Skip to main content

Advertisement

Log in

Petro-Mineralogical and Geochemical Evaluation of Glauconitic Rocks of the Ukra Member (Bhuj Formation), Kutch Basin, India

  • Original Paper
  • Published:
Clays and Clay Minerals

Abstract

Glauconites occurring within the Ukra Member of Kutch Basin have remained unexplored in terms of their economic significance. The present study aimed to present a detailed physicochemical characterization of glauconite occurring in the siliciclastic rocks of Guneri and Umarsar area of the Kutch district, Gujarat, India to explore their economic potential. The study involved an integrated petrographical, mineralogical, and geochemical investigation of glauconitic rocks to highlight the occurrence, nature, and maturity of glauconite. The characterization was carried out using X-ray diffraction (XRD), X-ray fluorescence (XRF), and electron probe microanalysis (EPMA) combined with energy dispersive X-ray (EDX), Field emission gun scanning electron microscopy (FEG-SEM), Fourier-transform infrared spectroscopy (FTIR), and inductively coupled plasma mass spectroscopy (ICP-MS). Petrographic and bulk XRD analysis revealed that the glauconite occurs as green pellets constituting ~30 and 40% of the glauconitic sandstone and shale, respectively. Whole-rock analysis showed that the value of K2O varies considerably from 3.93 wt.% (sandstone) to 5.63 wt.% (shale). Mineral chemistry indicated the distinctive chemical composition of glauconite pellets containing 7.4–8.4 wt.% of K2O. The parameters, such as the distance between the (001) and (020) peaks and the large K2O content (~8 wt.%) of the glauconite fraction reflect an evolved to highly evolved stage of maturation. The morphological and spectral signatures further support the high degree of maturation in glauconites. Trace-element analysis implied that the glauconitic sandstone and shale contain elements such as Zn, Mn, Cu, Co, Mo, and Ni, which serve as essential micronutrients for plants. These data sets collectively constitute part of a preliminary study which is prerequisite to beneficiation, but further evaluation of its potential as a potash fertilizer also is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amorosi, A. (1995). Glaucony and sequence stratigraphy: A conceptual framework of distribution in siliciclastic sequences. Journal of Sedimentary Research, 65, 419–425. https://doi.org/10.1306/D4268275-2B26-11D7-8648000102C1865D

    Article  Google Scholar 

  • Amorosi, A. (2012). The occurrence of glaucony in the stratigraphic record: distribution patterns and sequence-stratigraphic significance. International Association of Sedimentologists. Special Publication, 45, 37–54.

    Google Scholar 

  • Amorosi, A. (2013). The occurrence of glaucony in the stratigraphic record: distribution patterns and sequence stratigraphic significance. In: Morad, S., Ketzer, M., de Ros, L.F. (Eds.). Linking Diagenesis to Sequence Stratigraphy, 45, 37–53. https://doi.org/10.1002/9781118485347.ch2

    Article  Google Scholar 

  • Amorosi, A., Sammartino, I., & Tateo, F. (2007). Evolution patterns of glaucony maturity: a mineralogical and geochemical approach. Deep Sea Research Part II: Topical Studies in Oceanography, 54, 1364–1374.

    Article  Google Scholar 

  • Bailey, S. W. (1980). Summary of recommendations of AIPEA nomenclature committee. Clays and Clay Minerals, 28, 73–78. https://doi.org/10.1346/CCMN.1980.0280114

  • Baldermann, A., Grathoff, G. H., & Nickel, C. (2012). Micromilieu-controlled glauconitization in fecal pellets at Oker (Central Germany). Clay Minerals, 47, 513–538. https://doi.org/10.1180/claymin.2012.047.4.09

    Article  Google Scholar 

  • Baldermann, A., Warr, L. N., Grathoff, G. H., & Dietzel, M. (2013). The rate and mechanism of deep-sea glauconite formation at the Ivory Coast-Ghana marginal ridge. Clays and Clay Minerals, 61, 258–276. https://doi.org/10.1346/CCMN.2013.0610307

