, E.Z., Podkovyrov, V.N., Kovalev, S.G., and Kotova, L.N., Synrift deposits of the Middle Riphean Mashak Formation, Southern Urals (a short lithochemical characterization), Vestn. SPbGU. Nauki Zemle, 2018b, vol. 63, no. 3, pp. 303–325.

    Google Scholar 

  64. Maslov, A.V., Erokhin, Yu.V., Gerdes, A., Ronkin, Yu.L., and Ivanov, K.S., First results of U–Pb LA–ICP–MS isotope Dating of detrital zircons from arkose sandstone of the Biryan Subformation of Zilmerdak Formation (Upper Riphean, South Urals), Dokl. Earth Sci., 2018c, vol. 482, no. 2, pp. 1275–1277.

    Google Scholar 

  65. Maslov, A.V., Shevchenko, V.P., Kuznetsov, A.B., and Stein, R., Geochemical and Sr–Nd–Pb–isotope characteristics of ice–rafted sediments of the Arctic Ocean, Geochem. Int., 2018d, vol. 56, no. 8, pp. 751–765.

    Google Scholar 

  66. Maslov, A.V., Grazhdankin, D.V., Dub, S.A., Mel’nik, D.S., Parfenova, T.M., Kolesnikov, A.V., Cherednichenko, N.V., and Kiseleva, D.V., Sedimentology and geochemistry of the Uk Formation, Upper Riphean, the Southern Urals, Litosfera, 2019, vol. 19, no. 5, pp. 659–686 [in Russian].

    Google Scholar 

  67. Maslov, A.V., Kuznetsov, A.B., Politova, N.V., Shevchenko, V.P., Kozina, N.V., Novigatsky, A.N., Kravchishina, M.D., and Alexeeva, T.N., Distribution of trace and rare-earth elements, and Nd, Pb, and Sr isotopes in the surface sediments of the Barents Sea, Geochem. Int., 2020a, vol. 58, pp. 687–703.

    Google Scholar 

  68. Maslov, A.V., Mel’nichuk, O.Yu., Mizens, G.A., Titov, Yu.V., and Chervyakovskaya, M.V., Provenance reconstructions. Article 2. Litho- and isotope-geochemical approaches and methods, Litosfera, 2020b, vol. 20, no. 1, pp. 40–62 [in Russian].

    Google Scholar 

  69. McCulloch, M.T. and Wasserburg, G.J., Sm–Nd and Rb–Sr chronology of continental crust formation, Science, 1978, vol. 200, pp. 1003–1011.

    Google Scholar 

  70. McLennan, S.M., Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes, in Geochemistry and Mineralogy of Rare Earth Elements, Lipin, B.R. and McKay, G.A., Eds., Rev. Mineral., 1989, vol. 21, pp. 169–200.

    Google Scholar 

  71. McLennan, S.M. and Taylor, S.R., Sedimentary rocks and crustal evolution: Tectonic setting and secular trends, J. Geol., 1991, vol. 99, pp. 1–21.

    Google Scholar 

  72. McLennan, S.M., Hemming, S.R., McDaniel, D.K., and Hanson, G.N., Geochemical approaches to sedimentation, provenance and tectonics, in Processes Controlling the Composition of Clastic Sediments, Johnsson, M.J. and Basu A., Eds., Spec. Pap.—Geol. Soc. Am., 1993, vol. 284, pp. 21–40.

    Google Scholar 

  73. Michard, A., Gurriet, P., Soudant, M., and Albarede, F., Nd isotopes in French Phanerozoic shales: External vs. internal aspects of crust evolution, Geochim. Cosmochim. Acta, 1985, vol. 49, pp. 601–610.

    Google Scholar 

  74. Nizhnii rifei Yuzhnogo Urala (Lower Riphean in the Southern Urals), Semikhatov, M.A., Ed., Moscow: Nauka, 1989 [in Russian].

    Google Scholar 

  75. Nozhkin, A.D., Turkina, O.M., Maslov, A.V., Dmitrieva, N.V., Kovaya, V.P., and Ronkin, Yu.L., Sm–Nd isotopic systematics of Precambrian metapelites from the Yenisei range and age variations of their provenances, Dokl. Earth Sci., 2008, vol. 423, no. 2, pp. 1495–1500.

    Google Scholar 

  76. Och, L. and Shields-Zhou, G.A., The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling, Earth-Sci. Rev., 2011, vol. 110, pp. 26–57.

    Google Scholar 

  77. Ovchinnikova, G.V., Vasil’eva, G.V., Semikhatov, M.A., Kuznetsov, A.B., Gorokhov, I.M., Gorokhovskii, B.M., and Levskii, L.K., U–Pb systematics on Proterozoic carbonate rocks: the Inzer Formation of the Upper Riphean stratotype (Southern Urals), Stratigr. Geol. Correl., 1998, vol. 6, no. 4, pp. 336–347.

