Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effects of targeted therapies on bone in rheumatic and musculoskeletal diseases

Abstract

Generalized bone loss (osteoporosis) and fragility fractures can occur in rheumatic and musculoskeletal diseases including rheumatoid arthritis and spondyloarthritis (SpA; including ankylosing spondylitis and psoriatic arthritis). In addition, rheumatoid arthritis can involve localized, periarticular bone erosion and, in SpA, local (pathological) bone formation can occur. The RANK–RANKL–osteoprotegerin axis and the Wnt–β-catenin signalling pathway (along with its inhibitors sclerostin and Dickkopf 1) have been implicated in inflammatory bone loss and formation, respectively. Targeted therapies including biologic DMARDs and Janus kinase (JAK) inhibitors can stabilize bone turnover and inhibit radiographic joint damage, and potentially also prevent generalized bone loss. Targeted therapies interfere at various points in the mechanisms of local and generalized bone changes in systemic rheumatic diseases, and they effect biomarkers of bone resorption and formation, bone mass and risk of fragility fractures. Studies on the effects of targeted therapies on rates of fragility fracture are scarce. The efficacy of biologic DMARDs for arresting bone formation in axial SpA is debated. Improved understanding of the most relevant therapeutic targets and identification of important targeted therapies could lead to the preservation of bone in inflammatory rheumatic and musculoskeletal diseases.

Key points

  • Several molecules, especially inflammatory mediators, contribute to localized bone resorption and formation and to generalized osteoporosis associated with inflammatory rheumatic and musculoskeletal diseases.

  • Targeted therapies could balance the pathological bone turnover in rheumatoid arthritis; however, their effects on bone formation in spondyloarthritis are not equivocal and might depend on the disease stage.

  • Most targeted therapies, particularly TNF inhibitors, might attenuate generalized bone loss in inflammatory rheumatic and musculoskeletal diseases, but more information is needed on the effects of other biologic DMARDs and Janus kinase (JAK) inhibitors.

  • Few studies have assessed the effects of targeted therapies on the risk of fragility fractures; more trials need to be conducted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of targeted therapies on cellular and molecular pathways involved in inflammatory bone resorption.
Fig. 2: Effects of targeted therapies on inflammatory bone formation.

Similar content being viewed by others

References

  1. Lems, W. F. & Dijkmans, B. A. Should we look for osteoporosis in patients with rheumatoid arthritis? Ann. Rheum. Dis. 57, 325–327 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walsh, N. C., Crotti, T. N., Goldring, S. R. & Gravallese, E. M. Rheumatic diseases: the effects of inflammation on bone. Immunol. Rev. 208, 228–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Szentpetery, A. et al. Effects of targeted therapies on the bone in arthritides. Autoimmun. Rev. 16, 313–320 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Raterman, H. G., Bultink, I. E. & Lems, W. F. Osteoporosis in patients with rheumatoid arthritis: an update in epidemiology, pathogenesis, and fracture prevention. Expert Opin. Pharmacother. 21, 1725–1737 (2020).

    Article  PubMed  Google Scholar 

  5. Raterman, H. G. & Lems, W. F. Pharmacological management of osteoporosis in rheumatoid arthritis patients: a review of the literature and practical guide. Drugs Aging 36, 1061–1072 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Magrey, M. & Khan, M. A. Osteoporosis in ankylosing spondylitis. Curr. Rheumatol. Rep. 12, 332–336 (2010).

    Article  PubMed  Google Scholar 

  7. Petho, Z. et al. Characterization of bone metabolism in Hungarian psoriatic arthritis patients: a case-control study. BMC Musculoskelet. Disord. 22, 70 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baraliakos, X. & Braun, J. Biologic therapies for spondyloarthritis: what is new? Curr. Rheumatol. Rep. 14, 422–427 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Lories, R. J., de Vlam, K. & Luyten, F. P. Are current available therapies disease-modifying in spondyloarthritis? Best Pract. Res. Clin. Rheumatol. 24, 625–635 (2010).