    Article  Google Scholar 

  • Baldermann, A., Dietzel, M., Mavromatis, V., Mittermayr, F., Warr, L. N., & Wemmer, K. (2017). The role of Fe on the formation and diagenesis of interstratified glauconite-smectite and illite-smectite: a case study of Upper Cretaceous shallow-water carbonates. Chemical Geology, 453, 21–34. https://doi.org/10.1016/j.chemgeo.2017.02.008

    Article  Google Scholar 

  • Banerjee, S., Kumar, S. J., & Eriksson, P. G. (2008). Mg-rich ferric illite in marine transgressive and high stand system tracts: examples from the Palaeoproterozoic Semri Group, central India. Precambrian Research, 162, 212–226. https://doi.org/10.1016/j.precamres.2007.07.018

    Article  Google Scholar 

  • Banerjee, S., Chattoraj, S. L., Saraswati, P. K., Dasgupta, S., & Sarkar, U. (2012a). Substrate control on formation and maturation of glauconites in the Middle Eocene Harudi Formation, western Kutch, India. Marine and Petroleum Geology, 30, 144–160. https://doi.org/10.1016/j.marpetgeo.2011.10.008

    Article  Google Scholar 

  • Banerjee, S., Chattoraj, S. L., Saraswati, P. K., Dasgupta, S., Sarkar, U., & Bumby, A. (2012b). The origin and maturation of lagoonal glauconites: a case study from the Oligocene Maniyara Fort Formation, western Kutch. Journal of the Geological Society of India, 47, 357–371. https://doi.org/10.1002/gj.1345

    Article  Google Scholar 

  • Banerjee, S., Mondal, S., Chakraborty, P. P., & Meena, S. S. (2015). Distinctive compositional characteristics and evolutionary trend of Precambrian glaucony: Example from Bhalukona Formation, Chhattisgarh basin, India. Precambrian Research, 271, 33–48. https://doi.org/10.1016/j.precamres.2015.09.026

    Article  Google Scholar 

  • Banerjee, S., Bansal, U., Pande, K., & Meena, S. S. (2016a). Compositional variability of glauconites within the Upper Cretaceous Karai Shale Formation, Cauvery Basin, India: Implications for evaluation of stratigraphic condensation. Sedimentary Geology, 331, 12–29. https://doi.org/10.1016/j.sedgeo.2015.10.012

    Article  Google Scholar 

  • Banerjee, S., Bansal, U., & Thorat, A. (2016b). A review on palaeogeographic implications and temporal variation in glaucony composition. Palaeogeography, Palaeoclimatology, Palaeoecology, 5, 43–71. https://doi.org/10.1016/j.jop.2015.12.001

    Article  Google Scholar 

  • Banerjee, S., Farouk, S., Nagm, E., Choudhury, T. R., & Meena, S. S. (2019). High Mg-glauconite in the Campanian Duwi Formation of Abu Tartur Plateau, Egypt and its implications. Journal of African Earth Sciences, 156, 12–25. https://doi.org/10.1016/j.jafrearsci.2019.05.001

    Article  Google Scholar 

  • Bansal, U., Banerjee, S., Pande, K., Arora, A., & Meena, S. S. (2017). The distinctive compositional evolution of glauconite in the Cretaceous Ukra Hill Member (Kutch basin, India) and its implications. Marine and Petroleum Geology, 82, 97–117. https://doi.org/10.1016/j.marpetgeo.2017.01.017

    Article  Google Scholar 

  • Bansal, U., Banerjee, S., Ruidas, D. K., & Pande, K. (2018). Origin and geochemical characterization of Maastrichtian glauconites in the Lameta Formation, Central India. Palaeogeography, Palaeoclimatology, Palaeoecology, 7, 99–116. https://doi.org/10.1016/j.jop.2017.12.001

    Article  Google Scholar 

  • Bansal, U., Banerjee, S., & Nagendra, R. (2020). Is the rarity of glauconite in Precambrian Bhima Basin in India related to its chloritization? Precambrian Research, 336, 105509. https://doi.org/10.1016/j.precamres.2019.105509

    Article  Google Scholar 

  • Bentor, Y. K., & Kastner, M. (1965). Notes on the mineralogy and origin of glauconite. Journal of Sedimentary Petrology, 35, 155–166. https://doi.org/10.1306/74D71212-2B21-11D7-8648000102C1865D

    Article  Google Scholar 

  • Bhatnagar, J. P., & Awasthi, S. K. (2000). Prevention of food adulteration act (act no. 37 of 1954) along with central & state rules (as amended for 1999). Ashoka Law House.

