Skip to main content

Advertisement

Log in

Assessment of the level of activity of advective transport through fractures and faults in marine deposits by comparison between stable isotope compositions of fracture and pore waters

Évaluation du niveau d′activité du transport advectif à travers les fractures et les failles des dépôts marins en utilisant une comparaison entre les compositions en isotopes stables des eaux de fracture et celles des eaux interstitielles

Evaluación del nivel de actividad del transporte advectivo a través de fracturas y fallas en depósitos marinos por comparación entre las composiciones de isótopos estables de las aguas de fractura y de poro

通过对比裂隙水和孔隙水稳定同位素成分评估海洋沉积物中裂隙和断层的对流传输水平

Avaliação do nível de atividade do transporte advectivo através de fraturas e falhas em depósitos marinhos pela comparação entre a composição de isótopos estáveis da água de fraturas e poros

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Assessment of the level of activity of advective transport through faults and fractures is essential for guiding the geological disposal of radioactive waste. In this study, the advective flow (active, inactive) of meteoric water through fractures is assessed by comparing stable isotopes (δD and δ18O) between fracture and pore waters obtained from four boreholes in marine deposits in the Horonobe area, Japan. At 27–83-m depth in one borehole and 28–250 m in another, the isotopic compositions of pore and fracture water reflect mixing with meteoric water, with stronger meteoric-water signatures being observed in the fracture water than in pore water of the rock matrix. At greater depths in these boreholes and at all sampling depths in the other two studied boreholes, the isotopic compositions of fracture and pore waters are comparable. These results suggest that the advective flow of meteoric water is active at shallow depths where fossil seawater is highly diluted in the two boreholes. This interpretation is compatible with the occurrence of present or paleo meteoric waters and tritium, whereby present meteoric water and tritium are limited to those depths in the two boreholes. This difference in the level of activity of advective flow is probably because of the glacial–interglacial difference in hydraulic gradients resulting from sea-level change. Although fractures are hydraulically connected to the surface through the sedimentary rock, advective flow through them is inferred to remain inactive so long as sea level does not fall substantially.

Résumé

L′évaluation du niveau d′activité du transport advectif à travers les failles et les fractures est essentielle pour contraindre le stockage géologique des déchets radioactifs. Dans cette étude, le flux advectif (actif, inactif) de l′eau météorique à travers les fractures est évalué en comparant les isotopes stables (δD et δ18O) des eaux de fracture et ceux des eaux interstitielles obtenues à partir de quatre forages dans des dépôts marins de la région de Horonobe, au Japon. A 27–83 m de profondeur dans un forage et à 28–250 m dans un autre, les compositions isotopiques de l′eau de porosité et de fracture reflètent un mélange avec de l′eau météorique, avec des signatures en eau météorique plus fortes dans l′eau de fracture que dans l′eau de porosité de la matrice rocheuse. A de plus grandes profondeurs dans ces forages et à toutes les profondeurs d′échantillonnage dans les deux autres forages étudiés, les compositions isotopiques des eaux de fracture et des eaux interstitielles sont comparables. Ces résultats suggèrent que le flux advectif d′eau météorique est actif à faible profondeur où l′eau de mer fossile est fortement diluée dans les deux forages. Cette interprétation est compatible avec la présence d′eaux météoriques actuelles ou anciennes, les eaux météoriques actuelles et la présence de tritium étant limitées à ces profondeurs dans les deux forages. Cette différence dans le niveau d′activité du flux advectif est probablement liée à la différence glaciaire–interglaciaire des gradients hydrauliques résultant des variations du niveau de la mer. Bien que les fractures soient hydrauliquement reliées à la surface par les roches sédimentaires, on suppose que le flux advectif qui les traverse reste inactif tant que le niveau de la mer ne baisse pas de manière substantielle.

