Skip to main content
Log in

Composition of Petroleum Resins Inhibiting the Precipitate Formation in an Ultrasonically Treated Solution of Petroleum Wax in Decane

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The effect of ultrasound and kind of petroleum resins on the composition of the dispersion medium (raffinates) recovered from a 6 wt % solution of petroleum wax in decane as a result of precipitate formation was studied. Irrespective of the kind of petroleum resins (benzene-soluble or (alcohol + benzene)-soluble) or of their combined action with ultrasound, the content of n-alkanes in the paraffin fraction of the raffinates decreases and that of isoalkanes increases relative to the initial sample; the major components of the paraffin fraction are n-alkanes up to С29Н60. Benzene-soluble and (alcohol + benzene)-soluble resins of lower molecular mass remain in the raffinate obtained after the precipitate separation from a solution of the petroleum wax in decane. The content of naphthene and aromatic rings in the benzene-soluble and (alcohol + benzene)-soluble resins isolated from the raffinates considerably decreases. The benzene-soluble resins isolated from the raffinates are characterized by higher content of paraffinic carbon and higher total content of heteroatoms compared to the initial resins. The (alcohol + benzene)-soluble resins remaining in the raffinate, on the contrary, have considerably lower content of paraffinic carbon atoms, and the total content of the heteroatoms does not noticeably change relative to the initial resins. The combined treatment does not noticeably affect the structural-group parameters of the resins remaining in the raffinate. Hypothetical structural formulas of benzene-soluble and (benzene + alcohol)-soluble resins were suggested on the basis of the structural-group analysis data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Voronetskaya, N.G., Pevneva, G.S., Korneev, D.S., and Golovko, A.K., Petrol. Chem., 2020, vol. 60, no. 2, pp. 166–173. https://doi.org/10.1134/S0965544120020103

    Article  CAS  Google Scholar 

  2. Kam’yanov, V.F., Aksenov, V.S., and Titov, V.I., Geteroatomnye komponenty nefti (Heteroatomic Components of Petroleum), Novosibirsk: Nauka, 1983.

  3. Batueva, I.Yu., Gaile, A.A., and Pokonova, Yu.V., Khimiya nefti (Petroleum Chemistry), Leningrad: Khimiya, 1984.

  4. Sergienko, S.R., Ocherk razvitiya khimii i pererabotki nefti (Essay on the Development of Petroleum Chemistry and Refining), Moscow: Akad. Nauk SSSR, 1955.

  5. Golovko, A.K. and Grin’ko, A.A., Petrol. Chem., 2018, vol. 58, no. 8, pp. 599–606. https://doi.org/10.1134/s0965544118080078

    Article  CAS  Google Scholar 

  6. Gordadze, G.N., Giruts, M.V., Poshibaeva, A.R., Poshibaev, V.V., Gayanova, A.A., Postnikov, A.V., and Postnikova, O.V., Petrol. Chem., 2019, vol. 59, no. 11, pp. 1177–1189.

    Article  CAS  Google Scholar 

  7. Cheshkova, T.V., Kovalenko, E.Y., Gerasimova, N.N., Sagachenko, T.A., and Min, R.S., Petrol. Chem., 2017, vol. 57, no. 1, pp. 31–38. https://doi.org/10.1134/S0965544117010054

    Article  CAS  Google Scholar 

  8. Li, T., Xu, J., Zou, R., Feng, H., Li, L., Wang, J.Y., Cohen Stuart, M.A., and Guo, X., Energy Fuels, 2018, vol. 32, no. 1, pp. 306–313. https://doi.org/10.1021/acs.energyfuels.7b03279

    Article  CAS  Google Scholar 

  9. Gerasimova, N.N., Cheshkova, T.V., Golushkova, E.B., Sagachenko, T.A., and Min, R.S., Izv. Tomsk. Politekh. Univ., Inzh. Georesursov, 2019, vol. 330, no. 110, pp. 155–164.

    Google Scholar 

  10. Cheshkova, T.V., Sergun, V.P., Kovalenko, E.Yu., Gerasimova, N.N., Sagachenko, T.A., and Min, R.S., Energy Fuels, 2019, vol. 33, no. 9, pp. 7971–7982. https://doi.org/10.1021/acs.energyfuels.9b00285

    Article  CAS  Google Scholar 

  11. Golovko, A.K., Gorbunova, L.V., and Kam’yanov, V.F., Russ. Geol. Gepophys., 2010, vol. 51, no. 3, pp. 286-295.

    Article  Google Scholar 

  12. Yudina, N.V. and Loskutova, Yu.V., Petrol. Chem., 2020, vol. 60, no. 6, pp. 693–698. https://doi.org/10.1134/S0965544120060110

    Article  CAS  Google Scholar 

  13. Beshagina, E.V., Yudina, N.V., Loskutova, Yu.V., and Krutey, A.A., Procedia Chem., 2014, vol. 10, pp. 229–235. https://doi.org/10.1016/j.proche.2014.10.039

    Article  CAS  Google Scholar 

  14. Morozova, A.V. and Volkova, G.I., Petrol. Chem., 2019, vol. 59, no. 10, pp. 1153–1160. https://doi.org/10.1134/S0965544119100086

    Article  CAS  Google Scholar 

  15. Morozova, A.V. and Volkova, G.I., Chem. Sustain. Develop., 2020, vol. 28, pp. 494–500. https://doi.org/10.15372/CSD20202570

    Article  Google Scholar 

  16. Petrova, L.M., Abbakumova, N.A., Foss, T.R., and Romanov, G.V., Petrol. Chem., 2011, vol. 51, pp. 252–256. https://doi.org/10.1134/S0965544111040062

    Article  CAS  Google Scholar 

  17. Ogorodnikov, V.D., Instrumental’nye metody issledovaniya nefti (Instrumental Methods for Studying Crude Oil), Ivanov, G.V., Ed., Novosibirsk: Nauka, 1987.

  18. Patrakov, Yu.F., Fedyaeva, O.N., and Kamyanov, V.F., Fuel, 2005, vol. 84, nos. 2–3, pp. 189–199. https://doi.org/10.1016/j.fuel.2004.08.021

    Article  CAS  Google Scholar 

  19. Dmitriev, D.E. and Golovko, A.K., Petrol. Chem., 2010, vol. 50, no. 2, pp. 106–113. https://doi.org/10.1134/S0965544110020040

    Article  Google Scholar 

  20. Iovik, Y.A. and Krivtsov, E.B., Petrol. Chem., 2020, vol. 60, no. 3, pp. 341–347. https://doi.org/10.1134/S0965544120030081

    Article  CAS  Google Scholar 

Download references

Funding

The study was performed within the framework of the government assignment for the Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences, financially supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Volkova.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozova, A.V., Volkova, G.I. & Krivtsov, E.B. Composition of Petroleum Resins Inhibiting the Precipitate Formation in an Ultrasonically Treated Solution of Petroleum Wax in Decane. Pet. Chem. 62, 161–168 (2022). https://doi.org/10.1134/S0965544122060044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122060044

Keywords:

Navigation