Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Status and perspectives of crystalline silicon photovoltaics in research and industry

Subjects

An Author Correction to this article was published on 24 October 2022

This article has been updated

Abstract

Crystalline silicon (c-Si) photovoltaics has long been considered energy intensive and costly. Over the past decades, spectacular improvements along the manufacturing chain have made c-Si a low-cost source of electricity that can no longer be ignored. Over 125 GW of c-Si modules have been installed in 2020, 95% of the overall photovoltaic (PV) market, and over 700 GW has been cumulatively installed. There are some strong indications that c-Si photovoltaics could become the most important world electricity source by 2040–2050. In this Review, we survey the key changes related to materials and industrial processing of silicon PV components. At the wafer level, a strong reduction in polysilicon cost and the general implementation of diamond wire sawing has reduced the cost of monocrystalline wafers. In parallel, the concentration of impurities and electronic defects in the various types of wafers has been reduced, allowing for high efficiency in industrial devices. Improved cleanliness in production lines, increased tool automation and improved production technology and cell architectures all helped to increase the efficiency of mainstream modules. Efficiency gains at the cell level were accompanied by an increase in wafer size and by the introduction of advanced assembly techniques. These improvements have allowed a reduction of cell-to-module efficiency losses and will accelerate the yearly efficiency gain of mainstream modules. To conclude, we discuss what it will take for other PV technologies to compete with silicon on the mass market.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: From raw silicon to solar modules.
Fig. 2: Defect creation in silicon as a function of light and temperature.
Fig. 3: Schematic representation of typical solar cell architectures.
Fig. 4: Schematic process flows for the fabrication of solar cells using different architectures.
Fig. 5: Typical performance characteristics of crystalline silicon solar cells.
Fig. 6: From cells to modules.

Similar content being viewed by others

Change history

References

  1. Haegel, N. M. et al. Terawatt-scale photovoltaics: trajectories and challenges. Science 356, 141–143 (2017).

    Article  CAS  Google Scholar 

  2. Chunduri, S. K. & Schmela, M. Market survey polysilicon CVD reactors. TaiyangNews http://taiyangnews.info/reports/market-survey-cvd-reactors/ (2017).

  3. Wan, Y., Parthasarathy, S. R., Chartier, C., Servini, A. & Khattak, C. P. Increased polysilicon deposition in a CVD reactor. Patent WO2007127657A2 (2006).

  4. Osborne, M. GCL-Poly touts FBR silicon matching Siemens process on purity. PV Tech https://www.pv-tech.org/gcl-poly-touts-fbr-silicon-matching-siemens-process-on-purity/ (2021).

  5. Bye, G. & Ceccaroli, B. Solar grade silicon: technology status and industrial trends. Sol. Energy Mater. Sol. Cells 130, 634–646 (2014).

    Article  CAS  Google Scholar 

  6. Czochralski, J. A new method for the measurement of the crystallization rate of metals. Z. Phys. Chem. 92, 219–221 (1917).

    CAS  Google Scholar 

  7. Zulehner, W. Czochralski growth of silicon. J. Cryst. Growth 65, 189–213 (1983).

    Article  CAS  Google Scholar 

  8. Möller, H. J. Wafering of silicon crystals. Phys. Status Solidi A 203, 659–669 (2006).

    Article  Google Scholar 

  9. Enomoto, T., Shimazaki, Y., Tani, Y., Suzuki, M. & Kanda, Y. Development of a resinoid diamond wire containing metal powder for slicing a slicing ingot. CIRP Ann. 48, 273–276 (1999).

    Article  Google Scholar 

  10. Philipps, S. & Warmuth, W. Photovoltaics report, updated 27 July 2021. Fraunhofer ISE https://www.ise.fraunhofer.de/en/publications/studies/photovoltaics-report.html (2021).

  11. Fthenakis, V. & Raugei, M. in The Performance of Photovoltaic (PV) Systems (ed. Pearsall, N.) 209–232 (Elsevier, 2017).

  12. Aberle, A. G. Surface passivation of crystalline silicon solar cells: a review. Prog. Photovolt. Res. Appl. 8, 473–487 (2000).