Resumen

La evaluación del nivel de actividad del transporte advectivo a través de fallas y fracturas es esencial para orientar el almacenamiento geológico de residuos radiactivos. En este estudio se evalúa el flujo advectivo (activo, inactivo) del agua meteórica a través de las fracturas mediante la comparación de isótopos estables (δD y δ18O) entre las aguas de fractura y las de poro obtenidas en cuatro sondeos en depósitos marinos en la zona de Horonobe, Japón. A 27–83 m de profundidad en un sondeo y a 28–250 m en otro, las composiciones isotópicas del agua de poro y de fractura reflejan la mezcla con el agua meteórica, observándose firmas de agua meteórica más fuertes en el agua de fractura que en el agua de poro de la matriz de la roca. A mayores profundidades en estos sondeos y en todas las profundidades de muestreo en los otros dos sondeos estudiados, las composiciones isotópicas de las aguas de fractura y de poro son comparables. Estos resultados sugieren que el flujo advectivo de agua meteórica está activo a poca profundidad, donde el agua de mar fósil está muy diluida en los dos sondeos. Esta interpretación es compatible con la presencia de aguas meteóricas actuales o antiguas y de tritio, por lo que el agua meteórica actual y el tritio se limitan a esas profundidades en los dos sondeos. Esta diferencia en el nivel de actividad del flujo advectivo se debe probablemente a la diferencia glacial–interglacial en los gradientes hidráulicos resultantes del cambio del nivel del mar. Aunque las fracturas están conectadas hidráulicamente a la superficie a través de la roca sedimentaria, se infiere que el flujo advectivo a través de ellas permanece inactivo mientras el nivel del mar no descienda sustancialmente.

摘要

评估裂隙和断层的对流传输水平对于指导放射性废物的地质处置至关重要。在本研究中, 通过比较日本和罗门地区海洋沉积区四个钻孔中获得的裂隙水和孔隙水的稳定同位素(δD 和 δ18O), 评估了大气降水通过裂隙的对流活动(活跃和非活跃)。在一个深27–83 m的钻孔和另一个深28–250 m的钻孔中, 孔隙水和裂隙水的同位素组成反映了其与大气降水的混合, 在裂隙水中观察到的大气降水特征高于孔隙水。在这些钻孔的更大深度和其他两个研究钻孔的所有取样深度, 裂隙水和孔隙水的同位素组成具有可比性。这些结果表明, 在化石海水高度稀释的两个钻孔浅层, 大气降水的对流是活跃的。该解释与当前或古大气降水和氚的出现相一致, 因此当前大气降水和氚仅限于两个钻孔的深度。对流活动水平的这种差异可能是由于海平面变化导致的冰川–间冰期水力梯度的差异。尽管裂隙通过沉积岩与地表进行水力连接, 但只要海平面没有大幅下降, 通过裂隙的对流就可以保持不活动状态。

Resumo

A avaliação do nível de atividade do transporte advectivo através de falhas e fraturas é essencial para orientar a disposição geológica de resíduos radioativos. Neste estudo, o fluxo advectivo (ativo, inativo) da água meteórica através de fraturas é avaliado pela comparação entre os isótopos estáveis (δD e δ18O) da água em fraturas e da água em poros, obtidas de quatro poços em depósitos marinhos da região de Horonobe, Japão. Nas profundidades de 27–83 m em um poço e 28–250 m em outro poço, a composição isotópica das águas dos poros e fraturas refletem uma mistura com água meteórica, sendo observadas assinaturas mais fortes da água meteórica nas fraturas do que nos poros da rocha matriz. Em maiores profundidades nesses mesmos poços, e em todas as profundidades amostradas nos outros dois poços estudados, a composição isotópica da água nas fraturas e nos poros são comparáveis. Esses resultados sugerem que o fluxo advectivo da água meteórica é ativo em profundidades mais rasas, onde a água fóssil do mar é altamente diluída nos dois poços. Essa interpretação é compatível com a ocorrência de águas meteóricas recentes, ou águas paleometeóricas e trítio, sendo que a água meteórica recente e trítio são limitados a essas profundidades nos dois poços. Essa diferença no nível de atividade do fluxo advectivo é provavelmente por conta da diferença glacial–interglacial nos gradientes hidráulicos, resultante da mudança do nível do mar. Embora as fraturas são hidraulicamente conectadas à superfície através de rochas sedimentares, o fluxo advectivo através delas é inferido como inativo contanto que o nível do mar não caia substancialmente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amano Y, Yamamoto Y, Nanjyo I, Murakami H, Yokota H, Yamazaki M, Kunimaru T, Oyama T, Iwatsuki T (2012) Data of groundwater from boreholes, river water and precipitation for the Horonobe Underground Research Laboratory Project (2001–2010), JAEA-Data/Code 2011–023 (in Japanese with English abstract). Technical report, Japan Atomic Energy Agency. https://doi.org/10.11484/jaea-data-code-2011-023

  • Aoyagi K, Ishii E (2019) A method for estimating the highest potential hydraulic conductivity in the excavation damaged zone in mudstone. Rock Mech Rock Eng 52(2):385–401. https://doi.org/10.1007/s00603-018-1577-z

