1932

Abstract

Active systems evade the rules of equilibrium thermodynamics by constantly dissipating energy at the level of their microscopic components. This energy flux stems from the conversion of a fuel, present in the environment, into sustained individual motion. It can lead to collective effects without any equilibrium equivalent, some of which can be rationalized by using equilibrium tools to recapitulate nonequilibrium transitions. An important challenge is then to delineate systematically to what extent the character of these active transitions is genuinely distinct from equilibrium analogs. We review recent works that use stochastic thermodynamics tools to identify, for active systems, a measure of irreversibility comprising a coarse-grained or informatic entropy production. We describe how this relates to the underlying energy dissipation or thermodynamic entropy production, and how it is influenced by collective behavior. Then, we review the possibility of constructing thermodynamic ensembles out of equilibrium, where trajectories are biased toward atypical values of nonequilibrium observables. We show that this is a generic route to discovering unexpected phase transitions in active matter systems, which can also inform their design.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031720-032419
2022-03-10
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/13/1/annurev-conmatphys-031720-032419.html?itemId=/content/journals/10.1146/annurev-conmatphys-031720-032419&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J et al. 2013. Rev. Mod. Phys. 85:1143–89
  2. 2. 
    Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G, Volpe G. 2016. Rev. Mod. Phys. 88:045006
  3. 3. 
    Fodor É, Marchetti MC. 2018. Physica A 504:106–20
  4. 4. 
    Elgeti J, Winkler RG, Gompper G. 2015. Rep. Prog. Phys. 78:5056601
  5. 5. 
    Saw TB, Doostmohammadi A, Nier V, Kocgozlu L, Thampi S et al. 2017. Nature 544:212–16
  6. 6. 
    Cavagna A, Giardina I. 2014. Annu. Rev. Condens. Matter Phys. 5:183–207
  7. 7. 
    Bain N, Bartolo D. 2019. Science 363:642246–49
  8. 8. 
    Deseigne J, Dauchot O, Chaté H. 2010. Phys. Rev. Lett. 105:098001
  9. 9. 
    Palacci J, Sacanna S, Steinberg AP, Pine DJ, Chaikin PM. 2013. Science 339:6122936–40
  10. 10. 
    Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O. 1995. Phys. Rev. Lett. 75:1226–29
  11. 11. 
    Fily Y, Marchetti MC. 2012. Phys. Rev. Lett. 108:235702
  12. 12. 
    Toner J, Tu Y. 1995. Phys. Rev. Lett. 75:4326–29
  13. 13. 
    Wittkowski R, Tiribocchi A, Stenhammar J, Allen RJ, Marenduzzo D, Cates ME. 2014. Nat. Commun. 5:4351
  14. 14. 
    Chaté H. 2020. Annu. Rev. Condens. Matter Phys. 11:189–212
  15. 15. 
    Cates ME, Tailleur J. 2015. Annu. Rev. Condens. Matter Phys. 6:219–44
  16. 16. 
    Tailleur J, Cates ME. 2008. Phys. Rev. Lett. 100:218103
  17. 17. 
    Maggi C, Marconi UMB, Gnan N, Di Leonardo R. 2015. Sci. Rep. 5:10742
  18. 18. 
    Yang X, Manning ML, Marchetti MC. 2014. Soft Matter 10:6477–84
  19. 19. 
    Takatori SC, Yan W, Brady JF 2014. Phys. Rev. Lett. 113:028103
  20. 20. 
    Solon AP, Fily Y, Baskaran A, Cates ME, Kafri Y et al. 2015. Nat. Phys. 11:8673–78
  21. 21. 
    Bialké J, Siebert JT, Löwen H, Speck T. 2015. Phys. Rev. Lett. 115:098301
  22. 22. 
    Zakine R, Zhao Y, Knežević M, Daerr A, Kafri Y et al. 2020. Phys. Rev. Lett. 124:248003
  23. 23. 
    Paliwal S, Rodenburg J, van Roij R, Dijkstra M. 2018. New J. Phys. 20:015003
  24. 24. 
    Guioth J, Bertin E. 2019. J. Chem. Phys. 150:094108
  25. 25. 
