1932

Abstract

This article analyzes modulated phases in liquid crystals, from the long-established cholesteric and blue phases to the recently discovered twist-bend, splay-bend, and splay nematic phases, as well as the twist-grain-boundary (TGB) and helical nanofilament variations on smectic phases. The analysis uses the concept of four fundamental modes of director deformation: twist, bend, splay, and a fourth mode related to saddle-splay. Each mode is coupled to a specific type of molecular order: chirality, polarization perpendicular and parallel to the director, and octupolar order. When the liquid crystal develops one type of spontaneous order, the ideal local structure becomes nonuniform, with the corresponding director deformation. In general, the ideal local structure is frustrated; it cannot fill space. As a result, the liquid crystal must form a complex global phase, which may have a combination of deformation modes, and may have a periodic array of defects. Thus, the concept of an ideal local structure under geometric frustration provides a unified framework to understand the wide variety of modulated phases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031620-105712
2022-03-10
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/13/1/annurev-conmatphys-031620-105712.html?itemId=/content/journals/10.1146/annurev-conmatphys-031620-105712&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Dunmur D, Sluckin T. 2011. Soap, Science, and Flat-Screen TVs: A History of Liquid Crystals Oxford, UK: Oxford Univ. Press
  2. 2. 
    Machon T, Alexander GP. 2016. Phys. Rev. X 6:011033
  3. 3. 
    Selinger JV. 2018. Liq. Cryst. Rev. 6:129–42
  4. 4. 
    Moessner R, Ramirez AP. 2006. Phys. Today 59:24–29
  5. 5. 
    Grason GM. 2016. J. Chem. Phys. 145:110901
  6. 6. 
    Kamien RD, Selinger JV. 2001. J. Phys. Condens. Matter 13:R1–22
  7. 7. 
    Meyer RB. 1969. Phys. Rev. Lett. 22:918–21
  8. 8. 
    Jákli A, Lavrentovich OD, Selinger JV. 2018. Rev. Mod. Phys. 90:045004 https://doi.org/10.1103/RevModPhys.90.045004
    [Crossref]
  9. 9. 
    Meyer RB. 1976. Molecular Fluids (Les Houches Summer School in Theoretical Physics, 1973) R Balian, G Weill 271–343 New York: Gordon and Breach
  10. 10. 
    Shamid SM, Dhakal S, Selinger JV. 2013. Phys. Rev. E 87:052503
  11. 11. 
    Dhakal S, Selinger JV. 2010. Phys. Rev. E 81:031704
  12. 12. 
    Basu R, Pendery JS, Petschek RG, Lemieux RP, Rosenblatt C. 2011. Phys. Rev. Lett. 107:237804
  13. 13. 
    Selinger JV, Wang ZG, Bruinsma RF, Knobler CM. 1993. Phys. Rev. Lett. 70:1139–42
  14. 14. 
    Davidson ZS, Kang L, Jeong J, Still T, Collings PJ et al. 2015. Phys. Rev. E 91:050501
  15. 15. 
    Lubensky TC, Radzihovsky L. 2002. Phys. Rev. E 66:1–27
  16. 16. 
    Gaeta G, Virga EG. 2016. Eur. Phys. J. E 39:113
  17. 17. 
    Dozov I. 2001. Europhys. Lett. 56:247–53
  18. 18. 
    Sethna JP, Wright DC, Mermin ND. 1983. Phys. Rev. Lett. 51:467–70
  19. 19. 
    Niv I, Efrati E. 2018. Soft Matter 14:424–31
  20. 20. 
    Virga EG. 2019. Phys. Rev. E 100:052701
  21. 21. 
    Sadoc JF, Mosseri R, Selinger JV. 2020. New J. Phys. 22:093036
  22. 22. 
    Pollard J, Alexander GP 2021. New J. Phys. 23:063006
  23. 23. 
    da Silva LCB, Efrati E. 2021. New J. Phys. 23:063016
  24. 24. 
    Wright D, Mermin N. 1989. Rev. Mod. Phys. 61:385–432
  25. 25. 
    Cestari M, Diez-Berart S, Dunmur DA, Ferrarini A, de la Fuente MR et al. 2011. Phys. Rev. E 84:031704
  26. 26. 
    Chen D, Porada JH, Hooper JB, Klittnick A, Shen Y et al. 2013. PNAS 110:15931–36
  27. 27. 
    Borshch V, Kim YK, Xiang J, Gao M, Jákli A et al. 2013. Nat. Commun. 4:2365
  28. 28. 
    Samulski ET, Vanakaras AG, Photinos DJ. 2020. Liq. Cryst. 47:2092–97
  29. 29. 
    Dozov I, Luckhurst GR. 2020. Liq. Cryst. 47:2098–115
  30. 30. 
    Lorman VL, Mettout B. 1999. Phys. Rev. Lett. 82:940–43
  31. 31. 