    Article  Google Scholar 

  • Bath A, Richards H, Metcalfe R, McCartney R, Degnan P, Littleboy A (2006) Geochemical indicators of deep groundwater movements at Sellafield, UK. J Geochem Explor 90(1–2):24–44. https://doi.org/10.1016/j.gexplo.2005.09.003

    Article  Google Scholar 

  • Beaucaire C, Michelot JL, Savoye S, Cabrera J (2008) Groundwater characterisation and modelling of water–rock interaction in an argillaceous formation (Tournemire, France). Appl Geochem 23(8):2182–2197. https://doi.org/10.1016/j.apgeochem.2008.03.003

    Article  Google Scholar 

  • Bense VF, Person MA (2008) Transient hydrodynamics within intercratonic sedimentary basins during glacial cycles. J Geophys Res Earth Surf 113:F04005. https://doi.org/10.1029/2007JF000969

    Article  Google Scholar 

  • Biot MA (1941) General theory of three-dimensional consolidation. J Appl Geophys 12:155–164. https://doi.org/10.1063/1.1712886

    Article  Google Scholar 

  • Cochelin ASB, Mysak LA, Wang Z (2006) Simulation of long-term future climate changes with the green McGill paleoclimate model: the next glacial inception. Clim Chang 79(3):381–401. https://doi.org/10.1007/s10584-006-9099-1

    Article  Google Scholar 

  • Coplen TB, Böhlke JK, De Bievre P, Ding T, Holden NE, Hopple JA, Krouse HR, Lamberty A, Peiser HS, Revesz K, Rieder SE, Rosman KJR, Roth E, Taylor PDP, Vocke RD, Xiao YK (2002) Isotope-abundance variations of selected elements (IUPAC technical report). Pure Appl Chem 74(10):1987–2017. https://doi.org/10.1351/pac200274101987

    Article  Google Scholar 

  • Douglas M, Clark ID, Raven K, Bottomley D (2000) Groundwater mixing dynamics at a Canadian shield mine. J Hydrol 235(1–2):88–103. https://doi.org/10.1016/S0022-1694(00)00265-1

    Article  Google Scholar 

  • Fernández AM, Sánchez-Ledesma DM, Tournassat C, Melón A, Gaucher EC, Astudillo J, Vinsot A (2014) Applying the squeezing technique to highly consolidated clayrocks for pore water characterisation: lessons learned from experiments at the Mont Terri Rock Laboratory. Appl Geochem 49:2–21. https://doi.org/10.1016/j.apgeochem.2014.07.003

    Article  Google Scholar 

  • Gautschi A (2001) Hydrogeology of a fractured shale (Opalinus clay): implications for deep geological disposal of radioactive wastes. Hydrogeol J 9(1):97–107. https://doi.org/10.1007/s100400000117

    Article  Google Scholar 

  • Haimson BC, Cornet FH (2003) ISRM suggested methods for rock stress estimation—part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF). Int J Rock Mech Min Sci 40(7–8):1011–1020. https://doi.org/10.1016/j.ijrmms.2003.08.002

    Article  Google Scholar 

  • Hama K, Kunimaru T, Metcalfe R, Martin AJ (2007) The hydrogeochemistry of argillaceous rock formations at the Horonobe URL site, Japan. Phys Chem Earth 32:170–180. https://doi.org/10.1016/j.pce.2005.12.008

    Article  Google Scholar 

  • Hanatani I, Munakata M, Kimura H, Sanga T (2010) An analytic investigation of periglacial topography in Horonobe region, Hokkaido (in Japanese with English abstract). J Nucl Fuel cycle Environ 17(2):55–70. https://doi.org/10.3327/jnuce.17.55

    Article  Google Scholar 

  • Hendry MJ, Harrington GA (2014) Comparing vertical profiles of natural tracers in the Williston Basin to estimate the onset of deep aquifer activation. Water Resour Res 50(8):6496–6506. https://doi.org/10.1002/2014WR015652

    Article  Google Scholar 

  • Hendry MJ, Barbour SL, Novakowski K, Wassenaar LI (2013) Paleohydrogeology of the cretaceous sediments of the Williston Basin using stable isotopes of water. Water Resour Res 49(8):4580–4592. https://doi.org/10.1002/wrcr.20321

    Article  Google Scholar 

  • International Society for Rock Mechanics (1978) Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci Geomech Abstr 15:99–103

    Article  Google Scholar 

  • Ishii E (2015) Predictions of the highest potential transmissivity of fractures in fault zones from rock rheology: preliminary results. J Geophys Res Solid Earth 120:2220–2241. https://doi.org/10.1002/2014JB011756