    Article  CAS  Google Scholar 

  13. Dauwe, S., Mittelstädt, L., Metz, A. & Hezel, R. Experimental evidence of parasitic shunting in silicon nitride rear surface passivated solar cells. Prog. Photovolt. Res. Appl. 10, 271–278 (2002).

    Article  CAS  Google Scholar 

  14. Bonilla, R. S., Al-Dhahir, I., Yu, M., Hamer, P. & Altermatt, P. P. Charge fluctuations at the Si–SiO2 interface and its effect on surface recombination in solar cells. Sol. Energy Mater. Sol. Cells 215, 110649 (2020).

    Article  CAS  Google Scholar 

  15. Buonassisi, T. et al. Chemical natures and distributions of metal impurities in multicrystalline silicon materials. Prog. Photovolt. Res. Appl. 14, 513–531 (2006).

    Article  CAS  Google Scholar 

  16. Seibt, M. & Kveder, V. in Advanced Silicon Materials for Photovoltaic Applications (ed. Pizzini, S.) 127–188 (Wiley, 2012).

  17. Ourmazd, A. & Schröter, W. Phosphorus gettering and intrinsic gettering of nickel in silicon. Appl. Phys. Lett. 45, 781–783 (1984).

    Article  CAS  Google Scholar 

  18. Liu, A. Y. et al. Gettering of interstitial iron in silicon by plasma-enhanced chemical vapour deposited silicon nitride films. J. Appl. Phys. 120, 193103 (2016).

    Article  Google Scholar 

  19. Gindner, S., Karzel, P., Herzog, B. & Hahn, G. Efficacy of phosphorus gettering and hydrogenation in multicrystalline silicon. IEEE J. Photovolt. 4, 1063–1070 (2014).

    Article  Google Scholar 

  20. Karzel, P. et al. Dependence of phosphorus gettering and hydrogen passivation efficacy on grain boundary type in multicrystalline silicon. J. Appl. Phys. 114, 244902 (2013).

    Article  Google Scholar 

  21. Sio, H. C. & Macdonald, D. Direct comparison of the electrical properties of multicrystalline silicon materials for solar cells: conventional p-type, n-type and high performance p-type. Sol. Energy Mater. Sol. Cells 144, 339–346 (2016).

    Article  CAS  Google Scholar 

  22. Phang, S. P. et al. N-type high-performance multicrystalline and mono-like silicon wafers with lifetimes above 2 ms. Jpn. J. Appl. Phys. 56, 08MB10 (2017).

    Article  Google Scholar 

  23. Fischer, H. & Pschunder, W. in Proceedings of the 10th IEEE Photovoltaic Specialists Conference 404 (IEEE, 1973).

  24. Glunz, S. W., Rein, S., Warta, W., Knobloch, J. & Wettling, W. Degradation of carrier lifetime in Cz silicon solar cells. Sol. Energy Mater. Sol. Cells 65, 219–229 (2001).

    Article  CAS  Google Scholar 

  25. Rein, S., Diez, S., Flaster, R. & Glunz, S. W. in Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion Vol. 2 1048–1052 (IEEE, 2003).

  26. Bothe, K., Sinton, R. & Schmidt, J. Fundamental boron–oxygen-related carrier lifetime limit in mono- and multicrystalline silicon. Prog. Photovolt. Res. Appl. 13, 287–296 (2005).

    Article  CAS  Google Scholar 

  27. Herguth, A., Schubert G., Kaes, M. & Hahn G. in 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion 940–943 (IEEE, 2007).

  28. Wilking, S., Herguth, A. & Hahn, G. Influence of hydrogen on the regeneration of boron-oxygen related defects in crystalline silicon. J. Appl. Phys. 113, 194503 (2013).

    Article  Google Scholar 

  29. Herguth, A. & Hahn, G. Kinetics of the boron-oxygen related defect in theory and experiment. J. Appl. Phys. 108, 114509 (2010).

    Article  Google Scholar 

  30. Herguth, A. & Hallam, B. A generalized model for boron-oxygen related light-induced degradation in crystalline silicon. AIP Conf. Proc. 1999, 130006 (2018).