    Onsager L. 1931. Phys. Rev. 37:405–26
  26. 26. 
    Kubo R. 1966. Rep. Prog. Phys. 29:1255–84
  27. 27. 
    Sekimoto K. 1998. Prog. Theor. Phys. Suppl. 130:17–27
  28. 28. 
    Seifert U. 2012. Rep. Prog. Phys. 75:12126001
  29. 29. 
    Maes C. 1999. J. Stat. Phys. 95:1367–92
  30. 30. 
    Derrida B. 2007. J. Stat. Mech. 2007:07P07023
  31. 31. 
    Lecomte V, Appert-Rolland C, van Wijland F. 2007. J. Stat. Phys. 127:151–106
  32. 32. 
    Garrahan JP, Jack RL, Lecomte V, Pitard E, van Duijvendijk K, van Wijland F. 2007. Phys. Rev. Lett. 98:195702
  33. 33. 
    Touchette H. 2009. Phys. Rep. 478:11–69
  34. 34. 
    Jack RL. 2020. Eur. Phys. J. B 93:74
  35. 35. 
    Fodor É, Nardini C, Cates ME, Tailleur J, Visco P et al. 2016. Phys. Rev. Lett. 117:038103
  36. 36. 
    Dean DS. 1996. J. Phys. A Math. Gen. 29:24L613
  37. 37. 
    Tjhung E, Nardini C, Cates ME. 2018. Phys. Rev. X 8:031080
  38. 38. 
    Tiribocchi A, Wittkowski R, Marenduzzo D, Cates ME. 2015. Phys. Rev. Lett. 115:188302
  39. 39. 
    Nardini C, Fodor É, Tjhung E, van Wijland F, Tailleur J et al. 2017. Phys. Rev. X 7:021007 https://doi.org/10.1103/PhysRevX.7.021007
    [Crossref]
  40. 40. 
    Lebowitz JL, Spohn H. 1999. J. Stat. Phys. 95:1333–65
  41. 41. 
    Mandal D, Klymko K, DeWeese MR. 2017. Phys. Rev. Lett. 119:258001
  42. 42. 
    Puglisi A, Marconi UMB. 2017. Entropy 19:7356
  43. 43. 
    Speck T. 2018. Europhys. Lett. 123:220007
  44. 44. 
    Caprini L, Marconi UMB, Puglisi A, Vulpiani A. 2018. Phys. Rev. Lett. 121:139801
  45. 45. 
    Shankar S, Marchetti MC. 2018. Phys. Rev. E 98:020604
  46. 46. 
    Pietzonka P, Seifert U. 2018. J. Phys. A Math. Theor. 51:101LT01
  47. 47. 
    Dadhichi LP, Maitra A, Ramaswamy S. 2018. J. Stat. Mech. 2018:12123201
  48. 48. 
    Dabelow L, Bo S, Eichhorn R 2019. Phys. Rev. X 9:021009
  49. 49. 
    Borthne ØL, Fodor É, Cates ME. 2020. New J. Phys. 22:12123012
  50. 50. 
    Onsager L, Machlup S. 1953. Phys. Rev. 91:1505–12
  51. 51. 
    Caprini L, Marconi UMB, Puglisi A, Vulpiani A. 2019. J. Stat. Mech. 2019:5053203
  52. 52. 
    Martin D, de Pirey TA. 2021. J. Stat. Mech. 2021:4043205
  53. 53. 
    Crosato E, Prokopenko M, Spinney RE. 2019. Phys. Rev. E 100:042613
  54. 54. 
    Speck T. 2016. Europhys. Lett. 114:330006
  55. 55. 
    Solon AP, Tailleur J. 2013. Phys. Rev. Lett. 111:078101
  56. 56. 
    Alert R, Joanny JF, Casademunt J. 2020. Nat. Phys. 16:6682–88
  57. 57. 
    Markovich T, Fodor É, Tjhung E, Cates ME. 2021. Phys. Rev. X 11:021057
  58. 58. 