    Google Scholar 

  • Bishop, J. L., Lane, M. D., Dyar, M. D., & Brown, A. J. (2008). Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite, serpentines, chlorites and micas. Clay Minerals, 43, 35–54. https://doi.org/10.1180/claymin.2008.043.1.03

    Article  Google Scholar 

  • Biswas, S. K. (1977). Mesozoic rock-stratigraphy of Kutch, Gujarat. Quarterly Journal of the Geological Mineralogical and Metallurgical Society of India, 49, 1–51. https://doi.org/10.17491/cgsi/2016/105405

    Article  Google Scholar 

  • Biswas, S. K. (1987). Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics, 135, 307–327. https://doi.org/10.1016/0040-1951(87)90115-6

    Article  Google Scholar 

  • Biswas, S. K. (2005). A review of structure and tectonics of Kutch basin, western India, with special reference to earthquakes. Current Science, 88, 1592–1600.

    Google Scholar 

  • Burst, J. F. (1958). Mineral heterogeneity in glauconite pellets. American Mineralogist, 43, 481–497.

    Google Scholar 

  • Castro, L., & Tourn, S. (2003). Direct application of phosphate rocks and glauconite as alternative sources of fertilizer in Argentina. Exploration and Mining Geology, 12, 71–78.

    Article  Google Scholar 

  • Chamley, H. (1989). Clay Sedimentology. Springer-Verlag. https://doi.org/10.1007/978-3-642-85916-8

    Book  Google Scholar 

  • Chattoraj, S. L., Banerjee, S., & Saraswati, P. K. (2009). Glauconites from the Late Palaeocene-Early Eocene Naredi Formation, western Kutch and their genetic implications. Journal of the Geological Society of India, 73, 567–574. https://doi.org/10.1007/s12594-009-0040-x

  • Chattoraj, S. L., Banerjee, S., Meer, F. V. D., & Ray, P. K. C. (2018). Application of visible and infrared spectroscopy for the evaluation of evolved glauconite. International Journal of Applied Earth Observation and Geoinformation, 64, 301–310. https://doi.org/10.1016/j.jag.2017.02.007

    Article  Google Scholar 

  • Choudhuri, R., Balagopal, A. T., & Banerjee, K. C. (1973). Availability of potash from non-traditional sources. Technology., 10, 128–131.

    Google Scholar 

  • Dasgupta, S., Cahudhuri, A. K., & Fukuoka, M. (1990). Compositional characteristics of glauconitic alterations of K-feldspar from India and their implications. Journal of Sedimentary Petrology, 60, 277–281.

    Google Scholar 

  • Desai, B. G. (2013). Iconological analysis of transgressive marine tongue in prograding deltaic system: Evidences from Ukra Hill Member, Western Kachchh, India. Journal of the Geological Society of India, 82, 143–152. https://doi.org/10.1007/s12594-013-0132-5

    Article  Google Scholar 

  • Desai, B. G., & Saklani, R. D. (2012). Significance of the trace fossil Balanoglossites Mägdefrau, 1932 from the Lower Cretaceous Guneri member (Bhuj formation) of the Guneri dome, Kachchh, India. Swiss Journal of Palaeontology, 131, 255–263. https://doi.org/10.1007/s13358-012-0045-8

    Article  Google Scholar 

  • Dooley, J. H. (2006). Glauconite. In J. Koger, N. Trivedi, J. Barrer, & N. Krukowsky (Eds.), Industrial Minerals and Rocks (pp. 495–506). SME.