    Article  Google Scholar 

  31. Hallam, B. J., Abbott, M. D., Nampalli, N., Hamer, P. G. & Wenham, S. R. Implications of accelerated recombination-active defect complex formation for mitigating carrier-induced degradation in silicon. IEEE J. Photovolt. 6, 92–99 (2016).

    Article  Google Scholar 

  32. Derricks, C., Herguth, A., Hahn, G., Romer, O. & Pernau, T. Industrially applicable mitigation of BO-LID in Cz-Si PERC-type solar cells within a coupled fast firing and halogen lamp based belt-line regenerator — a parameter study. Sol. Energy Mater. Sol. Cells 195, 358–366 (2019).

    Article  Google Scholar 

  33. Herguth, A. & Hahn, G. in Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition 1507–1511 (EU PVSEC, 2013).

  34. Ye, J. et al. Study on the electrical injection regeneration of industrialized B-doped Czochralski silicon PERC solar cells. Int. J. Photoenergy 2019, 5357370 (2019).

    Article  Google Scholar 

  35. Fischer, M., Woodhouse, M., Herritsch, S. & Trube, J. International Technology Roadmap for Photovoltaics (ITRPV). VDMA EV https://itrpv.vdma.org/en/ueber-uns (2021).

  36. Ramspeck, K. et al. in Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition 861–865 (2012).

  37. Kersten, F. et al. Degradation of multicrystalline silicon solar cells and modules after illumination at elevated temperature. Sol. Energy Mater. Sol. Cells 142, 83–86 (2015).

    Article  CAS  Google Scholar 

  38. Zuschlag, A., Skorka, D. & Hahn, G. Degradation and regeneration in mc-Si after different gettering steps. Prog. Photovolt. Res. Appl. 25, 545–552 (2017).

    Article  CAS  Google Scholar 

  39. Skorka, D., Zuschlag, A. & Hahn, G. Firing and gettering dependence of effective defect density in material exhibiting LeTID. AIP Conf. Proc. 1999, 130015 (2018).

    Article  Google Scholar 

  40. Sperber, D., Heilemann, A., Herguth, A. & Hahn, G. Temperature and light-induced changes in bulk and passivation quality of boron-doped float-zone silicon coated with SiNx:H. IEEE J. Photovolt. 7, 463–470 (2017).

    Article  Google Scholar 

  41. Niewelt, T. et al. Light-induced activation and deactivation of bulk defects in boron-doped float-zone silicon. J. Appl. Phys. 121, 185702 (2017).

    Article  Google Scholar 

  42. Chen, D. et al. Hydrogen induced degradation: a possible mechanism for light- and elevated temperature-induced degradation in n-type silicon. Sol. Energy Mater. Sol. Cells 185, 174–182 (2018).

    Article  CAS  Google Scholar 

  43. Lindroos, J., Zuschlag, A., Skorka, D. & Hahn, G. Silicon nitride deposition: impact on lifetime and light-induced degradation at elevated temperature in multicrystalline silicon. IEEE J. Photovolt. 10, 8–18 (2019).

    Article  Google Scholar 

  44. Bredemeier, D., Walter, D., Herlufsen, S. & Schmidt, J. Lifetime degradation and regeneration in multicrystalline silicon under illumination at elevated temperature. AIP Adv. 6, 035119 (2016).

    Article  Google Scholar 

  45. Fung, T. H. et al. A four-state kinetic model for the carrier-induced degradation in multicrystalline silicon: introducing the reservoir state. Sol. Energy Mater. Sol. Cells 184, 48–56 (2018).

    Article  CAS  Google Scholar 

  46. Sen, C. et al. Annealing prior to contact firing: a potential new approach to suppress LeTID. Sol. Energy Mater. Sol. Cells 200, 109938 (2019).

    Article  CAS  Google Scholar 

  47. Steinkemper, H., Hermle, M. & Glunz, S. W. Comprehensive simulation study of industrially relevant silicon solar cell architectures for an optimal material parameter choice. Prog. Photovolt. Res. Appl. 24, 1319–1331 (2016).