    Pietzonka P, Fodor É, Lohrmann C, Cates ME, Seifert U. 2019. Phys. Rev. X 9:041032
  59. 59. 
    Ekeh T, Cates ME, Fodor É. 2020. Phys. Rev. E 102:010101
  60. 60. 
    Zakine R, Solon A, Gingrich T, van Wijland F. 2017. Entropy 19:5193
  61. 61. 
    Holubec V, Steffenoni S, Falasco G, Kroy K. 2020. Phys. Rev. Res. 2:043262
  62. 62. 
    Fodor É, Cates ME. 2021. Europhys. Lett. 134:110003
  63. 63. 
    Loos SAM, Klapp SHL. 2020. New J. Phys. 22:12123051
  64. 64. 
    Gaspard P, Kapral R. 2018. J. Chem. Phys. 148:13134104
  65. 65. 
    Weber CA, Zwicker D, Jülicher F, Lee CF 2019. Rep. Prog. Phys. 82:6064601
  66. 66. 
    Groot SRD, Mazur P. 1962. Non-Equilibrium Thermodynamics Amsterdam: North-Holland
  67. 67. 
    Kruse K, Joanny JF, Jülicher F, Prost J, Sekimoto K. 2004. Phys. Rev. Lett. 92:078101
  68. 68. 
    Prost J, Jülicher F, Joanny JF. 2015. Nat. Phys. 11:111–17
  69. 69. 
    Martin D, O'Byrne J, Cates ME, Fodor É, Nardini C et al. 2021. Phys. Rev. E 103:032607 https://doi.org/10.1103/PhysRevE.103.032607
    [Crossref]
  70. 70. 
    Fodor É, Guo M, Gov NS, Visco P, Weitz DA, van Wijland F. 2015. Europhys. Lett. 110:448005
  71. 71. 
    Ahmed WW, Fodor É, Almonacid M, Bussonnier M, Verlhac M-H et al. 2018. Biophys. J. 114:71667–79
  72. 72. 
    Gnesotto FS, Mura F, Gladrow J, Broedersz CP. 2018. Rep. Prog. Phys. 81:6066601
  73. 73. 
    Harada T, Sasa Si. 2005. Phys. Rev. Lett. 95:130602
  74. 74. 
    Szamel G. 2019. Phys. Rev. E 100:050603
  75. 75. 
    Toyabe S, Okamoto T, Watanabe-Nakayama T, Taketani H, Kudo S, Muneyuki E. 2010. Phys. Rev. Lett. 104:198103
  76. 76. 
    Fodor É, Ahmed WW, Almonacid M, Bussonnier M, Gov NS et al. 2016. Europhys. Lett. 116:30008
  77. 77. 
    Seara DS, Machta BB, Murrell MP. 2021. Nat. Commun. 12:392
  78. 78. 
    Flenner E, Szamel G. 2020. Phys. Rev. E 102:022607
  79. 79. 
    Dabelow L, Bo S, Eichhorn R. 2021. J. Stat. Mech. 2021:3033216
  80. 80. 
    Fodor É, Nemoto T, Vaikuntanathan S. 2020. New J. Phys. 22:013052
  81. 81. 
    Tociu L, Fodor É, Nemoto T, Vaikuntanathan S. 2019. Phys. Rev. X 9:041026
  82. 82. 
    Hansen JP, McDonald IR. 2013. Theory of Simple Liquids Oxford: Academic
  83. 83. 
    Tociu L, Rassolov G, Fodor É, Vaikuntanathan S. 2020. arXiv:2012.10441
  84. 84. 
    Li YI, Cates ME. 2021. J. Stat. Mech. 2021:1013211
  85. 85. 
    Caballero F, Cates ME. 2020. Phys. Rev. Lett. 124:240604
  86. 86. 
    Garrahan JP, Jack RL, Lecomte V, Pitard E, van Duijvendijk K, van Wijland F. 2009. J. Phys. A 42:7075007
  87. 87. 
    Bodineau T, Derrida B. 2004. Phys. Rev. Lett. 92:18180601
  88. 88. 
    Appert-Rolland C, Derrida B, Lecomte V, van Wijland F. 2008. Phys. Rev. E 78:2021122
  89. 89. 