    Google Scholar 

  • Drits, V. A., Ivanovskaya, T. A., Sakharov, B. A., Zvyagina, B. B., Derkowski, A., Gor’kova, N. V., Pokrovskaya, E. V., Savichev, A. T., & Zaitseva, T. S. (2010). Nature of the structural and crystal chemical heterogeneity of the Mg–rich glauconite (Riphean, Anabar Uplift). Lithology and Mineral Resources, 45, 555–576. https://doi.org/10.1134/S0024490210060040.

  • El-Habaak, G., Askalany, M., Faraghaly, M., & Abdel-Hakeem, M. (2016). The economic potential of El-Gedida glauconite deposits, El-Bahariya Oasis, Western Desert, Egypt. Journal of African Earth Sciences, 120, 186–197. https://doi.org/10.1016/j.jafrearsci.2016.05.007

  • Essa, M. A., Ahmed, E. A., & Kurzweil, H. (2016). Genesis, maturity and weathering of some Upper Cretaceous Egyptian glauconites: mineralogical and geochemical implications. Journal of African Earth Sciences, 124, 427–446. https://doi.org/10.1016/j.jafrearsci.2016.09.036

    Article  Google Scholar 

  • Fernández-Landero, S., & Fernández-Caliani, J. C. (2021). Mineralogical and Crystal-Chemical Constraints on the Glauconite-Forming Process in Neogene Sediments of the Lower Guadalquivir Basin (SW Spain). Minerals, 11, 578.

    Article  Google Scholar 

  • Franzosi, C., Castro, L. N., & Celeda, A. M. (2014). Technical evaluation of glauconies as alternative potassium fertilizer from the Salamanca Formation, Patagonia, Southwest Argentina. Natural Resources Research, 23, 311–320. https://doi.org/10.1007/s11053-014-9232-1

    Article  Google Scholar 

  • Fürsich, F. T., & Pandey, D. K. (2003). Sequence stratigraphic significance of sedimentary cycles and shell concentrations in the Upper Jurassic–Lower Cretaceous of Kachchh, western India. Palaeogeography, Palaeoclimatology, Palaeoecology, 193, 285–309. https://doi.org/10.1016/S0031-0182(03)00233-5

    Article  Google Scholar 

  • Haaland, M. M., Friesem, D. E., Miller, C. E., & Henshilwood, C. S. (2017). Heat-induced alteration of glauconitic minerals in the Middle Stone Age levels of Blombos Cave, South Africa: implications for evaluating site structure and burning events. Journal of Archaeological Science, 86, 81–100. https://doi.org/10.1016/j.jas.2017.06.008

    Article  Google Scholar 

  • Harder, H. (1980). Syntheses of glauconite at surface temperatures. Clays and Clay Minerals, 28, 217–222. https://doi.org/10.1346/CCMN.1980.0280308

    Article  Google Scholar 

  • Harding, S. C., Nash, B. P., Petersen, E. U., Ekdale, A. A., Bradbury, C. D., & Dyar, M. D. (2014). Mineralogy and geochemistry of the main glauconite bed in the middle Eocene of Texas: Paleoenvironmental Implications for the Verdine Facies. PLoS One, 9, e87656. https://doi.org/10.1371/journal.pone.0087656

    Article  Google Scholar 

  • Hassan, M. S., & Baioumy, H. M. (2006). Structural and chemical alteration of glauconite under progressive acid treatment. Clays and Clay Minerals, 54, 491–499. https://doi.org/10.1346/CCMN.2006.0540410

    Article  Google Scholar 

  • Hower, J. (1961). Some factors concerning the nature and origin of glauconite. American Mineralogist, 46, 313–334.

