Skip to main content
Log in

A Comparative Analysis of the Solubility of Asphaltene Fractions with Addition of Petroleum Vanadyl Porphyrins

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

High-vanadium heavy oil asphaltenes were fractionated by a sequential precipitation method. Using FT-IR spectroscopy, elemental analysis, and optical spectroscopy, the differences in the compositions of the asphaltene fractions were thoroughly investigated. To isolate and purify vanadyl porphyrins (VPs) from the asphaltenes, extraction with N,N-dimethylformamide (DMF) followed by two-step column chromatography on silica gel and sulfocationite was employed. The effects of VPs on the solubility of the asphaltene fractions were evaluated based on optical density variations in the solvent/precipitant system in a kinetic mode. It was found that, in most cases, adding petroleum VPs to toluene solutions of asphaltene fractions decreases the solubility of these fractions. The highest effect of VPs on the solubility of the asphaltene fractions was observed for samples with a high concentration of polar heteroatom groups and low aromaticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Mitchell, D.L. and Speight, J.G., Fuel, 1973, vol. 52, p. 149. https://doi.org/10.1016/0016-2361(73)90040-9

    Article  CAS  Google Scholar 

  2. Miller, J.T., Fisher, R.B., Thiyagarajan, P., Winans, R.E., and Hunt, J.E., Energy Fuels, 1998, vol. 12, pp. 1290–1298. https://doi.org/10.1021/ef9800664

    Article  CAS  Google Scholar 

  3. Kohli, K., Prajapati, R., Maity, S.K., Sau, M., and Garg, M.O., Fuel, 2016, vol. 175, pp. 264–273. https://doi.org/10.1016/j.fuel.2016.02.036

    Article  CAS  Google Scholar 

  4. Stark, J.L. and Asomaning, S., Pet. Sci. Technol., 2003, vol. 21, pp. 569– 579. https://doi.org/10.1081/LFT-120018539

    Article  CAS  Google Scholar 

  5. Wiehe, I.A., Kennedy, R.J., and Dickakian, G., Energy Fuels, 2001, vol. 15, pp. 1057– 1058. https://doi.org/10.1021/ef010063i

    Article  CAS  Google Scholar 

  6. Spiecker, P., Gawrys, K.L., and Kilpatrick, P.K., J. Colloid. Interface Sci., 2003, vol. 267, pp. 178–193. https://doi.org/10.1016/S0021-9797(03)00641-6

    Article  CAS  PubMed  Google Scholar 

  7. da Silva Ramos, A.C., Rolemberg, M.P., de Moura, L.G.M., Zilio, E.L., dos Santos, M.D.F.P., and González, G., J. Petrol. Sci. Eng., 2013, vol. 102, pp. 36–40. https://doi.org/10.1016/j.petrol.2013.01.008

    Article  CAS  Google Scholar 

  8. Álvarez, P., Menendez, J.L., Berrueco, C., Rostani, K., and Millan, M., Fuel Proc. Technol., 2012, vol. 96, pp. 16–21. https://doi.org/10.1016/j.fuproc.2011.12.007

    Article  CAS  Google Scholar 

  9. Mamin, G.V., Gafurov M, R., Yusupov, R.V., Gracheva, I.N., Ganeeva, Y.M., Yusupova, T.N., and Orlinskii, S.B., Energy Fuels, 2016, vol. 30, pp. 6942–6946. https://doi.org/10.1021/acs.energyfuels.6b00983

    Article  CAS  Google Scholar 

  10. Trukhan, S.N., Kazarian, S.G., and Martyanov, O.N., Energy Fuels, 2017, vol. 31, pp. 387–394. https://doi.org/10.1021/acs.energyfuels.6b02572

    Article  CAS  Google Scholar 

  11. Evdokimov, I.N., Eliseev, N.Y., and Akhmetov, B.R., J. Petrol. Sci. Eng., 2003, vol. 37, pp. 135–143. https://doi.org/10.1016/S0920-4105(02)00350-9

