Skip to main content
Log in

Generalized Reissner-type variational principles in the micropolar theories of multilayer thin bodies with one small size

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The effective parametrization of a multilayer thin domain, called a new parametrization, is considered and consists in using, in contrast to the classical approaches, several base surfaces. In addition, the new parameterization is characterized by the fact that it is experimentally more accessible than other parameterizations used in the scientific literature, since the front surfaces are used as basic ones. Also, when obtaining any relation (a system of equations, constitutive relations, boundary and initial conditions, variational principles, etc.) in the moments of the theory of multilayer thin bodies under the new parametrization of the domain of a thin body, it is sufficient in the corresponding relation of the theory of a single-layer thin body under the root letters of the quantities to supply the index \(\alpha \), which denotes the number of the layer \(\alpha \) and gives these index values from 1 to K, where K is the number of layers. Therefore, for the correct statement of the initial-boundary value problems to the equations of motion and the boundary and initial conditions in the moments, it is also necessary to add interlayer contact conditions, which must also be taken into account when writing the variational operators and formulating the variational principles. What has been said above can be called the rule of obtaining the desired relation in the theory of multilayer thin bodies from the corresponding relation in the theory of single-layer thin bodies. Applying this rule, below we give the representation of the generalized Reissner-type operator and formulate the generalized Reissner-type variational principle both in the case of full contact of adjacent layers of a multilayer structure and in the presence of zones of weakened adhesion. The description of obtaining of dual operators and variational principles of Reissner-type, as well as of Lagrangian and Castiglianian and variational principles of Lagrange and Castigliano, is given. In the presence of domains of weakened adhesion at interphase boundaries in a multilayer thin body, one of the main problems is the problem of modeling the interface (interphase boundary). In this paper, the jump-type model (description of the interface by a surface of zero thickness) is presented in comparative detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A three-dimensional body, one size of which is smaller than the others, is called a thin body with one small size, and a solid body, two sizes of which are small compared to the third dimension, is called a thin body with two small dimensions.

  2.  The dependence of the quantities on \(x'\) means their dependence on the curvilinear coordinates \(x^1\) and \(x^2\) of the base surface. The usual rules of tensor calculus used in [19, 40,41,42,43,44,45] are applied. The notations and agreements adopted in previously published works (see [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 46, 47, 48, 49, and others]) are preserved.

References

  1. dell’Isola, F., Madeo, A., Seppecher, P.: Boundary conditions at fluid-permeable interfaces in porous media: a variational approach. Int. J. Solids Struct. 46(17), 3150–64 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Placidi, L., Barchiesi, E., Misra, A.: A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math. Mech. Complex Syst. 6(2), 77–100 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Reiher, J.C., Giorgio, I., Bertram, A.: Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity. J. Eng. Mech. 143(2), 04016112 (2017)

    Article  Google Scholar 

  4. Cuomo, M., Contrafatto, L., Greco, L.: A variational model based on isogeometric interpolation for the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173–88 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Giorgio, I., Spagnuolo, M., Andreaus, U., Scerrato, D., Bersani, A.M.: In-depth gaze at the astonishing mechanical behavior of bone: a review for designing bio-inspired hierarchical metamaterials. Math. Mech. Solids 26(7), 1074–103 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. La Valle, G., Massoumi, S.: A new deformation measure for micropolar plates subjected to in-plane loads. Continuum Mech. Thermodyn. 6, 1–5 (2021)

    Google Scholar 

  7. Barchiesi, E., dell’Isola, F., Bersani, A.M., Turco, E.: Equilibria determination of elastic articulated duoskelion beams in 2D via a Riks-type algorithm. Int. J. Non Linear Mech. 128, 103628 (2021)

    Article  ADS  Google Scholar 

  8. De Angelo, M., Placidi, L., Nejadsadeghi, N., Misra, A.: Non-standard Timoshenko beam model for chiral metamaterial: identification of stiffness parameters. Mech. Res. Commun. 103, 103462 (2020)

    Article  Google Scholar 

  9. Cazzani, A., Serra, M., Stochino, F., Turco, E.: A refined assumed strain finite element model for statics and dynamics of laminated plates. Continuum Mech. Thermodyn. 32(3), 665–92 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  10. Greco, L., Cuomo, M., Contrafatto, L.: A quadrilateral G1-conforming finite element for the Kirchhoff plate model. Comput. Methods Appl. Mech. Eng. 346, 913–951 (2019)

    Article  ADS  MATH  Google Scholar 

  11. Greco, L., Cuomo, M., Contrafatto, L.: Two new triangular G1-conforming finite elements with cubic edge rotation for the analysis of Kirchhoff plates. Comput. Methods Appl. Mech. Eng. 356, 354–386 (2019)