    Article  CAS  Google Scholar 

  48. Cuevas, A. & Yan, D. Misconceptions and misnomers in solar cells. IEEE J. Photovolt. 3, 916–923 (2013).

    Article  Google Scholar 

  49. Falster, R. J., Cornara, M., Gambaro, D., Olmo, M. & Pagani, M. Effect of high temperature pre-anneal on oxygen precipitates nucleation kinetics in Si. Solid State Phenom. 57, 123–128 (1997).

    Article  Google Scholar 

  50. Mandelkorn, J. & Lamneck, J. H. Jr. A new electric field effect in silicon solar cells. J. Appl. Phys. 44, 4785–4787 (1973).

    Article  CAS  Google Scholar 

  51. Mandelkorn, J. & Lamneck, J. H. Simplified fabrication of back surface electric field silicon cells and novel characteristics of such cells. Sol. Cell 29, 121–130 (1990).

    Article  Google Scholar 

  52. Ralph, E. L. in Records of the 11th Photovoltaic Specialists Conference 315–316 (IEEE, 1975).

  53. Green, M. A. Enhancement of Schottky solar cell efficiency above its semiempirical limit. Appl. Phys. Lett. 27, 287–288 (1975).

    Article  Google Scholar 

  54. Swanson, R. M. Point-contact solar cells: modeling and experiment. Sol. Cell 17, 85–118 (1986).

    Article  CAS  Google Scholar 

  55. Green, M. A. The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog. Photovolt. Res. Appl. 17, 183–189 (2009).

    Article  CAS  Google Scholar 

  56. Blakers, A. W., Wang, A., Milne, A. M., Zhao, J. & Green, M. A. 22.8% efficient silicon solar cell. Appl. Phys. Lett. 55, 1363–1365 (1989).

    Article  CAS  Google Scholar 

  57. Taguchi, M. et al. 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 4, 96–99 (2014).

    Article  Google Scholar 

  58. Yablonovitch, E., Gmitter, T., Swanson, R. M. & Kwark, Y. H. A 720 mV open circuit voltage SiOx:c-Si:SiOx double heterostructure solar cell. Appl. Phys. Lett. 47, 1211–1213 (1985).

    Article  CAS  Google Scholar 

  59. Feldmann, F. et al. Tunnel oxide passivated contacts as an alternative to partial rear contacts. Sol. Energy Mater. Sol. Cells 131, 46–50 (2014).

    Article  CAS  Google Scholar 

  60. Wu, W. et al. in Proceedings of the 36th European Photovoltaic Solar Energy Conference and Exhibition 100–102 (EU PVSEC, 2019).

  61. Allen, T. G., Bullock, J., Yang, X., Javey, A. & De Wolf, S. Passivating contacts for crystalline silicon solar cells. Nat. Energy 4, 914–928 (2019).

    Article  CAS  Google Scholar 

  62. Huster, F. in Proceedings of the 20th European Photovoltaic Solar Energy Conference 1466–1469 (Scientific Research Publishing, 2005).

  63. Ballif, C., Huljić, D., Willeke, G. & Hessler-Wyser, A. Silver thick-film contacts on highly doped n-type silicon emitters: structural and electronic properties of the interface. Appl. Phys. Lett. 82, 1878–1880 (2003).

    Article  CAS  Google Scholar 

  64. Hahn, G. in Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition and 5th World Conference on Photovoltaic Energy Conversion 1091–1096 (EU PVSEC, 2010).

  65. Wagner, H. et al. Optimizing phosphorus diffusion for photovoltaic applications: peak doping, inactive phosphorus, gettering, and contact formation. J. Appl. Phys. 119, 185704 (2016).

    Article  Google Scholar 

  66. Kim, K. H. et al. Record high efficiency of screen-printed silicon aluminum back surface field solar cell: 20.29%. Jpn. J. Appl. Phys. 56, 08MB25 (2017).

    Article  Google Scholar 

  67. Hoex, B., Heil, S. B. S., Langereis, E., Van De Banden, M. C. M. & Kessels, W. M. M. Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Appl. Phys. Lett. 89, 042112 (2006).

