Skip to main content
Log in

Distribution and Composition of High-Molecular-Mass Components in Oily Sludge

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Three kinds of organic components, namely, entrapped oil and reversibly and irreversibly adsorbed on finely dispersed mechanical impurities oils, are identified in the oily sludge obtained by centrifugation of the extracted crude oil from the Abdrakhmanovo area of the Romashkino field. The entrapped oil (about 4 vol %) is enriched in resins and depleted of hydrocarbon components with increased fraction of low-molecular-mass n-alkanes. The content of reversibly adsorbed oil does not exceed 5 wt %. It contains ester fragments and increased fraction of high-molecular-mass alkanes; also, it is enriched in polar resins and “soft” asphaltenes. The content of irreversibly adsorbed oil is approximately 3 wt %. According to the thermal analysis data, irreversibly adsorbed oil consist mainly of weakly carbonized structures whose thermal oxidative degradation occurs at temperatures of up to 300°С. Relatively high content of hydrocarbons, including n-alkanes up to C24, in the entrapped oil makes oily sludge promising for the production of a wide range of oil products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Pozdnyshev, G.N., Stabilizatsiya i razrushenie neftyanykh emul’sii (Stabilization and Break of Petroleum Emulsions), Moscow: Nedra, 1982.

  2. Markin, A.N., Nizamov, R.E., and Sukhoverkhov, S.V., Neftepromyslovaya khimiya: prakticheskoe rukovodstvo (Crude Oil Extraction Chemistry: Practical Guide), Vladivostok: Dal’nauka, 2011.

  3. Tronov, V.P., Promyslovaya podgotovka nefti (Crude Oil Pretreatment in Oil Fields), Kazan: Fen, 2000. 416 с.

  4. Sakhabutdinov, R.Z. and Khamidullin, R.F., Formirovanie i razrushenie ustoichivvykh vodoneftyanykh emul’sii v promezhutochnykh sloyakh. Metodicheskie ukazaniya (Formation and Break of Stable Water–Oil Emulsions in Intermediate Layers. Methodical Instruction), Kazan: Kazanskii Gos. Tekh. Univ., 2009.

  5. Aksarin, A.V., Sbor i podgotovka skvazhinnoi produktsii: kurs lektsii (Collection and Pretreatment of Well Products: A Course of Lectures), Tomsk: Tomskii Politekh. Univ., 2000.

  6. Buryukin, F.A., Kositsyna, A.S., Koval’chuk, A.A., and Shapovalov, P.L., Del. Zh. Neftegaz.ru, 2020, vol. 9, no. 105, pp. 156–161.

    Google Scholar 

  7. Mazlova, E.A. and Meshcheryakov, S.V., Chem. Technol. Fuels Oils, 1999, vol. 35, pp. 49–53.

    Article  CAS  Google Scholar 

  8. Hu, G., Li, J., and Zeng, G., J. Hazard. Mater., 2013, vol. 261, pp. 470–490. https://doi.org/10.1016/j.jhazmat.2013.07.069

    Article  CAS  PubMed  Google Scholar 

  9. Evdokimov, I.N., Strukturnye kharakteristiki promyslovykh vodoneftyanykh emul’sii (Structural Characteristics of Water–Oil Emulsions Formed in the Course of Crude Oil Extraction), Moscow: Ross. Gos. Univ. Nefti i Gaza im. I.M. Gubkina, 2012.

  10. Ganeeva, Y.M., Yusupova, T.N., Barskaya, E.E., Valiullova, A.K., Okhotnikova, E.S., Morozov, V.I., and Davletshina, L.F., Petrol. Sci., 2020, vol. 17, pp. 1345–1355. https://doi.org/10.1007/s12182-020-00447-9

    Article  Google Scholar 

  11. Almubarak, T., AlKhaldi, M., Hong, J., and Nasr-ElDin, H.A., SPE Drill Compl., 2021, vol. 36, no. 2, pp. 281–299. https://doi.org/10.2118/178034-PA

    Article  Google Scholar 

  12. Mirkhoshhal, S.M., Mahani, H., Ayatollahi, S., and Shirazi, M.M., J. Petrol. Sci. Eng., 2021, vol. 196, article 107679. https://doi.org/10.1016/j.petrol.2020.107679