    Google Scholar 

  78. Ovchinnikova, G.V., Vasil’eva, I.M., and Semikhatov, M.A., The Pb–Pb trail dating of carbonates with open U–Pb systems: the Min’yar Formation of the Upper Riphean Stratotype, Southern Urals, Stratigr. Geol. Correl., 2000, vol. 8, no. 6, pp. 529–543.

    Google Scholar 

  79. Ovchinnikova, G.V., Kuznetsov, A.B., Vasil’eva, I.M., Gorokhov, I.M., Krupenin, M.T., Gorokhovskii, B.M., and Maslov, A.V., Pb–Pb age and Sr isotopic characteristic of the Middle Riphean phosphorite concretions: the Zigaza–Komarovo Formation of the South Urals, Dokl. Earth Sci., 2013, vol. 451, no. 2, pp. 798–802.

    Google Scholar 

  80. Petrov, G.A., Signs of the Late Precambrian setting for plate sliding in the Middle Urals, in Mater. XLVI Tekton. soveshch. “Tektonika skladchatykh poyasov Evrazii: skhodstvo, razlichie, kharakternye cherty noveishego goroobrazovaniya, regional’nye obobshcheniya,” T. II (Proc. XLVI Tecton. Conf. “The Tectonics of the Folded Belts of Eurasia: Similarities, Differences, Characteristic Features of Recent Mountain Building, Regional Generalizations”), Moscow: GEOS, 2014, pp. 74–78 [in Russian].

  81. Petrov, G.A., Ronkin, Yu.L., Maslov, A.V., Ivanova, T.V., Izotov, V.G., Kozlov, P.S., and Lepikhina, O.P., Sm–Nd systematics of crystalline rocks of the basement of the East Russian Platform as a key to reconstruction of drift sources for the Upper Precambrian sedimentary associations of the Western Urals: First research results, in Mater. VIII Mezhd. konf. “Novye idei v naukakh o Zemle”. T. 1 (Proc. VIII Int. Conf. “New Ideas in Earth Sciences”), Moscow: RGGRU, 2007, pp. 254–257 [in Russian].

  82. Podkovyrov, V.N., Semikhatov, M.A., Kuznetsov, A.B., Vinogradov, D.P., Kozlov, V.I., and Kislova, I.V., Carbonate carbon isotopic composition in the Upper Riphean stratotype, the Karatau Group, Southern Urals, Stratigr. Geol. Correl., 1998, vol. 6, no. 4, pp. 319–335.

    Google Scholar 

  83. Podkovyrov, V.N., Kotova, L.N., Kotov, A.B., Kovach, V.P., Graunov, O.V., and Zagornaya, N.Yu., Provenance and source rocks of Riphean sandstones in the Uchur–Maya region (east Siberia): Implications of geochemical data and Sm–Nd isotopic systematics, Stratigr. Geol. Correl., 2007, vol. 15, no. 1, pp. 41–56.

    Google Scholar 

  84. Podkovyrov, V.N., Maslov, A.V., Kuznetsov, A.B., and Ershova, V.B., Lithostratigraphy and geochemistry of Upper Vendian–Lower Cambrian deposits in the northeastern Baltic monocline, Stratigr. Geol. Correl., 2017, vol. 25, no. 1, pp. 1–20.

    Google Scholar 

  85. Prokoph, A., Ernst, R.E., and Buchan, K.L., Time series analysis of Large Igneous Provinces: 3500 Ma to present, J. Geol., 2004, vol. 112, pp. 1–22.

    Google Scholar 

  86. Puchkov, V.N., Paleogeodinamika Yuzhnogo i Srednego Urala (Paleogeodynamics of the Southern and Middle Urals), Ufa: Gilem, 2000 [in Russian].

  87. Puchkov, V.N., Timanides and Uralides: Main features of important structural levels of the Urals and the Timan–Pechora Province, in Geologiya, poleznye iskopaemye i problemy geoekologii Bashkortostana, Urala i sopredel’nykh territorii (Geology, Mineral Resources, and Geoecological Problems of Bashkortostan, Russia, and Adjacent Areas), Ufa: DizainPoligrafServis, 2008, pp. 70–81 [in Russian].

  88. Puchkov, V.N., Evolution of the lithosphere: From the Pechora Sea to the Timan Orogen, from the paleo-Uralian Ocean to the Ural Orogen, in Problemy tektoniki Tsentral’noi Azii (Problems of Tectonics of Central Asia), Moscow: GEOS, 2005, pp. 309–342 [in Russian].

  89. Puchkov, V.N., Plumes – a new word in geology of the Urals, Litosfera, 2018, vol. 18, no. 4, pp. 483–499 [in Russian].