    Article  PubMed  Google Scholar 

  10. Zerbini, C. A. F. et al. Biologic therapies and bone loss in rheumatoid arthritis. Osteoporos. Int. 28, 429–446 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Ashany, D., Stein, E. M., Goto, R. & Goodman, S. M. The effect of TNF inhibition on bone density and fracture risk and of IL17 inhibition on radiographic progression and bone density in patients with axial spondyloarthritis: a systematic literature review. Curr. Rheumatol. Rep. 21, 20 (2019).

    Article  PubMed  CAS  Google Scholar 

  12. Schett, G. & Gravallese, E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat. Rev. Rheumatol. 8, 656–664 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lories, R. J. & Haroon, N. Bone formation in axial spondyloarthritis. Best Pract. Res. Clin. Rheumatol. 28, 765–777 (2014).

    Article  PubMed  Google Scholar 

  14. Boers, N., Michielsens, C. A. J., van der Heijde, D., den Broeder, A. A. & Welsing, P. M. J. The effect of tumour necrosis factor inhibitors on radiographic progression in axial spondyloarthritis: a systematic literature review. Rheumatology 58, 1907–1922 (2019).

    Article  PubMed  Google Scholar 

  15. Geusens, P. P. et al. The ratio of circulating osteoprotegerin to RANKL in early rheumatoid arthritis predicts later joint destruction. Arthritis Rheum. 54, 1772–1777 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. van den Berg, W. B. & Miossec, P. IL-17 as a future therapeutic target for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 549–553 (2009).

    Article  PubMed  CAS  Google Scholar 

  17. Lam, J. et al. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J. Clin. Invest. 106, 1481–1488 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sennels, H. et al. Circulating levels of osteopontin, osteoprotegerin, total soluble receptor activator of nuclear factor-kappa B ligand, and high-sensitivity C-reactive protein in patients with active rheumatoid arthritis randomized to etanercept alone or in combination with methotrexate. Scand. J. Rheumatol. 37, 241–247 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Gulyas, K. et al. Effects of 1-year anti-TNF-alpha therapies on bone mineral density and bone biomarkers in rheumatoid arthritis and ankylosing spondylitis. Clin. Rheumatol. 39, 167–175 (2020).

    Article  PubMed  Google Scholar 

  20. Yago, T. et al. IL-23 induces human osteoclastogenesis via IL-17 in vitro, and anti-IL-23 antibody attenuates collagen-induced arthritis in rats. Arthritis Res. Ther. 9, R96 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Le Goff, B. et al. Implication of IL-17 in bone loss and structural damage in inflammatory rheumatic diseases. Mediators Inflamm. 2019, 8659302 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. Shah, M. et al. Dual neutralisation of IL-17F and IL-17A with bimekizumab blocks inflammation-driven osteogenic differentiation of human periosteal cells. RMD Open 6, e001306 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Axmann, R. et al. Inhibition of interleukin-6 receptor directly blocks osteoclast formation in vitro and in vivo. Arthritis Rheum. 60, 2747–2756 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. LaBranche, T. P. et al. JAK inhibition with tofacitinib suppresses arthritic joint structural damage through decreased RANKL production. Arthritis Rheum. 64, 3531–3542 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Murakami, K. et al. A Jak1/2 inhibitor, baricitinib, inhibits osteoclastogenesis by suppressing RANKL expression in osteoblasts in vitro. PLoS ONE 12, e0181126 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Adam, S. et al. JAK inhibition increases bone mass in steady-state conditions and ameliorates pathological bone loss by stimulating osteoblast function. Sci. Transl Med. 12, eaay4447 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Gaber, T. et al. Impact of Janus kinase inhibition with tofacitinib on fundamental processes of bone healing. Int. J. Mol. Sci. 21, 865 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  28. Vidal, B. et al. Effects of tofacitinib in early arthritis-induced bone loss in an adjuvant-induced arthritis rat model. Rheumatology 57, 1461–1471 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Kleyer, A. et al. Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann. Rheum. Dis. 73, 854–860 (2014).