  13. Gao, X., Jiang, J., Ma, F., Cao, K., and Qi, J., Drill. Fluid Complet. Fluid, 2016, vol. 33, no. 3, pp. 107–111.

    CAS  Google Scholar 

  14. Tsyganov, D.G. ande Bashkirtseva, N.Yu., Vestn. Kazansk. Tekhnol. Univ., 2014, vol. 17, no. 10, pp. 212–215.

    CAS  Google Scholar 

  15. Ramaswamy, B., Kar, D.D., and De, S., J. Environ. Manag., 2007, vol. 85, no. 1, pp. 150–154.

    Article  CAS  Google Scholar 

  16. Ward, O., Singh, A., and Van Hamme, J., J. Ind. Microbiol. Biotechnol., 2003, vol. 30, no. 5, pp. 260–270. https://doi.org/10.1080/10916460802455582

    Article  CAS  PubMed  Google Scholar 

  17. Ren, H., Zhou, S., Wang, B., Peng, L., and Li, X., Colloids Surf. A: Physicochem. Eng. Aspects, 2020, vol. 585, article 124117. https://doi.org/10.1016/j.colsurfa.2019.124117

  18. Borisov, S.I. and Petrov, A.A., Tr. Giprovostokneft’, 1975, no. 26, pp. 102–112.

    Google Scholar 

  19. Petrov, A.A. and Pozdnyshev, G.N., Tr. Giprovostokneft’, 1971, no. 13, pp. 3–8.

    Google Scholar 

  20. Veretennikova, I.V., Petrov, A.A., and valeev, B.G., Tr. Giprovostokneft’, 1975, no. 26, pp. 124–129.

    Google Scholar 

  21. Levchenko, D.N., Khim. Tekhnol. Topl. Masel, 1970, no. 10, pp. 21–25.

    Google Scholar 

  22. Borisov, S.I. and Petrov, A.A., Tr. Giprovostokneft’, 1975, no. 24, pp. 170–180.

    Google Scholar 

  23. Ramos, A.C.S., Haraguchi, L., Notrispe, F.R., Loh, W., and Mohamed, R.S., J. Petrol. Sci. Eng., 2001, vol. 32, nos. 2–4, pp. 201–216. https://doi.org/10.1016/S0920-4105(01)00162-0

    Article  Google Scholar 

  24. Zhang, J., Tian, D., Lin, M., Yang, Z., and Dong, Z., Colloids Surf. A: Physicochem. Eng. Aspects, 2016, vol. 507, pp. 1–6. https://doi.org/10.1016/j.colsurfa.2016.07.081

    Article  CAS  Google Scholar 

  25. Tyugaeva, E.A. and Dolomatov, M.Yu., Universum: Tekh. Nauki, 2017, no. 4 (37). https://7universum.com/pdf/tech/4(37)/Tyugaeva.pdf

  26. Fatykhova, A.A. and Yamaliev, V.U., Neftegaz. Delo, 2019, no. 4, pp. 228–242.

    Google Scholar 

  27. Duan, M., Li, C., Wang, X., Fang, S., Xiong, Y., and Shi, P., J. Petrol. Sci. Eng., 2019, vol. 172, pp. 1112–1119. https://doi.org/10.1016/j.petrol.2018.09.019

    Article  CAS  Google Scholar 

  28. Al Hadabi, I., Sasaki, K., and Sugai, Y., Energy Fuels, 2016, vol. 30, no. 12, pp. 10917–10924. https://doi.org/10.1021/acs.energyfuels.6b01822

    Article  CAS  Google Scholar 

  29. Duan, Y., Gao, N., Tariq Sipra, A., Tong, K., and Quan, C., J. Hazard. Mater., 2022, vol. 424, article 127293. https://doi.org/10.1016/j.jhazmat.2021.127293

  30. Alhadj-Mallah, M.-M., Huang, Q., Cai, X., Li, X., Chi, Y., and Yan, J., Рetrol. Sci. Technol., 2015, vol. 33, no. 1, pp. 118–126. https://doi.org/10.1080/10916466.2014.955920

    Article  CAS  Google Scholar 

  31. Borisevich, Yu.P. and Krasnova, G.Z., Trudy VI Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Neftegazovye tekhnologii” (Proc. VI Int. Scientific and Practical Conf. “Oil and Gas Technologies”), 2010, vol. I, pp. 77–80.

  32. Mukhametshin, V.Kh., Cand. Sci. (Eng.) Dissertation, Ufa: Inst. of Power Resource Transportation Problems, 2011.

  33. Sakhabutdinov, R.Z., Gubaidulin, F.R., Ismagilov, I.Kh., and Kosmacheva, T.F., Osobennosti formirovaniya i razrusheniya vodoneftyanykh emul’sii na pozdnei stadii razrabotki neftyanykh mestorozhdenii (Specific Features of the Formation and Break of Water–Oil Emulsions in the Late Step of the Development of Oil Fields), Moscow: VNIIOENG, 2005.