    Article  Google Scholar 

  68. Bonilla, R. S., Hoex, B., Hamer, P. & Wilshaw, P. R. Dielectric surface passivation for silicon solar cells: a review. Phys. Status Solidi A 214, 1700293 (2017).

    Article  Google Scholar 

  69. Green, M. A. The passivated emitter and rear cell (PERC): from conception to mass production. Sol. Energy Mater. Sol. Cells 143, 190–197 (2015).

    Article  CAS  Google Scholar 

  70. Blakers, A. Development of the PERC solar cell. IEEE J. Photovolt. 9, 629–635 (2019).

    Article  Google Scholar 

  71. Shaw V. Trina announces 23.3% efficient PERC cell produced on commercial tools. PV Magazine https://pv-magazine-usa.com/2020/03/05/trina-announces-23-3-efficient-perc-cell-produced-on-commercial-tools/ (2020).

  72. Huang, H. et al. 20.8% industrial PERC solar cell: ALD Al2O3 rear surface passivation, efficiency loss mechanisms analysis and roadmap to 24%. Sol. Energy Mater. Sol. Cells 161, 14–30 (2017).

    Article  CAS  Google Scholar 

  73. Min, B. et al. A roadmap toward 24% efficient PERC solar cells in industrial mass production. IEEE J. Photovolt. 7, 1541–1550 (2017).

    Article  Google Scholar 

  74. Green, M. et al. Solar cell efficiency tables (version 57). Prog. Photovolt. Res. Appl. 29, 3–15 (2021).

    Article  Google Scholar 

  75. Wang, A., Zhao, J. & Green, M. A. 24% efficient silicon solar cells. Appl. Phys. Lett. 57, 602–604 (1990).

    Article  CAS  Google Scholar 

  76. Zhao, J., Wang, A. & Green, M. A. 24.5% Efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates. Prog. Photovolt. Res. Appl. 7, 471–474 (1999).

    Article  CAS  Google Scholar 

  77. Lammert, M. D. & Schwartz, R. J. The interdigitated back contact solar cell: a silicon solar cell for use in concentrated sunlight. IEEE Trans. Electron Devices 24, 337–342 (1977).

    Article  Google Scholar 

  78. Haase, F. et al. Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells. Sol. Energy Mater. Sol. Cells 186, 184–193 (2018).

    Article  CAS  Google Scholar 

  79. Yoshikawa, K. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032–17032 (2017).

    Article  CAS  Google Scholar 

  80. Nakamura, J. et al. Development of heterojunction back contact Si solar cells. IEEE J. Photovolt. 4, 1491–1495 (2014).

    Article  Google Scholar 

  81. Tomasi, A. et al. Simple processing of back-contacted silicon heterojunction solar cells using selective-area crystalline growth. Nat. Energy 2, 17062–17062 (2017).

    Article  CAS  Google Scholar 

  82. Lachenal, D. et al. Optimization of tunnel-junction IBC solar cells based on a series resistance model. Sol. Energy Mater. Sol. Cells 200, 110036 (2019).

    Article  CAS  Google Scholar 

  83. Chen, Y. et al. Mass production of industrial tunnel oxide passivated contacts (i-TOPCon) silicon solar cells with average efficiency over 23% and modules over 345 W. Prog. Photovolt. Res. Appl. 27, 827–834 (2019).

    Article  CAS  Google Scholar 

  84. Charlson, E. J., Shah, A. B. & Lien, J. C. in Proceedings of the 1972 International Electron Devices Meeting 16 (IEEE, 1972).

  85. Green, M. A. & Blakers, A. W. Advantages of metal-insulator-semiconductor structures for silicon solar cells. Sol. Cell 8, 3–16 (1983).

    Article  CAS  Google Scholar 

  86. Moldovan, A. et al. Tunnel oxide passivated carrier-selective contacts based on ultra-thin SiO2 layers. Sol. Energy Mater. Sol. Cells 142, 123–127 (2015).