    Article  CAS  Google Scholar 

  12. Evdokimov, I.N., Fesan, A.A., and Losev, A.P., Energy Fuels, 2017, vol. 31, pp. 3878–3884. https://doi.org/10.1021/acs.energyfuels.7b00114

    Article  CAS  Google Scholar 

  13. Gawrys, K.L., Blankenship, G.A., and Kilpatrick, P.K., Langmuir, 2006, vol. 22, pp. 4487–4497. https://doi.org/10.1021/la052509j

    Article  CAS  PubMed  Google Scholar 

  14. Yang, Y., Chaisoontornyotin, W., and Hoepfner, M.P., Langmuir, 2018, vol. 34, pp. 10371–10380. https://doi.org/10.1021/acs.langmuir.8b01873

    Article  CAS  PubMed  Google Scholar 

  15. Chacón-Patiño, M.L., Moulian, R., Barrère-Mangote, C., Putman, J.C., Weisbrod, C.R., Blakney, G.T., Bouyssiere, B., Rodgers, R., and Giusti, P., Energy Fuels, 2020, vol. 34, pp. 16158–16172. https://doi.org/10.1021/acs.energyfuels.0c03349

    Article  CAS  Google Scholar 

  16. Rogel, E., Ovalles, C., Moir, M., and Schabron, J.F., Energy Fuels, 2009, vol. 23, pp. 4515–4521. https://doi.org/10.1021/ef900358q

    Article  CAS  Google Scholar 

  17. Zhang, Y., Siskin, M., Gray, M.R., Walters, C.C., and Rodgers, R.P., Energy Fuels, 2020, vol. 34, pp. 9094–9107. https://doi.org/10.1021/acs.energyfuels.0c01564

    Article  CAS  Google Scholar 

  18. Prakoso, A., Punase, A., Rogel, E., Ovalles, C., and Hascakir, B., Energy Fuels, 2018, vol. 32, pp. 6482–6487. https://doi.org/10.1021/acs.energyfuels.8b00324

    Article  CAS  Google Scholar 

  19. Chacón-Patiño, M.L., Smith, D.F., Hendrickson, C.L., Marshall, A.G., and Rodgers, R.P., Energy Fuels, 2020, vol. 34, pp. 3013–3030. https://doi.org/10.1021/acs.energyfuels.9b04288

    Article  CAS  Google Scholar 

  20. Mullins, O.C., Energy Fuels, 2010, vol. 24, pp. 2179–2207. https://doi.org/10.1021/ef900975e

    Article  CAS  Google Scholar 

  21. Dechaine, G.P. and Gray, M.R., Energy Fuels, 2010, vol. 24, pp. 2795–2808. https://doi.org/10.1021/ef100173j

    Article  CAS  Google Scholar 

  22. Branthaver, J.F., ACS Sym. Ser., 1987, vol. 344, pp. 188–204. https://doi.org/10.1021/bk-1987-0344.ch012

    Article  CAS  Google Scholar 

  23. Bryers, R.W., Fuel Proc. Technol., 1995, vol. 44, pp. 121–141. https://doi.org/10.1016/0378-3820(94)00118-D

    Article  CAS  Google Scholar 

  24. Zhao, X., Xu, C., and Shi, Q., Struct. Model. Compl. Petrol. Mixtures, 2015, vol. 119, pp. 39–70. https://doi.org/10.1007/430_2015_189

    Article  CAS  Google Scholar 

  25. Zhao, X., Liu, Y., Xu, C., Yan, Y., Zhang, Y., Zhang, Q., Zhao, S., Chung, K., Gray, M.R., and Shi, Q., Energy Fuels, 2013, vol. 27, pp. 2874–2882. https://doi.org/10.1021/ef400161p