    Article  ADS  MATH  Google Scholar 

  12. Tran, L.V., Niiranen, J.: A geometrically nonlinear Euler-Bernoulli beam model within strain gradient elasticity with isogeometric analysis and lattice structure applications. Math. Mech. Complex Syst. 8(4), 345–71 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Continuum Mech. Thermodyn. 28(1–2), 139–56 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Yildizdag, M.E., Demirtas, M., Ergin, A.: Multipatch discontinuous Galerkin isogeometric analysis of composite laminates. Continuum Mech. Thermodyn. 32(3), 607–20 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  15. Rektorys, K.: Variational Methods in Mathematics Science and Engineering, vol. 571. Springer, Dordrecht (1977). https://doi.org/10.1007/978-94-011-6450-4

    Book  MATH  Google Scholar 

  16. Washizy, K.: Variational Methods in Elasticity and Plasticity, 3rd ed., vol. 542. Pergamon, Oxford (1982) (Russian translation)

  17. Berdichevsky, V.L.: Variational Principles of Continuum Mechanics, vol. 430. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-88469-9

    Book  MATH  Google Scholar 

  18. Vanko, V.I.: Variational Principles and Problems of Mathematical Physics, vol. 191. Publishing House of BMSTU (2010) (in Russian)

  19. Vekua, I.N.: Variational Principles of Constructing the Theory of Shells, vol. 15. Tbilisi University Publishing House, Tbilisi (1970) (in Russian)

  20. Pobedrya, B.E.: Mechanics of Composite Materials, vol. 336. MSU Publishing House, Moscow (1984). (in Russian)

  21. Pobedrya, B.E.: Numerical Methods in the Theory of Elasticity and Plasticity, vol. 366, 2nd edn. MSU Publishing House, Moscow (1995). (in Russian)

  22. Nikabadze, M.U.: A variant of the theory of multilayer structures. Mech. Solids 1, 143–158 (2001)

    Google Scholar 

  23. Nikabadze, M.U.: To a version of the theory of multilayer structures. Mech. Solids 36(1), 119–129 (2001)

    Google Scholar 

  24. Nikabadze, M.U., Ulukhanyan, A.R.: Statements of problems for a thin deformable three-dimensional body. Mosc. Univ. Bull. Math. Mech. 5, 43–49 (2005). (in Russian)

    MATH  Google Scholar 

  25. Nikabadze, M.U.: A variant of the system of equations of the theory of thin bodies. Mosc. Univ. Bull. Math. Mech. 1, 30–35 (2006). (in Russian)

    MATH  Google Scholar 

  26. Nikabadze, M.U.: Application of a system of Chebyshev polynomials to the theory of thin bodies. Mosc. Univ. Bull. Math. Mech. 5, 56–63 (2007). (in Russian)

    MathSciNet  MATH  Google Scholar 

  27. Nikabadze, M.U.: Application of Chebyshev polynomials to the theory of thin bodies. Mosc. Univ. Mech. Bull. 62(5), 141–148 (2007). https://doi.org/10.3103/S0027133007050056

    Article  MathSciNet  MATH  Google Scholar 

  28. Nikabadze, M.U.: Some issues concerning a version of the theory of thin solids based on expansions in a system of Chebyshev polynomials of the second kind. Mech. Solids 42(3), 391–421 (2007)

    Article  ADS  Google Scholar 

  29. Nikabadze, M.U.: Mathematical modeling of multilayer thin body deformation. J. Math. Sci. 187(3), 300–336 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nikabadze, M.U.: Development of the Method of Orthogonal Polynomials in the Classical and Micropolar Mechanics of Elastic Thin bodies. M., Publ. House of the Board of Trustees mech.-math. facul. of MSU, vol. 515 (2014) (in Russian). https://istina.msu.ru/publications/book/6738800/

  31. Nikabadze, M.U., Ulukhanyan, A.R.: Analytical solutions in the theory of thin bodies. In: Altenbach, H., Forest, S. (eds.) Generalized Continua as Models for Classical and Advanced Materials, Advanced Structured Materials, vol. 42, pp. 319–361 (2016). https://doi.org/10.1007/978-3-319-31721-2_15

  32. Nikabadze, M.U., Ulukhanyan, A.R.: Some applications of eigenvalue problems for tensor and tensor-block matrices for mathematical modeling of micropolar thin bodies. Math. Comput. Appl. 24(1), 1–19 (2019). https://doi.org/10.3390/mca24010033