    Article  PubMed  Google Scholar 

  30. Harre, U. et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J. Clin. Invest. 122, 1791–1802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun, M. et al. Anticitrullinated protein antibodies facilitate migration of synovial tissue-derived fibroblasts. Ann. Rheum. Dis. 78, 1621–1631 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Kleyer, A. & Schett, G. Arthritis and bone loss: a hen and egg story. Curr. Opin. Rheumatol. 26, 80–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Stemmler, F. et al. Biomechanical properties of bone are impaired in patients with ACPA-positive rheumatoid arthritis and associated with the occurrence of fractures. Ann. Rheum. Dis. 77, 973–980 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Schett, G., Zwerina, J. & David, J. P. The role of Wnt proteins in arthritis. Nat. Clin. Pract. Rheumatol. 4, 473–480 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Diarra, D. et al. Dickkopf-1 is a master regulator of joint remodeling. Nat. Med. 13, 156–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Chen, X. X. et al. Sclerostin inhibition reverses systemic, periarticular and local bone loss in arthritis. Ann. Rheum. Dis. 72, 1732–1736 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Cosman, F. & Dempster, D. W. Anabolic agents for postmenopausal osteoporosis: how do you choose? Curr. Osteoporos. Rep. 19, 189–205 (2021).

    Article  PubMed  Google Scholar 

  38. Ma, Y. et al. The serum level of Dickkopf-1 in patients with rheumatoid arthritis: a systematic review and meta-analysis. Int. Immunopharmacol. 59, 227–232 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Fassio, A. et al. In psoriatic arthritis Dkk-1 and PTH are lower than in rheumatoid arthritis and healthy controls. Clin. Rheumatol. 36, 2377–2381 (2017).

    Article  PubMed  Google Scholar 

  40. Shi, J., Ying, H., Du, J. & Shen, B. Serum sclerostin levels in patients with ankylosing spondylitis and rheumatoid arthritis: a systematic review and meta-analysis. Biomed. Res. Int. 2017, 9295313 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. Appel, H. et al. Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum. 60, 3257–3262 (2009).

    Article  PubMed  Google Scholar 

  42. Heiland, G. R. et al. Neutralisation of Dkk-1 protects from systemic bone loss during inflammation and reduces sclerostin expression. Ann. Rheum. Dis. 69, 2152–2159 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Yeremenko, N. et al. TNF-alpha and IL-6 differentially regulate Dkk-1 in the inflamed arthritic joint. Arthritis Rheumatol. 67, 865 (2015).

    Article  CAS  Google Scholar 

  44. Fassio, A. et al. Acute effects of glucocorticoid treatment, TNFα or IL-6R blockade on bone turnover markers and Wnt inhibitors in early rheumatoid arthritis: a pilot study. Calcif. Tissue Int. 106, 371–377 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Terpos, E. et al. Early effects of IL-6 receptor inhibition on bone homeostasis: a pilot study in women with rheumatoid arthritis. Clin. Exp. Rheumatol. 29, 921–925 (2011).

    PubMed  Google Scholar 

  46. Briot, K. et al. The effect of tocilizumab on bone mineral density, serum levels of Dickkopf-1 and bone remodeling markers in patients with rheumatoid arthritis. Joint Bone Spine 82, 109–115 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Kwon, S. R. et al. Dickkopf-1 level is lower in patients with ankylosing spondylitis than in healthy people and is not influenced by anti-tumor necrosis factor therapy. Rheumatol. Int. 32, 2523–2527 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Heiland, G. R. et al. High level of functional dickkopf-1 predicts protection from syndesmophyte formation in patients with ankylosing spondylitis. Ann. Rheum. Dis. 71, 572–574 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Saad, C. G. et al. Low sclerostin levels: a predictive marker of persistent inflammation in ankylosing spondylitis during anti-tumor necrosis factor therapy? Arthritis Res. Ther. 14, R216 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu, M. et al. Dickkopf-1 in ankylosing spondylitis: review and meta-analysis. Clin. Chim. Acta 481, 177–183 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Aschermann, S. et al. Presence of HLA-B27 is associated with changes of serum levels of mediators of the Wnt and hedgehog pathway. Joint Bone Spine 83, 43–46 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Fassio, A. et al. Secukinumab produces a quick increase in WNT signalling antagonists in patients with psoriatic arthritis. Clin. Exp. Rheumatol. 37, 133–136 (2019).

