Skip to main content
Log in

Influence of Modification of Zn-Mg(Zr)Si Oxide Systems by Sodium and Potassium on their Catalytic Properties in the Process of Obtaining 1,3-Butadiene from Ethanol

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The effect of alkali metal ions (Na+ or K+) on the acid–base and catalytic properties of Zn-Mg(Zr)Si oxide systems in the process of obtaining 1,3-butadiene from ethanol was studied. It was found that the modification of Zn-MgSi oxide systems promotes an increase in the 1,3-butadiene selectivity (at temperatures ≥670 K) by reducing the number of formation sites of by-products. In the composition of Zn-ZrSi oxide systems, alkali metal cation additives lead to a decrease in the ethene and diethyl ether selectivity due to a decrease in the content of strong acid sites that are active in the ethanol dehydration reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. R. Dastillung, B. Fischer, M. Jacquin, and R. Huyghe, “Method for the Production of Butadiene from Ethanol in One Low-Water- and Low-Energy-Consumption Reaction Step”, Patent US 20170267604 A1, Publ. 2017.

  2. G. M. Cabello Gonzalez, A. L. Villanueva Perales, M. Campoy, et al., Fuel Process. Technol., 216, 106767 (2021).

    Article  CAS  Google Scholar 

  3. C. E. Cabrera Camacho, B. Alonso-Faricas, A. L. Villanueva Perales, et al., ACS Sustain. Chem. Eng., 8, 10201-10211 (2020).

    Article  CAS  Google Scholar 

  4. G. Pomalaza, P. Arango, M. Capron, and F. Dumeignil, Catal. Sci. Technol., 10, 4860-4911 (2020).

    Article  CAS  Google Scholar 

  5. P. I. Kyriienko, O. V. Larina, S. O. Soloviev, and S. M. Orlyk, Theor. Exp. Chem., 56, 213-242 (2020).

    Article  CAS  Google Scholar 

  6. E. V. Makshina, M. Dusselier, W. Janssens, et al., Chem. Soc. Rev., 43, 7917-7953 (2014).

    Article  CAS  Google Scholar 

  7. R. Ohnishi, T. Akimoto, and K. Tanabe, J. Chem. Soc. Chem. Commun., 70, 1613 (1985).

    Article  Google Scholar 

  8. R. A. L. Baylon, J. Sun, and Y. Wang, Catal. Today, 259, 446-452 (2014).

    Article  Google Scholar 

  9. S. Da Ros, M. D. Jones, D. Mattia, et al., ChemCatChem., 8, 2376-2386 (2016).

    Article  Google Scholar 

  10. P. T. Patil, D. Liu, Y. Liu, et al., Appl. Catal. A, 543, 67-74 (2017).

    Article  CAS  Google Scholar 

  11. A. Klein, K. Keisers, and R. Palkovits, Appl. Catal. A, 514, 192-202 (2016).

    Article  CAS  Google Scholar 

  12. C. Wang and M. Zheng, Green Chem., 21, 1006-1010 (2019).

    Article  CAS  Google Scholar 

  13. I. Bin Samsudin, H. Zhang, S. Jaenicke, and G. -K. Chuah, Chem.-Asian J., 15, 4199-4214 (2020).

    Article  CAS  Google Scholar 

  14. O. V. Larina, P. I. Kyriienko, and S. O. Soloviev, Theor. Exp. Chem., 51, 252-258 (2015).

    Article  CAS  Google Scholar 

  15. V. R. Choudhary, V. H. Rane, and M. Y. Pandit, J. Chem. Technol. Biotechnol., 68, 177-186 (1997).

    Article  CAS  Google Scholar 

  16. E. Finazzi, C. Di Valentin, G. Pacchioni, et al., Chem. Eur. J., 14, 4404-4414 (2008).

    Article  CAS  Google Scholar 

  17. L. H. Chagas, C. R. V. Matheus, P. C. Zonetti, and L. G. Appel, Mol. Catal., 458, 272-279 (2018).

    Article  CAS  Google Scholar 

  18. J. T. Kozlowski and R. J. Davis, J. Energy Chem., 22, 58-64 (2013).

    Article  CAS  Google Scholar 

  19. V. V. Ordomsky, V. L. Sushkevich, and I. I. Ivanova, J. Mol. Catal. A, 333, 85-93 (2010).

    Article  CAS  Google Scholar 

  20. M. Zhang, Y. Qin, X. Tan, et al., Catal. Lett., 150, 1462-1470 (2020).

    Article  CAS  Google Scholar 

  21. Y. Xu, Z. Liu, Z. Han, and M. Zhang, RSC Adv., 7, 7140-7149 (2017).

    Article  CAS  Google Scholar 

  22. M. Zhang, X. Tan, T. Zhang, et al., RSC Adv., 8, 34069-34077 (2018).

    Article  CAS  Google Scholar 

  23. O. V. Larina, N. D. Shcherban, P. I. Kyriienko, et al., ACS Sustain. Chem. Eng., 8, 16600-16611 (2020).

    Article  CAS  Google Scholar 

  24. G. M. Cabello Gonzalez, P. Concepcionb, A. L. Villanueva Peralesa, et al., Fuel Process. Technol., 193, 263-272 (2019).

    Article  CAS  Google Scholar 

  25. P. I. Kyriienko, O. V. Larina, D. Y. Balakin, et al., Appl. Catal. A, 616, 118081 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The research was performed with the partial financial support of research programs of the NAS of Ukraine “Support of priority areas of research”, KPKVK 6541230 (0120U101212), “Fundamental problems of creating new substances and materials of chemical production” (0119U101562), and project of research works of young scientists of the National Academy of Sciences of Ukraine (0121U111813).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Larina.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 57, No. 6, pp. 375-381, November-December, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larina, O.V., Kyriienko, P.I., Morozov, O.V. et al. Influence of Modification of Zn-Mg(Zr)Si Oxide Systems by Sodium and Potassium on their Catalytic Properties in the Process of Obtaining 1,3-Butadiene from Ethanol. Theor Exp Chem 57, 443–450 (2022). https://doi.org/10.1007/s11237-022-09714-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-022-09714-9

Keywords

Navigation