    Article  MathSciNet  Google Scholar 

  33. Nikabadze, M.U., Ulukhanyan, A.R.: To the Modeling of multilayer Thin Prismatic Bodies. In: IOP Conference Series: Materials Science and Engineering, vol. 683, p. 012019 (2019) https://doi.org/10.1088/1757-899X/683/1/012019

  34. Nikabadze, M.U., Ulukhanyan, A.R.: Mathematical modeling of elastic thin bodies with one small size. In: Altenbach, H., Müller, W., Abali, B. (eds.) Higher Gradient Materials and Related Generalized Continua, Advanced Structured Materials, vol. 120, pp. 155–199 (2019) https://doi.org/10.1007/978-3-030-30406-5_9

  35. Nikabadze, M.U., Ulukhanyan, A.R.: Modeling of multilayer thin bodies. Continuum Mech. Thermodyn. 32, 817–842 (2020). https://doi.org/10.1007/s00161-019-00762-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Nikabadze, M.U., Ulukhanyan, A.R.: On the decomposition of equations of micropolar elasticity and thin body theory. Lobachevskii J. Math. 41(10), 2059–2074 (2020). https://doi.org/10.1134/S1995080220100145

    Article  MathSciNet  MATH  Google Scholar 

  37. Nikabadze, M.U., Ulukhanyan, A.R.: On the theory of multilayer thin bodies. Lobachevskii J. Math. 42(8), 1900–1911 (2021). https://doi.org/10.1134/S1995080221080217

    Article  MathSciNet  MATH  Google Scholar 

  38. Nikabadze, M., Ulukhanyan, A.: On Some Variational Principles in the Three-Dimensional Micropolar Theories of Solids. Mathematics and Mechanics of Solids SAGE Publications, United States (2021) (in press)

  39. Nikabadze, M., Ulukhanyan, A.: On Some Variational Principles in Micropolar Theories of Single-Layer Thin Bodies. Continuum Mechanics and Thermodynamics. Springer, Germany (2021) (in press)

  40. Nikabadze, M.U.: On some issues of tensor calculus with applications to mechanics, Contemporary mathematics. Fundamental directions, 55, 3–194 (2015) (in Russian)http://istina.msu.ru/media/publications/book/e25/00c/10117043/M.U.Nikabadze.pdf

  41. Nikabadze, M.U.: Topics on tensor calculus with applications to mechanics. J. Math. Sci. 225(1), 1–194 (2017). https://doi.org/10.1007/s10958-017-3467-4

    Article  MathSciNet  MATH  Google Scholar 

  42. Vekua, I.N.: Fundamentals of Tensor Analysis and Covariant Theory, vol. 296. Nauka, Moscow (1978) (in Russian)

  43. Vekua, I.N.: Some General Methods for Constructing Various Variants of the Theory of Shells, vol. 228. Nauka, Moscow (1982) (in Russian)

  44. Lurie, A.I.: Nonlinear Theory of Elasticity, vol. 512. Nauka, Moscow (1980). (in Russian)

  45. Pobedrya, B.E.: Lectures on Tensor Analysis, vol. 264. MSU Publishing House, Moscow (1986) (in Russian)

  46. Nikabadze, M.U.: On compatibility conditions in linear micropolar theory. Mosc. Univ. Bull. Math. Mech. 5, 48–51 (2010). (in Russian)

    MathSciNet  Google Scholar 

  47. Nikabadze, M.U.: On compatibility conditions and equations of motion in the micropolar linear theory of elasticity. Mosc. Univ. Bull. Math. Mech. 1, 63–66 (2012)

    MathSciNet  MATH  Google Scholar 

  48. Nikabadze, M.U.: Compatibility conditions and equations of motion in the linear micropolar theory of elasticity. Mosc. Univ. Mech. Bull. Allerton Press, Inc 67(1), 18–22 (2012)

    Article  MATH  Google Scholar 

  49. Nikabadze, M.U.: Eigenvalue problems of a tensor and a tensor-block matrix (TMB) of any even rank with some applications in mechanics. In: Altenbach, H., Forest, S. (eds.) Generalized Continua as Models for Classical and Advanced Materials, Advanced Structured Materials, vol. 42, pp. 279–317 (2016) https://doi.org/10.1007/978-3-319-31721-2_14

  50. Pelekh, B.L., Korovaichuk, I.M.: On the mechanics of composite media with imperfect bonds at interfaces. Mech. Comp. Mater. 4, 606–611 (1984). (in Russian)

    Google Scholar 

  51. Podstrigach, Ya. S.: Conditions of thermal contact of solids. Reports of the Academy of Sciences of the URSR, No 7, pp. 872–874 (1963) (in Ukrainian)