    Article  Google Scholar 

  • Huggett, J. M., & Gale, A. S. (1997). Petrology and palaeoenvironmental significance of glaucony in the Eocene succession at Whitecliff Bay, Hampshire Basin, UK. Journal of the Geological Society, 154, 897–912. https://doi.org/10.1144/gsjgs.154.5.0897

    Article  Google Scholar 

  • Innes, R. P., & Pluth, D. J. (1970). Thin Section Preparation Using an Epoxy Impregnation for Petrographic and Electron Microprobe Analysis 1. Soil Science Society of America Journal, 34, 483–485. https://doi.org/10.2136/sssaj1970.03615995003400030035x

    Article  Google Scholar 

  • Jackson, M. L. (1979). Soil chemical analysis – advanced course (2nd edn.). 11th printing, Madison, Wisconsin, pp. 169–251.

  • Jain, R. L. (1997). Study of search of potash in glauconite bearing shale and sandstone in kachchh District, Gujarat (pp. 1994–1995). Geological Survey of India, progress report for the FSP.

    Google Scholar 

  • Janardhana Rao, L. H., Srinivasarao, C., & Ramakrishnan, T. L. (1975). Reclassification of the rocks of Bhima basin, Gulburga district, Mysore state. Geological Survey of India, Miscellaneous Publication, 23, 177–184.

    Google Scholar 

  • Karimi, E., Abdolzadeh, A., Sadeghipour, H. R., & Aminei, A. (2012). The potential of glauconitic sandstone as a potassium fertilizer for olive plants. Archives of Agronomy and Soil Science, 58, 983–993. https://doi.org/10.1080/03650340.2011.557369

    Article  Google Scholar 

  • Kelly, J. C., & Webb, J. A. (1999). The genesis of glaucony in the Oligo-Miocene Torquay Group, south eastern Australia: petrographic and geochemical evidence. Sedimentary Geology, 125, 99–114. https://doi.org/10.1016/S0037-0738(98)00149-3

    Article  Google Scholar 

  • Kübler, B. (1983). Dosage quantitatif des minéraux majeurs des roches sédimentaires par diffraction X. Cahiers de l’Institut de Géologie Series AX, 1(1), 1–13.

    Google Scholar 

  • Kumar, V., & Bakliwal, P. C. (2005). Potash in India. Geological Survey of India. Miscellaneous. Publication, 65, xiii, 134.

    Google Scholar 

  • Kuran, B., & Sahiwala, N. K. (1999). Study for search for potash in Glauconite-bearing shale and sandstone, Gujarat. Record of Geological Survey of India, 129, 48–49.

    Google Scholar 

  • Li, X., Cai, Y., Hu, X., Huang, Z., Wang, J., & Christidis, G. (2012). Mineralogical characteristics and geological significance of Albian (Early Cretaceous) glauconite in Zanda, southwestern Tibet, China. Clay Minerals, 47, 45–58. https://doi.org/10.1180/claymin.2012.047.1.45

    Article  Google Scholar 

  • López-Quirós, A., Escutia, C., Sánchez-Navas, A., Nieto, F., Garcia-Casco, A., Martín-Algarra, A., Evangelinos, D., & Salabarnada, A. (2019). Glaucony authigenesis, maturity and alteration in the Weddell Sea: An indicator of paleoenvironmental conditions before the onset of Antarctic glaciation. Scientific Reports, 9, 13580–13592. https://doi.org/10.1038/s41598-019-50107-1

    Article  Google Scholar 

  • López-Quirós, A., Sánchez-Navas, A., Nieto, F., & Escutia, C. (2020). New insights into the nature of glauconite. American Mineralogist: Journal of Earth and Planetary Materials, 105, 674–686.

    Article  Google Scholar 

  • Mandal, S., Banerjee, S., Sarkara, S., Mondal, I., & Choudhury, T. R. (2020). Origin and sequence stratigraphic implications of high-alumina glauconite within the Lower Quartzite, Vindhyan Supergroup. Marine and Petroleum Geology, 112, 104040–104055. https://doi.org/10.1016/j.marpetgeo.2019.104040

    Article  Google Scholar 

  • Manghnani, M. H., & Hower, J. (1964a). Glauconites: cation exchange capacities and infrared spectra. Part I: The cation exchange capacity of glauconite. American Mineralogist, 49, 586–598.