    Google Scholar 

  90. Puchkov, V.N., Plumes in the history of the Urals, Byull. Mosk. O–va Ispyt. Prir., Otd. Geol., 2013, no. 4, pp. 64–73.

  91. Raaben, M.E., Verkhnii rifei kak edinitsa obshchei stratigraficheskoi shkaly (The Upper Riphean as a Unit of the International Stratigraphic Chart), Moscow: Nauka, 1975 [in Russian].

  92. Razumovskii, A.A., Novikov, I.A., Rud’ko, S.V., Kuznetsov, N.B., and Yashunskii, Yu.V., U–Pb isotope age of ash tuffs from the Upper Vendian Basa Formation (Asha Group, Southern Urals), in Mater. LII Tekton. soveshch. “Fundamental’nye problemy tektoniki i geodinamiki.” T. 2. (Proc. LII tecton. Conf. “Fundamental Problems of Tectonics and Geodynamics”), Moscow: GEOS, 2020, pp. 219–224 [in Russian].

  93. Rollinson, H.R., Using Geochemical Data: Evaluation, Presentation, Interpretation, Essex, London Group UK Ltd, 1994.

    Google Scholar 

  94. Romanyuk, T.V., Kuznetsov, N.B., Maslov, A.V., Belousova, E.A., Ronkin, Yu.L., Gorozhanin, V.M., and Gorozhanina, E.N., Geochemical and Lu–Hf (LA-ICP-MS) systematic of detrital zircons from Lower Neoproterozoic Lemeza sandstones, Southern Urals, Dokl. Earth Sci., 2013, vol. 453, no. 2, pp. 1200–1204.

    Google Scholar 

  95. Romanyuk, T.V., Kuznetsov, N.B., Maslov, A.V., Belousova, E.A., Krupenin, M.T., Ronkin, Yu.L., Gorozhanin, V.M., and Gorozhanina, E.N., Geochemical and Lu/Hf Isotopic (LA-ICP-MS) signature of detrital zircons from sandstones of the basal levels of the Riphean stratotype, Dokl. Earth Sci., 2014, vol. 459, no. 1, pp. 1356–1360.

    Google Scholar 

  96. Romanyuk, T.B., Kuznetsov, N.B., Gorozhanin, B.M., Gorozhanina, E.N., Belousova, E.A., and Pyzhova, E.S., The Bakal and Zigalga formations of the Riphean stratotype section (Bashkir Uplift, Southern Urals): The TerraneChrone® detrital zircon study, in Mater. XLIX Tekton. konf., posvyashch. 100-letiyu akad. Yu. M. Pushcharovskogo “Tektonika sovremennykh i drevnikh okeanov i ikh okrain” (Proc. XLIX Tecton. Conf. Devoted to 100th Anni. Acad. Yu. M. Pushcharovsky “Tectonics of Modern and Ancient Oceans and Their Margins”), Moscow: GEOS, 2017, pp. 152–157 [in Russian].

  97. Romanyuk, T.V., Kuznetsov, N.B., Belousova, E.A., Gorozhanin, V.M., and Gorozhanina, E.N., Paleotectonic and paleogeographic conditions for the accumulation of the Lower Riphean Ai Formation in the Bashkir Uplift (Southern Urals): the TerraneChrone® detrital zircon study, Geodynam. Tectonophys., 2018, vol. 9, no. 1, pp. 1–37 [in Russian].

    Google Scholar 

  98. Semikhatov, M.A., Shurkin, K.A., Aksenov, E.M., Bekker, Yu.R., Bibikova, E.V., Duk, V.L., Esipchuk, K.E., Karsakov, L.P., Kiselev, V.V., Kozlov, V.I., Lobach-Zhuchenko, S.B., Negrutsa, V.Z., Robonen, V.I., Sez’ko, A.I., Filatova, L.I., Khomentovskii, V.V., Shemyakin, V.M., and Shul’diner, V.I., New stratigraphic scale of the Precambrian of the USSR, Izv. Akad. Nauk SSSR. Ser. Geol., 1991, no. 8, pp. 3–14.

  99. Semikhatov, M.A., Kuznetsov, A.B., Gorokhov, I.M., Konstantinova, G.V., Mel’nikov, N.N., Podkovyrov, V.N., and Kutyavin, E.P., Low 87Sr/86Sr ratios in seawater of the Grenville and post-Grenville time: Determining factors, Stratigr. Geol. Correl., 2002, vol. 10, no. 1, pp. 1–41.