    PubMed  Google Scholar 

  53. Barnabe, C. & Hanley, D. A. Effect of tumor necrosis factor alpha inhibition on bone density and turnover markers in patients with rheumatoid arthritis and spondyloarthropathy. Semin. Arthritis Rheum. 39, 116–122 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Szentpétery, Á., Bhattoa, H. P., Antal-Szalmas, P., Szekanecz, Z. & FitzGerald, O. Circulating mediators of bone remodelling in patients with psoriatic and rheumatoid arthritis treated with anti-TNF-alpha therapy. Arthritis Rheum. 63 (Suppl. 10), S200 (2011).

    Google Scholar 

  55. Vis, M. et al. Evaluation of bone mineral density, bone metabolism, osteoprotegerin and receptor activator of the NFκB ligand serum levels during treatment with infliximab in patients with rheumatoid arthritis. Ann. Rheum. Dis. 65, 1495–1499 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Visvanathan, S. et al. Effects of infliximab on markers of inflammation and bone turnover and associations with bone mineral density in patients with ankylosing spondylitis. Ann. Rheum. Dis. 68, 175–182 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Vis, M. et al. Early changes in bone metabolism in rheumatoid arthritis patients treated with infliximab. Arthritis Rheum. 48, 2996–2997 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Woo, J. H., Lee, H. J., Sung, I. H. & Kim, T. H. Changes of clinical response and bone biochemical markers in patients with ankylosing spondylitis taking etanercept. J. Rheumatol. 34, 1753–1759 (2007).

    CAS  PubMed  Google Scholar 

  59. Chopin, F. et al. Long-term effects of infliximab on bone and cartilage turnover markers in patients with rheumatoid arthritis. Ann. Rheum. Dis. 67, 353–357 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Fassio, A. et al. Inhibition of tumor necrosis factor-alpha (TNF-alpha) in patients with early rheumatoid arthritis results in acute changes of bone modulators. Int. Immunopharmacol. 67, 487–489 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Garnero, P., Tabassi, N. C. & Voorzanger-Rousselot, N. Circulating dickkopf-1 and radiological progression in patients with early rheumatoid arthritis treated with etanercept. J. Rheumatol. 35, 2313–2315 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Lim, M. J. et al. Early effects of tumor necrosis factor inhibition on bone homeostasis after soluble tumor necrosis factor receptor use. Korean J. Intern. Med. 29, 807–813 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Szentpetery, A. et al. Periarticular bone gain at proximal interphalangeal joints and changes in bone turnover markers in response to tumor necrosis factor inhibitors in rheumatoid and psoriatic arthritis. J. Rheumatol. 40, 653–662 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Garnero, P., Thompson, E., Woodworth, T. & Smolen, J. S. Rapid and sustained improvement in bone and cartilage turnover markers with the anti-interleukin-6 receptor inhibitor tocilizumab plus methotrexate in rheumatoid arthritis patients with an inadequate response to methotrexate: results from a substudy of the multicenter double-blind, placebo-controlled trial of tocilizumab in inadequate responders to methotrexate alone. Arthritis Rheum. 62, 33–43 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Bay-Jensen, A. C. et al. Effect of tocilizumab combined with methotrexate on circulating biomarkers of synovium, cartilage, and bone in the LITHE study. Semin. Arthritis Rheum. 43, 470–478 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Wheater, G. et al. Changes in bone density and bone turnover in patients with rheumatoid arthritis treated with rituximab, results from an exploratory, prospective study. PLoS ONE 13, e0201527 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Boumans, M. J. et al. Rituximab abrogates joint destruction in rheumatoid arthritis by inhibiting osteoclastogenesis. Ann. Rheum. Dis. 71, 108–113 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Thudium, C. S. et al. The Janus kinase 1/2 inhibitor baricitinib reduces biomarkers of joint destruction in moderate to severe rheumatoid arthritis. Arthritis Res. Ther. 22, 235 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hamar, A. et al. Effects of one-year tofacitinib therapy on bone metabolism in rheumatoid arthritis. Osteoporos. Int. 32, 1621–1629 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kaaij, M. H. et al. Anti-IL-17A treatment reduces serum inflammatory, angiogenic and tissue remodeling biomarkers accompanied by less synovial high endothelial venules in peripheral spondyloarthritis. Sci. Rep. 10, 21094 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gonzalez-Alvaro, I. et al. Baseline serum RANKL levels may serve to predict remission in rheumatoid arthritis patients treated with TNF antagonists. Ann. Rheum. Dis. 66, 1675–1678 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Maksymowych, W. P. et al. Serum matrix metalloproteinase 3 is an independent predictor of structural damage progression in patients with ankylosing spondylitis. Arthritis Rheum. 56, 1846–1853 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Schett, G., Coates, L. C., Ash, Z. R., Finzel, S. & Conaghan, P. G. Structural damage in rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis: traditional views, novel insights gained from TNF blockade, and concepts for the future. Arthritis Res. Ther. 13 (Suppl. 1), S4 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wu, D. et al. Effect of biologics on radiographic progression of peripheral joint in patients with psoriatic arthritis: meta-analysis. Rheumatology 59, 3172–3180 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Emery, P. et al. Baricitinib inhibits structural joint damage progression in patients with rheumatoid arthritis — a comprehensive review. Arthritis Res. Ther. 23, 3 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. van der Linden, M. P. et al. Repair of joint erosions in rheumatoid arthritis: prevalence and patient characteristics in a large inception cohort. Ann. Rheum. Dis. 69, 727–729 (2009).