    Article  CAS  Google Scholar 

  87. Kobayashi Asuha, H., Maida, O., Takahashi, M. & Iwasa, H. Nitric acid oxidation of Si to form ultrathin silicon dioxide layers with a low leakage current density. J. Appl. Phys. 94, 7328–7335 (2003).

    Article  CAS  Google Scholar 

  88. De Graaff, H. C. & De Groot, J. G. The SIS tunnel emitter: a theory for emitters with thin interface layers. IEEE Trans. Electron Devices 26, 1771–1776 (1979).

    Article  Google Scholar 

  89. Wolstenholme, G. R., Jorgensen, N., Ashburn, P. & Booker, G. R. An investigation of the thermal stability of the interfacial oxide in polycrystalline silicon emitter bipolar transistors by comparing device results with high-resolution electron microscopy observations. J. Appl. Phys. 61, 225–233 (1987).

    Article  CAS  Google Scholar 

  90. Gan, J.-Y. & Swanson, R. M. in Proceedings of the IEEE Conference on Photovoltaic Specialists 245–250 (IEEE, 1990).

  91. Tetzlaff, D. et al. A simple method for pinhole detection in carrier selective POLO-junctions for high efficiency silicon solar cells. Sol. Energy Mater. Sol. Cells 173, 106–110 (2017).

    Article  CAS  Google Scholar 

  92. Janssen, G. J. M. et al. LPCVD polysilicon passivating contacts for crystalline silicon solar cells. Photovolt. Int. 32, 45–56 (2016).

    Google Scholar 

  93. Yan, D., Cuevas, A., Phang, S. P., Wan, Y. & Macdonald, D. 23% efficient p-type crystalline silicon solar cells with hole-selective passivating contacts based on physical vapor deposition of doped silicon films. Appl. Phys. Lett. 113, 61603 (2018).

    Article  Google Scholar 

  94. Feldmann, F., Bivour, M., Reichel, C., Hermle, M. & Glunz, S. W. Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics. Sol. Energy Mater. Sol. Cells 120, 270–274 (2014).

    Article  CAS  Google Scholar 

  95. Richter, A. et al. Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses. Nat. Energy 6, 429–438 (2021).

    Article  CAS  Google Scholar 

  96. Padhamnath, P. et al. Metal contact recombination in monoPoly™ solar cells with screen-printed & fire-through contacts. Sol. Energy Mater. Sol. Cells 192, 109–116 (2019).

    Article  CAS  Google Scholar 

  97. Chen, D. et al. 24.58% total area efficiency of screen-printed, large area industrial silicon solar cells with the tunnel oxide passivated contacts (i-TOPCon) design. Sol. Energy Mater. Sol. Cells 206, 110258 (2020).

    Article  CAS  Google Scholar 

  98. Hutchin, M. TOPCon technology hits 23.5% in mass production. PV Magazine International https://www.pv-magazine.com/2020/04/02/topcon-technology-hits-23-5-in-mass-production/ (2020).

  99. Stoker, L. LONGi toasts new p-type TOPCon and commercial heterojunction cell efficiency records. PV Tech https://www.pv-tech.org/longi-toasts-new-p-type-topcon-and-commercial-heterojunction-cell-efficiency-records/ (2021).

  100. Stoker, L. N-type competition intensifying, industry transition could occur earlier than expected, says Jolywood. PV Tech https://www.pv-tech.org/n-type-competition-intensifying-industry-transition-could-occur-earlier-than-expected-says-jolywood/ (2021).

  101. Aberle, A. G., Glunz, S. & Warta, W. Impact of illumination level and oxide parameters on Shockley–Read–Hall recombination at the Si-SiO2 interface. J. Appl. Phys. 71, 4422–4431 (1992).

    Article  CAS  Google Scholar 

  102. Feldmann, F. et al. Efficient carrier-selective p- and n-contacts for Si solar cells. Sol. Energy Mater. Sol. Cells 131, 100–104 (2014).

    Article  CAS  Google Scholar 

  103. Nogay, G. et al. Interplay of annealing temperature and doping in hole selective rear contacts based on silicon-rich silicon-carbide thin films. Sol. Energy Mater. Sol. Cells 173, 18–24 (2017).