  52. Podstrigach, Ya.S.: Conditions for the jump in stresses and displacements on a thin-walled elastic inclusion in a continuous medium. Reports of the Academy of Sciences of the USSR, No 12, 30–32 (1982) (in Russian)

  53. Cosserat, E., Cosserat, F.: Theorie des Corp Dcformables, vol. 229. Paris. Librairie Scientifique A. Hermann et Fils (1909)

  54. Le Roux J.: Etude g\(\acute{e}\)om\(\acute{e}\)trique de la torsion et de la flexion, dans les d\(\acute{e}\)formations infinit\(\acute{e}\)simales d’un milieu continu. Ann. Scient. Ecole Norm. Sup. S\(\acute{e}\)r 3(28), 523–579 (1911)

  55. Le Roux J.: Recherches sur g\(\acute{e}\)om\(\acute{e}\)trie des d\(\acute{e}\)formations finies. Ann. Scient. Ecole Norm. Sup. S\(\acute{e}\)r, 3(30), 193–245 (1913)

  56. Jaramillo, T.J.: A generalization of the energy function of elasticity theory. Dissertation. Department of Mathematics. University of Chicago, 98 (1929)

  57. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Rat. Mech. Anal. 16(1), 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  58. Toupin, R.A.: Theories of elasticity with couple-stresses. Arch. Rat. Mech. Anal. 17(2), 85–112 (1964)

    Article  MATH  Google Scholar 

  59. Eringen, A.C.: Microcontinuum Field Theories. I. Foundation and solids, vol. 16, p. 325. Springer, New York (1999)

    Book  MATH  Google Scholar 

  60. Harm, A., Elias, C.A.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962–1990 (2011). https://doi.org/10.1016/j.ijsolstr.2011.03.006

    Article  Google Scholar 

  61. Elias, C.A.: Continuum nanomechanics for nanocrystalline and ultrafine grain materials. IOP Conf. Ser. Mater. Sci. Eng. 63, 012129 (2014)

    Article  Google Scholar 

  62. dell’Isola, F., Sciara, G., Vidoli, S. (2009) Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 465(2107), 2177–2196. https://doi.org/10.1098/rspa.2008.0530

  63. Alibert, J.J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003). https://doi.org/10.1177/1081286503008001658

    Article  MathSciNet  MATH  Google Scholar 

  64. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of abrio Piola. Math. Mech. Solids 20(8), 887–928 (2014). https://doi.org/10.1177/1081286513509811

    Article  MATH  Google Scholar 

  65. dell’Isola, F., Seppecher, P., Della Corte, A.: The postulations a la D’Alembert and a la Cauchy for higher gradient continuum theories are equivalent: a review of existing results. Proc. R. Soc. A Math. Phys. Eng. Sci. 471 (2015) https://doi.org/10.1098/rspa.2015.0415

  66. Giorgio, I.: A discrete formulation of Kirchhoff rods in large-motion dynamics. Math. Mech. Solids 25(5), 1081–100 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  67. Giorgio, I.: Lattice shells composed of two families of curved Kirchhoff rods: an archetypal example, topology optimization of a cycloidal metamaterial. Continuum Mech. Thermodyn. 33(4), 1063–82 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  68. Wang, F.-F., Dai, H.-H., Giorgio, I.: A numerical comparison of the uniformly valid asymptotic plate equations with a 3D model: clamped rectangular incompressible elastic plates. Math. Mech. Solids (2021). https://doi.org/10.1177/10812865211025583

    Article  MATH  Google Scholar 

  69. Ciallella, A., Pasquali, D., Gołaszewski, M., D’Annibale, F., Giorgio, I.: A rate-independent internal friction to describe the hysteretic behavior of pantographic structures under cyclic loads. Mech. Res. Commun. 116, 103761 (2021)

    Article  Google Scholar 

  70. Barchiesi, E., Spagnuolo, M., Placidi, L.: Mechanical metamaterials: a state of the art. Math. Mech. Solids 24(1), 212–34 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The paper was published with the financial support of the Ministry of Education and Science of the Russian Federation as part of the program of the Moscow Center for Fundamental and Applied Mathematics under the Agreement No 075-15-2019-1621 and of the Shota Rustaveli National Science Foundation (Project No FR-21-3926).

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikabadze, M., Ulukhanyan, A. Generalized Reissner-type variational principles in the micropolar theories of multilayer thin bodies with one small size. Continuum Mech. Thermodyn. 35, 1207–1221 (2023). https://doi.org/10.1007/s00161-022-01091-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01091-x

Keywords

Navigation