    Article  CAS  Google Scholar 

  26. Yakubov, M.R., Milordov, D.V., Yakubova, S.G., Borisov, D.N., Gryaznov, P.I., Mironov, N.A., Abilova, G.R., Borisova, Y.Y., and Tazeeva, E.G., Petrol. Sci. Technol., 2016. 34, pp. 177–183. https://doi.org/10.1080/10916466.2015.1122627

  27. Mironov, N.A., Abilova, G.R., Sinyashin, K.O., Gryaznov, P.I., Borisova, Y.Y., Milordov, D.V., Tazeeva, E.G., Yakubova, S.G., and Yakubov, M.R., Energy Fuels, 2018, vol. 32, pp. 161–168. https://doi.org/10.1021/acs.energyfuels.7b02816

    Article  CAS  Google Scholar 

  28. Mironov, N.A., Milordov, D.V., Abilova, G., Tazeeva, E.G., Yakubova, S.G., and Yakubov, M.R., J. Porphyrin. Phthalocyan., 2020, vol. 24, pp. 528–537. https://doi.org/10.1142/S1088424619501979

    Article  CAS  Google Scholar 

  29. Yakubov, M.R., Abilova, G.R., Sinyashin, K.O., Milordov, D.V., Tazeeva, E.G., Yakubova, S.G., Borisov, D.N., Gryaznov, P.I., Mironov, N.A., and Borisova, Y.Y., Energy Fuels, 2016, vol. 30, pp. 8997–9002. https://doi.org/10.1021/acs.energyfuels.6b01503

    Article  CAS  Google Scholar 

  30. Borisova, Y.Y., Tazeeva, E.G., Mironov, N.A., Borisov, D.N., Yakubova, S.G., Abilova, G.R., Sinyashin, K.O., and Yakubov, M.R., Energy Fuels, 2017, vol. 31, pp. 13382–13391. https://doi.org/10.1021/acs.energyfuels.7b02544

    Article  CAS  Google Scholar 

  31. Rytting, B.M., Harper, M.R., Edmond, K.V., Zhang, Y., and Kilpatrick, P.K., Energy Fuels, 2019, vol. 34, pp. 164–178. https://doi.org/10.1021/acs.energyfuels.9b03237

    Article  CAS  Google Scholar 

  32. Taherian, Z., Dehaghani, A.S., Ayatollahi, S., and Kharrat, R., J. Petrol. Sci. Eng., 2021, vol. 205, p. 108824. https://doi.org/10.1016/j.petrol.2021.108824

    Article  CAS  Google Scholar 

  33. Yakubova, S.G., Abilova, G.R., Tazeeva, E.G., Borisova, Yu.Yu., and Yakubov, M.R., Chem. Technol. Fuel. Oils, 2017, vol. 53. № 6, pp. 862–868. https://doi.org/10.1007/s10553-018-0873-3

    Article  CAS  Google Scholar 

  34. Buenrostro-Gonzalez, E., Groenzin, H., LiraGaleana, C., and Mullins, O.C., Energy Fuels, 2001, vol. 15, pp. 972–978. https://doi.org/10.1021/ef0100449

    Article  CAS  Google Scholar 

  35. Xu, H., Yu, D., and Que, G., Fuel, 2005, vol. 84, pp. 647–652. https://doi.org/10.1016/j.fuel.2004.06.034

    Article  CAS  Google Scholar 

  36. Gray, M.R., Tykwinski, R.R., Stryker, J.M., and Tan, X., Energy Fuels, 2011, vol. 25, pp. 3125–3134. https://doi.org/10.1021/ef200654p

    Article  CAS  Google Scholar 

Download references

Funding

The study described here was performed with financial support from the Russian Science Foundation (RSF Grant no. 19-13-00089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Milordov.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milordov, D.V., Abilova, G.R., Mironov, N.A. et al. A Comparative Analysis of the Solubility of Asphaltene Fractions with Addition of Petroleum Vanadyl Porphyrins. Pet. Chem. 62, 240–249 (2022). https://doi.org/10.1134/S0965544122060123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122060123

Keywords:

Navigation