  34. Qunxing, H., Feiyan, M., Xu, H., Jianhua, Y., and Yong, C., Fuel, 2014, vol. 118, pp. 214–219. https://doi.org/10.1016/j.fuel.2013.10.053

    Article  CAS  Google Scholar 

  35. Yang, X., Tan, W., and Bu, Y., Energy Fuels, 2009, vol. 23, no. 1, pp. 481–486. https://doi.org/10.1021/ef800600v

    Article  CAS  Google Scholar 

  36. Kralova, I., Sjoblom, J., Oye, G., Simon, S., Grimes, B.A., and Paso, K., Adv. Colloid Interface Sci., 2011, vol. 169, no. 2, pp. 106–127. https://doi.org/10.1016/j.cis.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  37. Lu, Z., Liu, W., Bao, M., Zhao, L., Sun, X., Lu, J., and Li, Y., Colloids Surf. A: Physicochem. Eng. Aspects, 2021, vol. 611, article 125887. https://doi.org/10.1016/j.colsurfa.2020.125887

  38. Cho, Y., Abed, H.N., and Kim, S., Bull. Korean Chem. Soc., 2020, vol. 41, no. 4, pp. 450–453. https://doi.org/10.1002/bkcs.11991

    Article  CAS  Google Scholar 

  39. Zabbarov, R.R. and Goncharova, I.N., Vestn. Kazansk. Tekhnol. Univ., 2012, vol. 15, no. 11, pp. 199–200.

    Google Scholar 

  40. Hui, K., Tang, J., Lu, H., Xi, B., Qu, C., and Li, J., Arab. J. Chem., 2020, vol. 13, no. 8, pp. 6523–6543. https://doi.org/10.1016/j.arabjc.2020.06.009

    Article  CAS  Google Scholar 

  41. Orlovskii, V.M. and Panarin, V.A., Opt. Atmosf. Okeana, 2018, vol. 31, no. 3, pp. 240–243. https://doi.org/10.15372/AOO20180316

    Article  Google Scholar 

  42. Kurazhkovskaya, V.S. and Borovikova, E.Yu., Infrakrasnaya i messbauerovskaya spektroskopiya kristallov. Uchebnoe posobie (Infrared and Mössbauer Spectroscopy of Crystals. Textbook), Moscow: Mosk. Gos. Univ., Geol. Fakul’tet, 2008.

  43. Peng, P., Morales-Izquierdo, A., Hogg, A., and Strausz, O.P., Energy Fuels, 1997, vol. 11, no. 6, pp. 1171–1187. https://doi.org/10.1021/ef970027c

    Article  CAS  Google Scholar 

  44. Yen, T.F., Erdman, J.G., and Saraceno, A.J., Anal. Chem., 1962, vol. 34, no. 6, pp. 694−700. https://doi.org/10.1021/ac60186a034

    Article  CAS  Google Scholar 

  45. Tagirzyanov, M.I., Yakubov, M.R., and Romanov, G.V., J. Can. Petrol. Technol., 2007, vol. 46, no. 9, pp. 1–6. https://doi.org/10.2118/2004-045

    Article  Google Scholar 

  46. Ganeeva, Yu.M., Yusupova, T.N., and Romanov, G.V., Russ. Chem. Rev., 2011, vol. 80, pp. 993–1008. https://doi.org/10.1070/RC2011v080nl0ABEH004174

    Article  CAS  Google Scholar 

  47. Rocha, J.A., Baydak, E.N., and Yarranton, H.W., Energy Fuels, 2018, vol. 32, no. 2, pp. 1440–1450. https://doi.org/10.1021/acs.energyfuels.7b03532

    Article  CAS  Google Scholar 

  48. Khadim, M.A. and Sarbar, M.A., J. Petrol. Sci. Eng., 1999, vol. 23, nos. 3–4, pp. 213–221. https://doi.org/10.1016/S0920-4105(99)00024-8

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Collective Spectral and Analytical Center of Physicochemical Investigations of the Structure, Properties, and Composition of Substances and Materials, Federal Research Center Kazan Scientific Center, Russian Academy of Sciences, for performing the IR and EPR studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Okhotnikova.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barskaya, E.E., Okhotnikova, E.S., Ganeeva, Y.M. et al. Distribution and Composition of High-Molecular-Mass Components in Oily Sludge. Pet. Chem. 62, 151–160 (2022). https://doi.org/10.1134/S0965544122060032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122060032

Keywords:

Navigation