    Google Scholar 

  100. Semikhatov, M.A., Kuznetsov, A.B., Maslov, A.V., Gorokhov, I.M., and Ovchinnikova, G.V., Stratotype of the Lower Riphean, the Burzyan Group of the Southern Urals: Lithostratigraphy, paleontology, geochronology, Sr and C-isotopic characteristics of its carbonate rocks, Stratigr. Geol. Correl., 2009, vol. 17, no. 6, pp.574–601.

    Google Scholar 

  101. Semikhatov, M.A., Kuznetsov, A.B., and Chumakov, N.M., Isotope age of boundaries between the general stratigraphic subdivisions of the Upper Proterozoic (Riphean and Vendian) in Russia: The evolution of opinions and the current estimate, Stratigr. Geol. Correl., 2015, vol. 23, no. 6, pp. 568–579.

    Google Scholar 

  102. Stratotip rifeya. Stratigrafiya. Geokhronologiya (Stratotype of the Riphean. Stratigraphy. Geochronology), Keller, B.M. and Chumakov, N.M., Eds., Moscow: Nuka, 1983 [in Russian].

    Google Scholar 

  103. Taylor, S.R. and McLennan, S.M., The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks, Oxford: Blackwell, 1985.

    Google Scholar 

  104. Taylor, S.R. and McLennan, S.M., The chemical evolution of the continental crust, Rev. Geophys., 1995, vol. 33, pp. 241–265.

    Google Scholar 

  105. Turgeon, S. and Brumsack, H.-J., Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian–Turonian Boundary Event (Cretaceous) in the Umbria-Marche basin of central Italy, Chem. Geol., 2006, vol. 234, pp. 321–339.

    Google Scholar 

  106. Tütken, T., Eisenhauer, A., Wiegand, B., and Hansen, B.T., Glacial-interglacial cycles in Sr and Nd isotopic composition of Arctic marine sediments triggered by the Svalbard/Barents Sea ice sheet, Mar. Geol., 2002, vol. 182, pp. 351–372.

    Google Scholar 

  107. Willner, A.P., Ermolaeva, T., Stroink, L., Glasmacher, U.A., Giese, U., Puchkov, V.N., Kozlov, V.I., and Walter, R., Contrasting provenance signals in Riphean and Vendian sandstones in the SW Urals (Russia): Constraints for a change from passive to active continental margin conditions in the Neoproterozoic, Precambrian Res., 2001, vol. 110, nos. 1–4, pp. 215–239.

    Google Scholar 

  108. Willner, A.P., Sindern, S., Metzger, R., Ermolaeva, T., Kramm, U., Puchkov, V., and Kronz, A., Typology and single grain U/Pb ages of detrital zircons from Proterozoic sandstones in the SW Urals (Russia): Early time marks at the eastern margin of Baltica, Precambrian Res., 2003, vol. 124, pp. 1–20.

    Google Scholar 

  109. Zaitseva, T.S., Gorokhov, I.M., Ivanovskaya, T.A., Semikhatov, M.A., Kuznetsov, A.B., Mel’nikov, N.N., Arakelyants, M.M., and Yakovleva, O.V., Mössbauer characteristics, mineralogy and isotopic age (Rb–Sr, K–Ar) of Upper Riphean glauconites from the Uk Formation, the Southern Urals, Stratigr. Geol. Correl., 2008, vol. 16, no. 3, pp. 227–247.

    Google Scholar 

  110. Zaitseva, T.S., Kuznetsov, A.B., Gorozhanin, V.M., Gorokhov, I.M., Ivanovskaya, T.A., and Konstantinova, G.V., The lower boundary of the Vendian in the Southern Urals as evidenced by the Rb–Sr age of glauconites of the Bakeevo Formation, Stratigr. Geol. Correl., 2019, vol. 27, no. 5, pp. 573–587.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the reviewers of our manuscript, as well as M.A. Rogov, N.B. Kuznetsov and S.V. Naugolnykh for a helpful discussion of the issues raised in the article, comments, and recommendations, most of which were taken into account. Figures for the present paper were made by N.S. Glushkova (Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg).

Funding

This was performed within the framework of the state assignments of the Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences (АААА-А18-118053090044-1); Geological Institute, Russian Academy of Sciences (0135-2019-0043); Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences (0132-2021-0003); and Institute of Geology, Ufa Federal Scientific Center, Russian Academy of Sciences (0246-2019-0080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Maslov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Reviewers V.M. Gorozhanin, V.P. Kovach, and A.B. Kotov

Translated by D. Voroshchuk

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslov, A.V., Kuznetsov, A.B., Kramchaninov, A.Y. et al. Provenances of the Upper Precambrian Clay Rocks in the Southern Urals: Results of Geochemical and Sm–Nd Isotope Geochemical Investigations. Stratigr. Geol. Correl. 30, 30–51 (2022). https://doi.org/10.1134/S0869593822010038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869593822010038

Keywords:

Navigation