    Article  Google Scholar 

  • Ishii E (2016) Far-field stress dependency of the failure mode of damage-zone fractures in fault zones: results from laboratory tests and field observations of siliceous mudstone. J Geophys Res Solid Earth 121:70–91. https://doi.org/10.1002/2015JB012238

    Article  Google Scholar 

  • Ishii E (2017a) Estimation of the highest potential transmissivity of discrete shear fractures using the ductility index. Int J Rock Mech Min Sci 100:10–22. https://doi.org/10.1016/j.ijrmms.2017.10.017

    Article  Google Scholar 

  • Ishii E (2017b) Preliminary assessment of the highest potential transmissivity of fractures in fault zones by core logging. Eng Geol 221:124–132. https://doi.org/10.1016/j.enggeo.2017.02.026

    Article  Google Scholar 

  • Ishii E (2018) Assessment of hydraulic connectivity of fractures in mudstones by single-borehole investigations. Water Resour Res 54(5):3335–3356. https://doi.org/10.1029/2018WR022556

    Article  Google Scholar 

  • Ishii E (2021) The highest potential transmissivities of fractures in fault zones: reference values based on laboratory and in situ hydro-mechanical experimental data. Eng Geol 294:106369. https://doi.org/10.1016/j.enggeo.2021.106369

    Article  Google Scholar 

  • Ishii T, Haginuma M, Suzuki K, Hama K, Kunimaru T, Kobori K, Shimoda S, Ueda A, Sugiyama K (2006) Groundwater evolution processes in the sedimentary formation at the Horonobe, northern Hokkaido, Japan. Geochim Cosmochim Acta 70(18, Suppl 1):A280. https://doi.org/10.1016/j.gca.2006.06.567

  • Ishii E, Yasue K, Ohira H, Furusawa A, Hasegawa T, Nakagawa M (2008) Inception of anticline growth near the Omagari Fault, northern Hokkaido, Japan (in Japanese with English abstract). J Geol Soc Jpn 114(6):286–299. https://doi.org/10.5575/geosoc.114.286

    Article  Google Scholar 

  • Ishii E, Funaki H, Tokiwa T, Ota K (2010) Relationship between fault growth mechanism and permeability variations with depth of siliceous mudstones in northern Hokkaido, Japan. J Struct Geol 32:1792–1805. https://doi.org/10.1016/j.jsg.2009.10.012

    Article  Google Scholar 

  • Ishii E, Sanada H, Funaki H, Sugita Y, Kurikami H (2011) The relationships among brittleness, deformation behavior, and transport properties in mudstones: an example from the Horonobe Underground Research Laboratory, Japan. J Geophys Res 116:B09206. https://doi.org/10.1029/2011JB008279

    Article  Google Scholar 

  • Jost A, Violette S, Gonçalvès J, Ledoux E, Guyomard Y, Guillocheau F, Kageyama M, Ramstein G, Suc JP (2007) Long-term hydrodynamic response induced by past climatic and geomorphologic forcing: the case of the Paris basin, France. Phys Chem Earth 32(1–7):368–378. https://doi.org/10.1016/j.pce.2006.02.053

    Article  Google Scholar 

  • Kneuker T, Hammer J, Shao H, Schuster K, Furche M, Zulauf G (2017) Microstructure and composition of brittle faults in claystones of the Mont Terri Rock Laboratory (Switzerland): new data from petrographic studies, geophysical borehole logging and permeability tests. Eng Geol 231:139–156. https://doi.org/10.1016/j.enggeo.2017.10.016

    Article  Google Scholar 

  • Kunimaru T, Ota K, Alexander WR, Yamamoto H (2010) Groundwater/porewater hydrochemistry at Horonobe URL: data freeze I—preliminary data quality evaluation for boreholes HDB-9, 10 and 11. JAEA-Research 2010–035, Technical report, Japan Atomic Energy Agency. https://doi.org/10.11484/jaea-research-2010-035

  • Kurikami H (2007) Groundwater flow analysis in the Horonobe Underground Research Laboratory project: recalculation based on the investigation until fiscal year 2005 (in Japanese with English abstract). JAEA-Research 2007–036, Technical report, Japan Atomic Energy Agency.. https://doi.org/10.11484/jaea-research-2007-036