    Article  PubMed  Google Scholar 

  77. Lukas, C., van der Heijde, D., Fatenajad, S. & Landewe, R. Repair of erosions occurs almost exclusively in damaged joints without swelling. Ann. Rheum. Dis. 69, 851–855 (2010).

    Article  PubMed  Google Scholar 

  78. Finzel, S. et al. Comparison of the effects of tocilizumab monotherapy and adalimumab in combination with methotrexate on bone erosion repair in rheumatoid arthritis. Ann. Rheum. Dis. 78, 1186–1191 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Schett, G. et al. Enthesitis: from pathophysiology to treatment. Nat. Rev. Rheumatol. 13, 731–741 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Zhao, Z. et al. Correlation between magnetic resonance imaging (MRI) findings and the new bone formation factor Dkk-1 in patients with spondyloarthritis. Clin. Rheumatol. 38, 465–475 (2019).

    Article  PubMed  Google Scholar 

  81. Braun, J. et al. Magnetic resonance imaging examinations of the spine in patients with ankylosing spondylitis, before and after successful therapy with infliximab: evaluation of a new scoring system. Arthritis Rheum. 48, 1126–1136 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Baraliakos, X. et al. Long-term effects of secukinumab on MRI findings in relation to clinical efficacy in subjects with active ankylosing spondylitis: an observational study. Ann. Rheum. Dis. 75, 408–412 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Dougados, M. et al. Evaluation of the change in structural radiographic sacroiliac joint damage after 2 years of etanercept therapy (EMBARK trial) in comparison to a contemporary control cohort (DESIR cohort) in recent onset axial spondyloarthritis. Ann. Rheum. Dis. 77, 221–227 (2018).

    Article  PubMed  Google Scholar 

  84. Maksymowych, W. P. et al. Modification of structural lesions on MRI of the sacroiliac joints by etanercept in the EMBARK trial: a 12-week randomised placebo-controlled trial in patients with non-radiographic axial spondyloarthritis. Ann. Rheum. Dis. 77, 78–84 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Molnar, C. et al. TNF blockers inhibit spinal radiographic progression in ankylosing spondylitis by reducing disease activity: results from the Swiss Clinical Quality Management cohort. Ann. Rheum. Dis. 77, 63–69 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. van der Heijde, D. et al. Limited radiographic progression and sustained reductions in MRI inflammation in patients with axial spondyloarthritis: 4-year imaging outcomes from the RAPID-axSpA phase III randomised trial. Ann. Rheum. Dis. 77, 699–705 (2018).