    Google Scholar 

  • Manghnani, M. H., & Hower, J. (1964b). Glauconites: cation exchange capacities and infrared spectra. Part II:Infrared absorption characteristics of glauconites. American Mineralogist, 49, 1631–1642.

    Google Scholar 

  • McRae, S. G. (1972). Glauconite. Earth-Science Reviews, 8, 397–440. https://doi.org/10.1016/0012-8252(72)90063-3

    Article  Google Scholar 

  • Mishra, R. N., Jayaprakash, A. V., Hans, S. K., & Sundaram, V. (1987). Bhima Group of Upper Proterozoic–a Stratigraphic puzzle. Memoirs–Geological Society of India, 6, 227–237.

    Google Scholar 

  • Mohammed, S. M. O., Brandt, K., Gray, N. D., White, M. L., & Manning, D. A. C. (2014). Comparison of silicate minerals as sources of potassium for plant nutrition in sandy soil. European Journal of Soil Science, 65, 653–662. https://doi.org/10.1111/ejss.12172

    Article  Google Scholar 

  • Odin, G. S. (1988). Green marine clays. Oolitic ironstone facies, verdine facies, glaucony facies and celadonite-bearing facies — A comparative study. Developments in Sedimentology, 45, Elsevier Science Publishers, Amsterdam. https://doi.org/10.1180/claymin.1989.024.3.11

  • Odin, G. S., & Matter, A. (1981). De glauconiarum origine. Sedimentology, 28, 611–641. https://doi.org/10.1111/j.1365-3091.1981.tb01925.x

    Article  Google Scholar 

  • Paul, D. K., Ray, A., Das, B., Patil, S. K., & Biswas, S. K. (2008). Petrology, geochemistry and paleomagnetism of the earliest magmatic rocks of Deccan Volcanic Province, Kutch, Northwest India. Lithos, 102, 237–259. https://doi.org/10.1016/j.lithos.2007.08.005

    Article  Google Scholar 

  • Petit, S., Madejová, J., Decarreau, A., & Martin, F. (1999). Characterization of octahedral substitutions in kaolinites using near-infrared spectroscopy. Clays and Clay Minerals, 47, 103–108. https://doi.org/10.1346/CCMN.1999.0470111

    Article  Google Scholar 

  • Rahimzadeh, N., Khormali, F., Olamaee, M., Amini, A., & Dordipour, E. (2015). Effect of canola rhizosphere and silicate dissolving bacteria on the weathering and K release from indigenous glauconite shale. Biology and Fertility of Soils, 51, 973–981. https://doi.org/10.1007/s00374-015-1043-y

    Article  Google Scholar 

  • Rawlley, R. K. (1994). Mineralogical investigations on an Indian glauconitic sandstone of Madhya Pradesh state. Applied Clay Science, 8, 449–465. https://doi.org/10.1016/0169-1317(94)90039-6

    Article  Google Scholar 

  • Rieder, M., Cavazzini, G., Dyakonov, Y. S., Frank-Kamenetskii, V. A., Gottardi, G., Guggenheim, S., Koval, P. V., Müller, G., Neiva, A. M. R., Radoslovich, E. W., Roberts, J. L., Sassi, F. P., Takeda, H., Weiss, Z., & Wones, D. R. (1998). Nomenclature of the micas. Clays and Clay Minerals, 46, 586–595. https://doi.org/10.1346/CCMN.1998.0460513

  • Rudmin, M., Banerjee, S., Mazurov, A., Makarov, B., & Martemyanov, D. (2017). Economic potential of glauconitic rocks in Bakchar deposit (S-E Western Siberia) for alternate potash fertilizer. Applied Clay Science, 150, 225–233. https://doi.org/10.1016/j.clay.2017.09.035

    Article  Google Scholar 

  • Rudmin, M., Banerjee, S., Makarov, B., Mazurov, A., Ruban, A., Oskina, Y., Tolkachev, O., Buyakov, A., & Shaldybin, M. (2019). An investigation of plant growth by the addition of glauconitic fertilizer. Applied Clay Science, 180, 105178–105186. https://doi.org/10.1016/j.clay.2019.105178

    Article  Google Scholar 

  • Russell, J. D., Farmer, V. C., & Velde, B. (1970). Replacement of OH by OD in layer silicates, and identification of the vibrations of these groups in infra-red spectra. Mineralogical Magazine, 37, 869–879. https://doi.org/10.1180/minmag.1970.037.292.01

    Article  Google Scholar 

  • Sanchez-Navas, A., Martín-Algarra, A., Eder, V., Reddy, B. J., Nieto, F., & Zanin, Y. N. (2008). Color, mineralogy and composition of upper Jurassic west Siberian glauconite: useful indicators of paleoenvironment. Canadian Mineralogist, 46, 1545–1564. https://doi.org/10.3749/canmin.46.5.1249

    Article  Google Scholar 

  • Schimicoscki, R. S., Oliveira, K. D., & Avila-Neto, C. N. (2020). Potassium recovery from a Brazilian glauconite siltstone via reaction with sulphuric acid in hydrothermal conditions. Hydrometallurgy, 191, 105251–105259. https://doi.org/10.1016/j.hydromet.2020.105251

    Article  Google Scholar 

  • Selim, K. A., Youssef, M. A., Abd El-Rahiem, F. H., & Hassan, M. S. (2014). Dye removal using some surface modified silicate minerals. International Journal of Mining Science and Technology, 24, 183–189. https://doi.org/10.1016/j.ijmst.2014.01.007

    Article  Google Scholar 

  • Selim, K. A., El-Tawil, R. S., & Rostom, M. (2018). Utilization of surface modified phyllosilicate mineral for heavy metals removal from aqueous solutions. Egyptian Journal of Petroleum, 27, 393–401. https://doi.org/10.1016/j.ejpe.2017.07.003

    Article  Google Scholar 

  • Shekhar, S., Mishra, D., Agrawal, A., & Sahu, K. K. (2017a). Physical and chemical characterization and recovery of potash fertilizer from glauconitic clay for agricultural application. Applied Clay Science, 143, 50–56. https://doi.org/10.1016/j.clay.2017.03.016

    Article  Google Scholar 

  • Shekhar, S., Mishra, D., Agrawal, A., & Sahu, & K. K. (2017b). Physico-chemical treatment of glauconitic sandstone to recover potash and magnetite. Journal of Cleaner Production, 147, 681–693. https://doi.org/10.1016/j.jclepro.2017.01.127

    Article  Google Scholar 

  • Shekhar, S., Sinha, S., Mishra, D., Agrawal, A., & Sahu, K. K. (2020). A sustainable process for the recovery of potash fertilizer from glauconite through simultaneous production of pigment grade red oxide. Sustainable Materials and Technology, 23, e00129–e00137. https://doi.org/10.1016/j.susmat.2019.e00129

    Article  Google Scholar 

  • Shirale, A. O., Meena, B. P., Gurav, P. P., Srivastava, S., Biswas, A. K., Thakur, J. K., Somasundaram, J., Patra, A. K., & Rao, A. S. (2019). Prospects and challenges in utilization of indigenous rocks and minerals as source of potassium in farming rocks and minerals as source of potassium. Journal of Plant Nutrition, 42, 2682–2701. https://doi.org/10.1080/01904167.2019.1659353

    Article  Google Scholar 

  • Soni, M. K. (1990). On the possibility of using glauconite sandstone as a source of raw material for potash fertilizer. Mining and Engineering Journal, 1, 3–10.

    Google Scholar 

  • Sontakkey, V.A., Aehdi, R.S., Mohanram, I., Aruna, V.A.J., Lal, S.M., & Ravindran, I., (2017). Beneficiation of a glauconite sandstone sample, Kurchha-Barwadih area, Sonbhadra District, Uttar Pradesh. In: International Seminar on Mineral Processing Technology (MPT-XVI), Chennai, 1–3 February, 2017.