  • Kurikami H, Takeuchi R, Seno S (2005) Groundwater flow analysis of Horonobe underground research laboratory project (in Japanese with English abstract). JNC TN5400 2005-003, Technical report, Japan Nuclear Cycle Development Institute, Ibaraki, Japan

  • Kurikami H, Takeuchi R, Yabuuchi S, Seno S, Tomura G, Shibano K, Hara M, Kunimaru T (2008) Hydrogeological investigations of surface-based investigation phase of Horonobe URL project (in Japanese with English abstract). J Jpn Soc Civil Eng C64(3):680–695. https://doi.org/10.2208/jscejc.64.680

    Article  Google Scholar 

  • Laurich B, Urai JL, Desbois G, Vollmer C, Nussbaum C (2014) Microstructural evolution of an incipient fault zone in Opalinus clay: insights from an optical and electron microscopic study of ion-beam polished samples from the main fault in the Mt-Terri Underground Research Laboratory. J Struct Geol 67:107–128. https://doi.org/10.1016/j.jsg.2014.07.014

    Article  Google Scholar 

  • Lemieux JM, Sudicky EA, Peltier WR, Tarasov L (2008) Dynamics of groundwater recharge and seepage over the Canadian landscape during the Wisconsinian glaciation. J Geophys Res Earth Surf 113:F01011. https://doi.org/10.1029/2007JF000838

    Article  Google Scholar 

  • Lopez CML, Saito H, Kobayashi Y, Shirota T, Iwahana G, Maximov TC, Fukuda M (2007) Interannual environmental-soil thawing rate variation and its control on transpiration from Larix cajanderi, central Yakutia, eastern Siberia. J Hydrol 338(3–4):251–260. https://doi.org/10.1016/j.jhydrol.2007.02.039

    Article  Google Scholar 

  • Maldaner CH, Quinn PM, Cherry JA, Parker BL (2018) Improving estimates of groundwater velocity in a fractured rock borehole using hydraulic and tracer dilution methods. J Contam Hydrol 214:75–86. https://doi.org/10.1016/j.jconhyd.2018.05.003

    Article  Google Scholar 

  • Mazurek M, Alt-Epping P, Bath A, Gimmi T, Waber HN, Buschaert S, De Cannière P, De Craen M, Gautschi A, Savoye S, Vinsot A, Wemaere I, Wouters L (2011) Natural tracer profiles across argillaceous formations. Appl Geochem 26(7):1035–1064. https://doi.org/10.1016/j.apgeochem.2011.03.124

    Article  Google Scholar 

  • Mazurek M, Oyama T, Wersin P, Alt-Epping P (2015) Pore-water squeezing from indurated shales. Chem Geol 400:106–121. https://doi.org/10.1016/j.chemgeo.2015.02.008

    Article  Google Scholar 

  • Miyakawa K, Ishii E, Hirota A, Komatsu DD, Ikeya K, Tsunogai U (2017) The role of low-temperature organic matter diagenesis in carbonate precipitation within a marine deposit. Appl Geochem 76:218–231. https://doi.org/10.1016/j.apgeochem.2016.11.001

    Article  Google Scholar 

  • Mysak LA (2008) Glacial inceptions: past and future. Atmosphere-Ocean 46(3):317–341. https://doi.org/10.3137/ao.460303

    Article  Google Scholar 

  • Nakata K, Hasegawa T, Oyama T, Ishii E, Miyakawa K, Sasamoto H (2018) An evaluation of the long-term stagnancy of porewater in the Neogene sedimentary rocks in northern Japan. Geofluids 2018:7823195. https://doi.org/10.1155/2018/7823195

    Article  Google Scholar 

  • Niizato T, Yasue K, Kurikami H, Kawamura M, Ohi T (2008) Synthesising geoscientific data into a site model for performance assessment: a study on the long-term evolution of the geological environment in and around the Horonobe URL, Hokkaido, northern Japan. In: Proceedings of 3rd Workshop on Approaches and Challenges for the Use of Geological Information in the Safety Case for Deep Disposal of Radioactive Waste, OECD/NEA, Nancy, France, 15–17 April 2008

  • Nussbaum C, Bossart P, Amann F, Aubourg C (2011) Analysis of tectonic structures and excavation induced fractures in the Opalinus clay, Mont Terri Underground Rock Laboratory (Switzerland). Swiss J Geosci 104(2):187–210. https://doi.org/10.1007/s00015-011-0070-4

    Article  Google Scholar 

  • Ota K, Abe H, Kunimaru T (2011) Horonobe Underground Research Laboratory project synthesis of phase I investigations 2001–2005: volume geoscientific research. JAEA-Research 2010–068, Technical report, Japan Atomic Energy Agency. https://doi.org/10.11484/jaea-research-2010-068