    Lorman VL, Mettout B. 2004. Phys. Rev. E 69:061710
  32. 32. 
    Shamid SM, Allender DW, Selinger JV. 2014. Phys. Rev. Lett. 113:237801
  33. 33. 
    Ungar G, Liu Y, Zeng X, Percec V, Cho WD. 2003. Science 299:1208–11
  34. 34. 
    Mertelj A, Cmok L, Sebastián N, Mandle RJ, Parker RR et al. 2018. Phys. Rev. X 8:041025
  35. 35. 
    Chaturvedi N, Kamien RD. 2019. Phys. Rev. E 100:022704
  36. 36. 
    Rosseto MP, Selinger JV. 2020. Phys. Rev. E 101:052707
  37. 37. 
    Chen X, Korblova E, Dong D, Wei X, Shao R et al. 2020. PNAS 117:14021–31
  38. 38. 
    Priest RG, Lubensky TC. 1974. Phys. Rev. A 9:893–98
  39. 39. 
    Harris AB, Kamien RD, Lubensky TC. 1999. Rev. Mod. Phys. 71:1745–57
  40. 40. 
    Dhakal S, Selinger JV. 2011. Phys. Rev. E 83:020702(R)
  41. 41. 
    Helfrich W. 1973. Z. Naturforsch. C 28:693–703
  42. 42. 
    de Gennes PG. 1972. Solid State Commun. 10:753–56
  43. 43. 
    Renn SR, Lubensky TC. 1988. Phys. Rev. A 38:2132–47
  44. 44. 
    Goodby JW, Waugh MA, Stein SM, Chin E, Pindak R, Patel JS. 1989. Nature 337:449–52
  45. 45. 
    Goodby JW, Waugh MA, Stein SM, Chin E, Pindak R, Patel JS. 1989. J. Am. Chem. Soc. 111:8119–25
  46. 46. 
    Hough LE, Jung HT, Krüerke D, Heberling MS, Nakata M et al. 2009. Science 325:456–60
  47. 47. 
    Matsumoto EA, Alexander GP, Kamien RD. 2009. Phys. Rev. Lett. 103:257804
  48. 48. 
    Matsumoto EA, Kamien RD, Alexander GP. 2017. Interface Focus 7:20160118
  49. 49. 
    Barry E, Dogic Z, Meyer RB, Pelcovits RA, Oldenbourg R. 2009. J. Phys. Chem. B 113:3910–13
  50. 50. 
    Gibaud T, Barry E, Zakhary MJ, Henglin M, Ward A et al. 2012. Nature 481:348–51
  51. 51. 
    Efrati E, Irvine WTM. 2014. Phys. Rev. X 4:011003
  52. 52. 
    Klein Y, Efrati E, Sharon E 2007. Science 315:1116–20
  53. 53. 
    Efrati E, Sharon E, Kupferman R 2009. J. Mech. Phys. Solids 57:762–75
  54. 54. 
    Sharon E, Efrati E. 2010. Soft Matter 6:5693–704
  55. 55. 
    Spector MS, Selinger JV, Schnur JM 2003. Materials-Chirality: Volume 24 of Topics in Stereochemistry MM Green, RJM Nolte, EW Meijer 281–372 Hoboken, New Jersey: John Wiley and Sons
  56. 56. 
    Yager P, Schoen PE. 1984. Mol. Cryst. Liq. Cryst. 106:371–81
  57. 57. 
    Schnur JM. 1993. Science 262:1669–76
  58. 58. 
    Selinger RLB, Selinger JV, Malanoski AP, Schnur JM. 2004. Phys. Rev. Lett. 93:158103
  59. 59. 
    Ghafouri R, Bruinsma R. 2005. Phys. Rev. Lett. 94:138101
  60. 60. 
    Armon S, Aharoni H, Moshe M, Sharon E 2014. Soft Matter 10:2733
  61. 61. 
    Helfrich W, Prost J. 1988. Phys. Rev. A 38:3065–68
  62. 62. 
    Selinger JV, Spector MS, Schnur JM. 2001. J. Phys. Chem. B 105:7157–69
  63. 63. 
    Pakhomov S, Hammer RP, Mishra BK, Thomas BN. 2003. PNAS 100:3040–42
  64. 64. 
    Warner M. 2020. Annu. Rev. Condens. Matter Phys. 11:125–45
  65. 65. 
    Warner M, Terentjev EM. 2003. Liquid Crystal Elastomers Oxford, UK: Oxford University Press
  66. 66. 
    White TJ, Broer DJ. 2015. Nat. Mater. 14:1087–98
  67. 67. 
    Nguyen TS, Selinger JV. 2017. Eur. Phys. J. E 40:76
/content/journals/10.1146/annurev-conmatphys-031620-105712
Loading
/content/journals/10.1146/annurev-conmatphys-031620-105712
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error