    Article  PubMed  CAS  Google Scholar 

  87. Braun, J. et al. Spinal radiographic progression over 2 years in ankylosing spondylitis patients treated with secukinumab: a historical cohort comparison. Arthritis Res. Ther. 21, 142 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Deodhar, A. et al. Efficacy and safety of ixekizumab in the treatment of radiographic axial spondyloarthritis: sixteen-week results from a phase III randomized, double-blind, placebo-controlled trial in patients with prior inadequate response to or intolerance of tumor necrosis factor inhibitors. Arthritis Rheumatol. 71, 599–611 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Maksymowych, W. P. et al. Tofacitinib is associated with attainment of the minimally important reduction in axial magnetic resonance imaging inflammation in ankylosing spondylitis patients. Rheumatology 57, 1390–1399 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bruijnen, S. T. G. et al. Bone formation in ankylosing spondylitis during anti-tumour necrosis factor therapy imaged by 18F-fluoride positron emission tomography. Rheumatology 57, 631–638 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Christodoulou-Vafeiadou, E. et al. Ectopic bone formation and systemic bone loss in a transmembrane TNF-driven model of human spondyloarthritis. Arthritis Res. Ther. 22, 232 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sambrook, P. Tumour necrosis factor blockade and the risk of osteoporosis: back to the future. Arthritis Res. Ther. 9, 107 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Marotte, H. et al. A 1-year case-control study in patients with rheumatoid arthritis indicates prevention of loss of bone mineral density in both responders and nonresponders to infliximab. Arthritis Res. Ther. 9, R61 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Confavreux, C. B. & Chapurlat, R. D. Systemic bone effects of biologic therapies in rheumatoid arthritis and ankylosing spondylitis. Osteoporos. Int. 22, 1023–1036 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Hein, G. et al. Influence of rituximab on markers of bone remodeling in patients with rheumatoid arthritis: a prospective open-label pilot study. Rheumatol. Int. 31, 269–272 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Simon, D. et al. Effect of disease-modifying anti-rheumatic drugs on bone structure and strength in psoriatic arthritis patients. Arthritis Res. Ther. 21, 162 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Szentpetery, A. et al. Striking difference of periarticular bone density change in early psoriatic arthritis and rheumatoid arthritis following anti-rheumatic treatment as measured by digital X-ray radiogrammetry. Rheumatology 55, 891–896 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Juhasz, B. et al. Comparison of peripheral quantitative computed tomography forearm bone density versus DXA in rheumatoid arthritis patients and controls. Osteoporos. Int. 28, 1271–1277 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Neumann, A. et al. Cortical bone loss is an early feature of nonradiographic axial spondyloarthritis. Arthritis Res. Ther. 20, 202 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Yue, J. et al. Repair of bone erosion in rheumatoid arthritis by denosumab: a high-resolution peripheral quantitative computed tomography study. Arthritis Care Res. 69, 1156–1163 (2017).

    Article  CAS  Google Scholar 

  101. Juhász, B. et al. Peripheral quantitative computed tomography in the assessment of bone mineral density in anti-TNF-treated rheumatoid arthritis and ankylosing spondylitis patients. BMC Musculoskelet. Disord. 22, 817 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Shin, A. et al. Comparative risk of osteoporotic fracture among patients with rheumatoid arthritis receiving TNF inhibitors versus other biologics: a cohort study. Osteoporos. Int. 31, 2131–2139 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. van der Weijden, M. A. et al. Etanercept increases bone mineral density in ankylosing spondylitis, but does not prevent vertebral fractures: results of a prospective observational cohort study. J. Rheumatol. 43, 758–764 (2016).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors’ work is supported by Hungarian National Scientific Research Fund (OTKA) grant No. K 105073 (to H.P.B. and Z.S.); the TÁMOP-4.2.4.A/2-11-1-2012-0001 National Excellence Program co-financed by the European Union and Hungary (to Z.S.) and the European Union G INOP-2.3.2-15-2016-00050 grant (to Z.S.).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made a substantial contribution to discussion of the content, wrote and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Zoltán Szekanecz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks A. Fassio, S. Manske, C. Zerbini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soós, B., Szentpétery, Á., Raterman, H.G. et al. Effects of targeted therapies on bone in rheumatic and musculoskeletal diseases. Nat Rev Rheumatol 18, 249–257 (2022). https://doi.org/10.1038/s41584-022-00764-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-022-00764-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing