Skip to main content

Advertisement

Log in

Yokukansan suppresses neuroinflammation in the hippocampus of mice and decreases the duration of lipopolysaccharide- and diazepam-mediated loss of righting reflex induced by pentobarbital

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Neuroinflammation is associated with the development of hypoactive delirium, which results in poor clinical outcomes. Drugs effective against hypoactive sur have not yet been established. Yokukansan has an anti-neuroinflammatory effect, making it potentially effective against hypoactive delirium. This study aimed to examine the effect of Yokukansan on the pentobarbital-induced loss of righting reflex duration extended with lipopolysaccharide (LPS)-induced neuroinflammation and diazepam-induced gamma-aminobutyric acid receptor stimulation in a mouse model. The active ingredients in Yokukansan and its anti-neuroinflammatory effect on the hippocampus were also investigated. Furthermore, we examined the in vitro anti-inflammatory effects of Yokukansan on LPS-stimulated BV2 cells, a murine microglial cell line. Findings revealed that treatment with Yokukansan significantly decreased the duration of pentobarbital-induced loss of righting reflex by attenuating the LPS-induced increase in interleukin-6 and tumor necrosis factor-alpha levels in the hippocampus. Moreover, treatment with Yokukansan significantly decreased the number of ionized calcium-binding adapter molecule-1-positive cells in the hippocampal dentate gyrus after 24 h of LPS administration. In addition, glycyrrhizic acid, an active ingredient in Yokukansan, partially decreased the duration of pentobarbital-induced loss of righting reflex. Treatment with Yokukansan also suppressed the expression of inducible nitric oxide, interleukin-6, and tumor necrosis factor mRNA in LPS-stimulated BV2 cells. Thus, these findings suggest that Yokukansan and glycyrrhizic acid may be effective therapeutic agents for treating neuroinflammation-induced hypoactive delirium.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Material availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Alam A, Hana Z, Jin Z, Suen KC, Ma D (2018) Surgery, neuroinflammation and cognitive impairment. EBioMedicine 37:547–556. https://doi.org/10.1016/j.ebiom.2018.10.021

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yang T, Velagapudi R, Terrando N (2020) Neuroinflammation after surgery: from mechanisms to therapeutic targets. Nat Immunol 21:1319–1326. https://doi.org/10.1038/s41590-020-00812-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Simone MJ, Tan ZS (2011) The role of inflammation in the pathogenesis of delirium and dementia in older adults: a review. CNS Neurosci Ther 17:506–513. https://doi.org/10.1111/j.1755-5949.2010.00173.x

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Shen X (2018) Postoperative delirium in the elderly: the potential neuropathogenesis. Aging Clin Exp Res 30:1287–1295. https://doi.org/10.1007/s40520-018-1008-8

    Article  PubMed  Google Scholar 

  5. Muangpaisan W, Wongprikron A, Srinonprasert V, Suwanpatoomlerd S, Sutipornpalangkul W, Assantchai P (2015) Incidence and risk factors of acute delirium in older patients with hip fracture in Siriraj Hospital. J Med Assoc Thai 98:423–430

    PubMed  Google Scholar 

  6. Raats JW, Steunenberg SL, de Lange DC, van der Laan L (2016) Risk factors of post–operative delirium after elective vascular surgery in the elderly: a systematic review. Int J Surg 35:1–6. https://doi.org/10.1016/j.ijsu.2016.09.001

    Article  CAS  PubMed  Google Scholar 

  7. Cascella M, Fiore M, Leone S, Carbone D, Di Napoli R (2019) Current controversies and future perspectives on treatment of intensive care unit delirium in adults. World J Crit Care Med 8:18–27. https://doi.org/10.5492/wjccm.v8.i3.18

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wilson JE, Mart MF, Cunningham C, Shehabi Y, Girard TD, MacLullich AMJ, Slooter AJC, Ely EW (2020) Delirium. Nat Rev Dis Primers 6:90. https://doi.org/10.1038/s41572-020-00223-4

    Article  PubMed  PubMed Central  Google Scholar 

  9. Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, Sheridan JF, Godbout JP (2008) Minocycline attenuates lipopolysaccharide (LPS)–induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation 5:15. https://doi.org/10.1186/1742-2094-5-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kitamura Y, Hongo S, Yamashita Y, Yagi S, Otsuki K, Miki A, Okada A, Ushio S, Esumi S, Sendo T (2019) Influence of lipopolysaccharide on diazepam–modified loss of righting reflex duration by pentobarbital treatment in mice. Eur J Pharmacol 842:231–238. https://doi.org/10.1016/j.ejphar.2018.10.049

    Article  CAS  PubMed  Google Scholar 

  11. Sieghart W (1995) Structure and pharmacology of gamma–aminobutyric acid A receptor subtypes. Pharmacol Rev 47:181–234

    CAS  PubMed  Google Scholar 

  12. Marcantonio ER, Juarez G, Goldman L, Mangione CM, Ludwig LE, Lind L, Katz N, Cook EF, Orav EJ, Lee TH (1994) The relationship of postoperative delirium with psychoactive medications. JAMA 272:1518–1522. https://doi.org/10.1001/jama.1994.03520190064036

    Article  CAS  PubMed  Google Scholar 

  13. Furukawa K, Tomita N, Uematsu D, Okahara K, Shimada H, Ikeda M, Matsui T, Kozaki K, Fujii M, Ogawa T, Umegaki H, Urakami K, Nomura H, Kobayashi N, Nakanishi A, Washimi Y, Yonezawa H, Takahashi S, Kubota M, Wakutani Y, Ito D, Sasaki T, Matsubara E, Une K, Ishiki A, Yahagi Y, Shoji M, Sato H, Terayama Y, Kuzuya M, Araki N, Kodama M, Yamaguchi T, Arai H (2017) Randomized double–blind placebo–controlled multicenter trial of Yokukansan for neuropsychiatric symptoms in Alzheimer’s disease. Geriatr Gerontol Int 17:211–218. https://doi.org/10.1111/ggi.12696

    Article  PubMed  Google Scholar 

  14. Liu Y, Nakamura T, Toyoshima T, Lu F, Sumitani K, Shinomiya A, Keep RF, Yamamoto T, Tamiya T, Itano T (2014) Ameliorative effects of yokukansan on behavioral deficits in a gerbil model of global cerebral ischemia. Brain Res 1543:300–307. https://doi.org/10.1016/j.brainres.2013.11.015

    Article  CAS  PubMed  Google Scholar 

  15. Ikarashi Y, Mizoguchi K (2016) Neuropharmacological efficacy of the traditional Japanese Kampo medicine yokukansan and its active ingredients. Pharmacol Ther 166:84–95. https://doi.org/10.1016/j.pharmthera.2016.06.018

    Article  CAS  PubMed  Google Scholar 

  16. Sugano N, Aoyama T, Sato T, Kamiya M, Amano S, Yamamoto N, Nagashima T, Ishikawa Y, Masudo K, Taguri M, Yamanaka T, Yamamoto Y, Matsukawa H, Shiraisi R, Oshima T, Yukawa N, Rino Y, Masuda M (2017) Randomized phase II study of TJ–54 (Yokukansan) for postoperative delirium in gastrointestinal and lung malignancy patients. Mol Clin Oncol 7:569–573. https://doi.org/10.3892/mco.2017.1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Darias V, Abdala S, Martin-Herrera D, Tello ML, Vega S (1998) CNS effects of a series of 1,2,4–triazolyl heterocarboxylic derivatives. Pharmazie 53:477–481

    CAS  PubMed  Google Scholar 

  18. Wolfman C, Viola H, Marder M, Wasowski C, Ardenghi P, Izquierdo I, Paladini AC, Medina JH (1996) Anxioselective properties of 6,3’–dinitroflavone, a high–affinity benzodiazepine receptor ligand. Eur J Pharmacol 318:23–30. https://doi.org/10.1016/S0014-2999(96)00784-4

    Article  CAS  PubMed  Google Scholar 

  19. Hui B, Yao X, Zhang L, Zhou Q (2020) Dexamethasone sodium phosphate attenuates lipopolysaccharide-induced neuroinflammation in microglia BV2 cells. Naunyn Schmiedebergs Arch Pharmacol 393:1761–1768. https://doi.org/10.1007/s00210-019-01775-3

    Article  CAS  PubMed  Google Scholar 

  20. Serantes R, Arnalich F, Figueroa M, Salinas M, Andrés-Mateos E, Codoceo R, Renart J, Matute C, Cavada C, Cuadrado A, Montiel C (2006) Interleukin–1beta enhances GABAA receptor cell–surface expression by a phosphatidylinositol 3–kinase/Akt pathway: relevance to sepsis–associated encephalopathy. J Biol Chem 281:14632–14643. https://doi.org/10.1074/jbc.M512489200

    Article  CAS  PubMed  Google Scholar 

  21. Kassie GM, Nguyen TA, Kalisch Ellett LM, Pratt NL, Roughead EE (2017) Preoperative medication use and postoperative delirium: a systematic review. BMC Geriatr 17:298. https://doi.org/10.1186/s12877-017-0695-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dehkordi NG, Noorbakhshnia M, Ghaedi K, Esmaeili A, Dabaghi M (2015) Omega–3 fatty acids prevent LPS–induced passive avoidance learning and memory and CaMKII–α gene expression impairments in hippocampus of rat. Pharmacol Rep 67:370–375. https://doi.org/10.1016/j.pharep.2014.10.014

    Article  CAS  PubMed  Google Scholar 

  23. Mirahmadi SM, Shahmohammadi A, Rousta AM, Azadi MR, Fahanik-Babaei J, Baluchnejadmojarad T, Roghani M (2018) Soy isoflavone genistein attenuates lipopolysaccharide–induced cognitive impairments in the rat via exerting anti–oxidative and anti–inflammatory effects. Cytokine 104:151–159. https://doi.org/10.1016/j.cyto.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  24. Cazareth J, Guyon A, Heurteaux C, Chabry J, Petit-Paitel A (2014) Molecular and cellular neuroinflammatory status of mouse brain after systemic lipopolysaccharide challenge: importance of CCR2/CCL2 signaling. J Neuroinflammation 11:132. https://doi.org/10.1186/1742-2094-11-132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Egashira N, Nogami A, Iwasaki K, Ishibashi A, Uchida N, Takasaki K, Mishima K, Nishimura R, Oishi R, Fujiwara M (2011) Yokukansan enhances pentobarbital-induced sleep in socially isolated mice: possible involvement of GABA(A)-benzodiazepine receptor complex. J Pharmacol Sci 116:316–320. https://doi.org/10.1254/jphs.11079SC

    Article  CAS  PubMed  Google Scholar 

  26. Egashira N, Goto Y, Iba H, Kawanaka R, Takahashi R, Taniguchi C, Watanabe T, Kubota K, Katsurabayashi S, Iwasaki K (2021) Kamishoyosan potentiates pentobarbital-induced sleep in socially isolated, ovariectomized mice. J Ethnopharmacol 281:114585. https://doi.org/10.1016/j.jep.2021.114585

    Article  PubMed  Google Scholar 

  27. Furuya M, Miyaoka T, Tsumori T, Liaury K, Hashioka S, Wake R, Tsuchie K, Fukushima M, Ezoe S, Horiguchi J (2013) Yokukansan promotes hippocampal neurogenesis associated with the suppression of activated microglia in Gunn rat. J Neuroinflammation 10:145. https://doi.org/10.1186/1742-2094-10-145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng CY, Ho TY, Lee EJ, Su SY, Tang NY, Hsieh CL (2008) Ferulic acid reduces cerebral infarct through its antioxidative and anti–inflammatory effects following transient focal cerebral ischemia in rats. Am J Chin Med 36:1105–1119. https://doi.org/10.1142/S0192415X08006570

    Article  CAS  PubMed  Google Scholar 

  29. Khaksa G, Zolfaghari ME, Dehpour AR, Samadian T (1996) Anti–inflammatory and anti–nociceptive activity of disodium glycyrrhetinic acid hemiphthalate. Planta Med 62:326–328. https://doi.org/10.1055/s-2006-957894

    Article  CAS  PubMed  Google Scholar 

  30. Nukaya H, Yamashiro H, Fukazawa H, Ishida H, Tsuji K (1996) Isolation of inhibitors of TPA–induced mouse ear edema from Hoelen, Poria cocos. Chem Pharm Bull (Tokyo) 44:847–849. https://doi.org/10.1248/cpb.44.847

    Article  CAS  Google Scholar 

  31. Seo MJ, Kim SJ, Kang TH, Rim HK, Jeong HJ, Um JY, Hong SH, Kim HM (2011) The regulatory mechanism of β–eudesmol is through the suppression of caspase–1 activation in mast cell–mediated inflammatory response. Immunopharmacol Immunotoxicol 33:178–185. https://doi.org/10.3109/08923973.2010.491082

    Article  CAS  PubMed  Google Scholar 

  32. Yuan D, Ma B, Yang JY, Xie YY, Wang L, Zhang LJ, Kano Y, Wu CF (2009) Anti–inflammatory effects of rhynchophylline and isorhynchophylline in mouse N9 microglial cells and the molecular mechanism. Int Immunopharmacol 9:1549–1554. https://doi.org/10.1016/j.intimp.2009.09.010

    Article  CAS  PubMed  Google Scholar 

  33. Tabuchi M, Imamura S, Kawakami Z, Ikarashi Y, Kase Y (2012) The blood–brain barrier permeability of 18β-glycyrrhetinic acid, a major metabolite of glycyrrhizin in Glycyrrhiza root, a constituent of the traditional Japanese medicine Yokukansan. Cell Mol Neurobiol 32:1139–1146. https://doi.org/10.1007/s10571-012-9839-x

    Article  CAS  PubMed  Google Scholar 

  34. Song JH, Lee JW, Shim B, Lee CY, Choi S, Kang C, Sohn NW, Shin JW (2013) Glycyrrhizin alleviates neuroinflammation and memory deficit induced by systemic lipopolysaccharide treatment in mice. Molecules 18:15788–15803. https://doi.org/10.3390/molecules181215788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nomura T, Bando Y, You H, Tanaka T, Yoshida S (2017) Yokukansan reduces cuprizone-induced demyelination in the corpus callosum through anti-inflammatory effects on microglia. Neurochem Res 42:3525–3536. https://doi.org/10.1007/s11064-017-2400-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Soichiro Ushio for his advice on experimental design.

Funding

This work was supported by MEXT/JSPS KAKENHI [Grant number 20H01008].

Author information

Authors and Affiliations

Authors

Contributions

KK: conceptualization, methodoloigy, Investigation, writing—original Draft, project administration, funding acquisition. TI: conceptualization, methodology, formal analysis, investigation, writing—review and editing. KJ: validation, investigation, resources, writing—review and editing. SM: investigation. TK: investigation. MN: investigation. SN: investigation. NT: investigation. SY: investigation, data curation. MM: resources, writing—review and editing, supervision.

Corresponding author

Correspondence to Kei Kawada.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

Animal experiments were conducted with approval from the Kochi University Animal Experiment Ethics Committee (approval no. N-00028, July 30, 2020).

Consent to participate

Not applicable.

Consent for publiction

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawada, K., Ishida, T., Jobu, K. et al. Yokukansan suppresses neuroinflammation in the hippocampus of mice and decreases the duration of lipopolysaccharide- and diazepam-mediated loss of righting reflex induced by pentobarbital. J Nat Med 76, 634–644 (2022). https://doi.org/10.1007/s11418-022-01612-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-022-01612-7

Keywords

Navigation