  • Pearson FJ, Arcos D, Bath A, Boisson JY, Fernández AM, Gäbler HE, Gaucher E, Gautschi A, Griffault L, Hernán P, Waber HN (2003) Geochemistry of water in the Opalinus Clay Formation at the Mont Terri Rock Laboratory: synthesis report. Geology series, no. 5, Reports of the Swiss Federal Office for Water and Geology, Bern, Switzerland

  • Sakai T, Matsuoka T (2015) Presumption of the distribution of the geological structure based on the geological survey and the topographic data in and around the Horonobe Area (in Japanese with English abstract). JAEA-Research 2015–004, Technical report, Japan Atomic Energy Agency. https://doi.org/10.11484/jaea-research-2015-004

  • Shimo M, Kumamoto S, Ito A, Karasaki K, Sawada A, Oda Y, Sato H (2010) Study on flow and mass transport through fractured sedimentary rocks (III). JAEA-Research 2009–060 , Technical report, Japan Atomic Energy Agency. https://doi.org/10.11484/jaea-research-2009-060

  • Sjöberg J, Christiansson R, Hudson JA (2003) ISRM suggested methods for rock stress estimation, part 2: overcoring methods. Int J Rock Mech Min Sci 40(7–8):999–1010. https://doi.org/10.1016/j.ijrmms.2003.07.012

    Article  Google Scholar 

  • Teramoto M, Shimada J, Kunimaru T (2006) Evidences of groundwater regime in impermeable rocks by stable isotopes in porewaters of drilled cores (in Japanese with English abstract). J Jpn Soc Eng Geol 47:68–76. https://doi.org/10.5110/jjseg.47.68

    Article  Google Scholar 

  • Teramoto M, Shimada J, Kunimaru T (2010) Understanding groundwater flow regimes in low permeability rocks using stable isotope paleo records in porewaters. In: Holman IP, Taniguchi M (ed) Groundwater response to changing climate. CRC, Boca Raton, FL, pp 79–86

    Google Scholar 

  • Togo YS, Takahashi Y, Amano Y, Matsuzaki H, Suzuki Y, Terada Y, Muramatsu Y, Ito K, Iwatsuki T (2016) Age and speciation of iodine in groundwater and mudstones of the Horonobe area, Hokkaido, Japan: implications for the origin and migration of iodine during basin evolution. Geochim Cosmochim Acta 191:165–186. https://doi.org/10.1016/j.gca.2016.07.012

    Article  Google Scholar 

  • Ueda A, Nagao K, Shibata T, Suzuki T (2010) Stable and noble gas isotopic study of thermal and groundwaters in northwestern Hokkaido, Japan and the occurrence of geopressured fluids. Geochem J 44:545–560. https://doi.org/10.2343/geochemj.1.0107

    Article  Google Scholar 

  • Yabuuchi S, Kunimaru T, Ishii E, Hatsuyama Y, Ijiri Y, Matsuoka K, Ibara T, Matsunami S, Makino A (2008) Horonobe Underground Research Laboratory project: overview of the pilot borehole investigation of the ventilation shaft (PB-V01)—hydrogeological investigation (in Japanese with English abstract). JAEA-Data/Code 2008–026, Technical report, Japan Atomic Energy Agency. https://doi.org/10.11484/jaea-data-code-2008-026

  • Yoshino H, Kishi A, Yokota H (2015) Long-term pore-pressure-monitoring using deep boreholes in the Horonobe Underground Research project (in Japanese with English abstract). JAEA-Data/Code 2015–014, Technical report, Japan Atomic Energy Agency. https://doi.org/10.11484/jaea-data-code-2015-014

Download references

Acknowledgements

The authors thank colleagues at JAEA for fruitful discussions and for the provision of data during the Horonobe URL project and Toshihiro Sakai of JAEA for providing the contour map. The authors also acknowledge two anonymous reviewers for their constructive comments, which helped to improve the quality of manuscript, as well as an anonymous associate editor and editor Maria-Theresia Schafmeister for editorial handling of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihito Mochizuki.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mochizuki, A., Ishii, E. Assessment of the level of activity of advective transport through fractures and faults in marine deposits by comparison between stable isotope compositions of fracture and pore waters. Hydrogeol J 30, 813–827 (2022). https://doi.org/10.1007/s10040-022-02466-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-022-02466-9

Keywords

Navigation