  • Soukup, D. A., Buck, B. J., & Harris, W. (2008). Preparing soils for mineralogical analyses. Methods of Soil Analysis Part 5- Mineralogical. Methods, 5, 13–31. https://doi.org/10.2136/sssabookser5.5.c2

    Article  Google Scholar 

  • Srasra, E., & Trabelsi-Ayedi, M. (2000). Textural properties of acid-activated glauconite. Applied Clay Science, 17, 71–84. https://doi.org/10.1016/S0169-1317(00)00008-9

    Article  Google Scholar 

  • Stille, P., & Clauer, N. (1994). The process of glauconitization: chemical and isotopic evidence. Contributions to Mineralogy and Petrology, 117, 253–262. https://doi.org/10.1007/BF00310867

    Article  Google Scholar 

  • Tang, D., Shi, X., Jiang, G., Zhou, X., & Shi, Q. (2017a). Ferruginous seawater facilitates the transformation of glauconite to chamosite: An example from the Mesoproterozoic Xiamaling Formation of North China. American Mineralogist, 102, 2317–2332. https://doi.org/10.2138/am-2017-6136

    Article  Google Scholar 

  • Tang, D. J., Shi, X. Y., Ma, J. B., Jiang, G. Q., Zhou, X. Q., & Shi, Q. (2017b). Formation of shallow water glaucony in weakly oxygenated Precambrian Ocean: An example from the Mesoproterozoic Tieling Formation in North China. Precambrian Research, 294, 214–229. https://doi.org/10.1016/j.precamres.2017.03.026

    Article  Google Scholar 

  • Thompson, G. R., & Hower, J. (1975). The mineralogy of glauconite. Clays and Clay Minerals, 23, 289–300. https://doi.org/10.1346/CCMN.1975.0230405

    Article  Google Scholar 

  • Tripathi, D. K., Singh, S., Singh, S., Mishra, S., Chauhan, D. K., & Dubey, N. K. (2015). Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiologiae Plantarum, 37, 1–14.

    Article  Google Scholar 

  • Van Houten, F. B., & Purucker, M. E. (1984). Glauconitic peloids and chamositicooids — favorable factors, constraints, and problems. Earth Science Reviews, 20, 211–243. https://doi.org/10.1016/0012-8252(84)90002-3

    Article  Google Scholar 

  • Wigley, R., & Compton, J. S. (2007). Oligocene to Holocene glauconite-phosphorite grains from the Head of the Cape Canyon on the western margin of South Africa. Deep Sea Research Part II: Topical Studies in Oceanography, 54, 1375–1395. https://doi.org/10.1016/j.dsr2.2007.04.004

    Article  Google Scholar 

  • Wright, J., Schrader, H., & Holser, W. T. (1987). Paleoredox variations in ancient oceans recorded by rare-earth elements in fossil apatite. Geochemica et Cosmochimica Acta, 51, 631–644. https://doi.org/10.1016/j.dsr2.2007.04.004

    Article  Google Scholar 

  • Younes, H., Mahanna, H., & El-Etriby, H. K. (2019). Fast Adsorption of phosphate (PO4-) from wastewater using glauconite. Water Science and Technology, 80, 1643–1653. https://doi.org/10.2166/wst.2019.410

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the director, CSIR-National Metallurgical Laboratory, for his permission to publish this paper. This research work was supported and funded by the In-House Research Project (OLP 0294) of the National Metallurgical Laboratory. The authors are grateful to Mr. Hajaj Basheer, Geologist (Sr.) of the Geological Survey of India (GSI), Gujarat, for providing the glauconitic rock samples.

Funding

Funding sources are as stated in the Acknowledgments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Sahu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekhar, S., Kumari, V., Sinha, S. et al. Petro-Mineralogical and Geochemical Evaluation of Glauconitic Rocks of the Ukra Member (Bhuj Formation), Kutch Basin, India. Clays Clay Miner. 70, 135–153 (2022). https://doi.org/10.1007/s42860-021-00171-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-021-00171-4

Keywords

Navigation