    Jack RL, Sollich P. 2015. Eur. Phys. J. Spec. Top. 224:122351–67
  90. 90. 
    Dolezal J, Jack RL. 2019. J. Stat. Mech. 2019:12123208
  91. 91. 
    Hedges LO, Jack RL, Garrahan JP, Chandler D. 2009. Science 323:59191309–13
  92. 92. 
    Garrahan JP, Lesanovsky I. 2010. Phys. Rev. Lett. 104:16160601
  93. 93. 
    Weber JK, Jack RL, Schwantes CR, Pande VS. 2014. Biophys. J. 107:4974–82
  94. 94. 
    Nemoto T, Fodor É, Cates ME, Jack RL, Tailleur J. 2019. Phys. Rev. E 99:022605 https://doi.org/10.1103/PhysRevE.99.022605
    [Crossref]
  95. 95. 
    Simha A, Evans RML, Baule A. 2008. Phys. Rev. E 77:3031117
  96. 96. 
    Pressé S, Ghosh K, Lee J, Dill KA. 2013. Rev. Mod. Phys. 85:31115–41
  97. 97. 
    den Hollander F. 2000. Large Deviations Providence, RI: Am. Math. Soc.
  98. 98. 
    Bertsekas DP. 2005. Dynamic Programming and Optimal Control 1: Belmont, MA: Athena Sci.
  99. 99. 
    Dupuis P, Ellis RS. 1997. A Weak Convergence Approach to the Theory of Large Deviations New York: Wiley
  100. 100. 
    Chétrite R, Touchette H. 2015. J. Stat. Mech. 2015:12P12001
  101. 101. 
    Chetrite R, Touchette H. 2015. Ann. Henri Poincaré 16:92005–57
  102. 102. 
    Jack RL, Sollich P. 2010. Prog. Theor. Phys. Suppl. 184:304–17
  103. 103. 
    Tsobgni Nyawo P, Touchette H 2016. Phys. Rev. E 94:032101
  104. 104. 
    Cagnetta F, Mallmin E. 2020. Phys. Rev. E 101:022130
  105. 105. 
    Keta YE, Fodor É, van Wijland F, Cates ME, Jack RL. 2021. Phys. Rev. E 103:022603 https://doi.org/10.1103/PhysRevE.103.022603
    [Crossref]
  106. 106. 
    Nemoto T, Bouchet F, Jack RL, Lecomte V. 2016. Phys. Rev. E 93:6062123
  107. 107. 
    Nemoto T, Jack RL, Lecomte V. 2017. Phys. Rev. Lett. 118:11115702
  108. 108. 
    Ray U, Chan GKL, Limmer DT. 2018. Phys. Rev. Lett. 120:210602
  109. 109. 
    Jacobson D, Whitelam S. 2019. Phys. Rev. E 100:052139
  110. 110. 
    Bertini L, De Sole A, Gabrielli D, Jona-Lasinio G, Landim C 2015. Rev. Mod. Phys. 87:2593–636
  111. 111. 
    Whitelam S, Klymko K, Mandal D. 2018. J. Chem. Phys. 148:15154902
  112. 112. 
    GrandPre T, Klymko K, Mandadapu KK, Limmer DT. 2021. Phys. Rev. E 103:012613
  113. 113. 
    Cagnetta F, Corberi F, Gonnella G, Suma A. 2017. Phys. Rev. Lett. 119:158002
  114. 114. 
    GrandPre T, Limmer DT. 2018. Phys. Rev. E 98:060601
  115. 115. 
    Chiarantoni P, Cagnetta F, Corberi F, Gonnella G, Suma A. 2020. J. Phys. A Math. Theor. 53:3636LT02
  116. 116. 
    Dolezal J, Jack RL. 2021. Phys. Rev. E 103:052132
  117. 117. 
    Horowitz JM, Gingrich TR. 2020. Nat. Phys. 16:115–20
/content/journals/10.1146/annurev-conmatphys-031720-032419
Loading
/content/journals/10.1146/annurev-conmatphys-031720-032419
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error