    Article  CAS  Google Scholar 

  104. Wyss, P. et al. A mixed-phase SiOx hole helective junction compatible with high temperatures used in industrial solar cell manufacturing. IEEE J. Photovolt. 10, 1262–1269 (2020).

    Article  Google Scholar 

  105. Ingenito, A. et al. A passivating contact for silicon solar cells formed during a single firing thermal annealing. Nat. Energy 3, 800–800 (2018).

    Article  CAS  Google Scholar 

  106. Young, D. L. et al. in Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference 2211 (IEEE, 2019).

  107. Bruhat, E. et al. in Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference 2319–2324 (IEEE, 2019).

  108. Stuckelberger, J. et al. Recombination analysis of phosphorus-doped nanostructured silicon oxide passivating electron contacts for silicon solar cells. IEEE J. Photovolt. 8, 389–396 (2018).

    Article  Google Scholar 

  109. Larionova, Y. et al. On the recombination behavior of p+-type polysilicon on oxide junctions deposited by different methods on textured and planar surfaces. Phys. Status Solidi A 214, 1700058 (2017).

    Article  Google Scholar 

  110. Tool, K. et al. in Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion 3900–3904 (IEEE, 2018).

  111. Nogay, G. et al. Crystalline silicon solar cells with coannealed electron- and hole-selective SiCx passivating contacts. IEEE J. Photovolt. 8, 1478–1485 (2018).

    Article  Google Scholar 

  112. Pankove, J. I. & Tarng, M. L. Amorphous silicon as a passivant for crystalline silicon. Appl. Phys. Lett. 34, 156–157 (1979).

    Article  CAS  Google Scholar 

  113. Tanaka, M. et al. Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (artificially constructed junction-heterojunction with intrinsic thin-layer). Jpn. J. Appl. Phys. 31, 3518–3522 (1992).

    Article  CAS  Google Scholar 

  114. Keppner, H. et al. Passivation properties of amorphous and microcrystalline silicon layers deposited by VHF-GD for crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 34, 201–209 (1994).

    Article  CAS  Google Scholar 

  115. Despeisse, M. et al. in Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion 3888–3889 (IEEE, 2018).

  116. Yoshikawa, K. et al. Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. Sol. Energy Mater. Sol. Cells 173, 37–42 (2017).

    Article  CAS  Google Scholar 

  117. Descoeudres, A. et al. Low-temperature processes for passivation and metallization of high-efficiency crystalline silicon solar cells. Sol. Energy 175, 54–59 (2018).

    Article  CAS  Google Scholar 

  118. Morales-Vilches, A. B. et al. ITO-free silicon heterojunction solar cells with ZnO:Al/SiO2 front electrodes reaching a conversion efficiency of 23%. IEEE J. Photovolt. 9, 34–39 (2018).

    Article  Google Scholar 

  119. Cuevas, A. et al. Carrier population control and surface passivation in solar cells. Sol. Energy Mater. Sol. Cells 184, 38–47 (2018).

    Article  CAS  Google Scholar 

  120. Stutzmann, M., Biegelsen, D. K. & Street, R. A. Detailed investigation of doping in hydrogenated amorphous silicon and germanium. Phys. Rev. B 35, 5666–5701 (1987).

    Article  CAS  Google Scholar 

  121. Taguchi, M. et al. HITTM cells — high-efficiency crystalline Si cells with novel structure. Prog. Photovolt. Res. Appl. 8, 503–513 (2000).

    Article  CAS  Google Scholar 

  122. De Wolf, S. & Kondo, M. Nature of doped a-Si:H/c-Si interface recombination. J. Appl. Phys. 105, 103707 (2009).

    Article  Google Scholar 

  123. DeWolf, S. et al. High-efficiency silicon heterojunction solar cells: a review. Green 2, 7–24 (2012).

    Article  CAS  Google Scholar 

  124. Schüttauf, J.-W. A. et al. Excellent crystalline silicon surface passivation by amorphous silicon irrespective of the technique used for chemical vapor deposition. Appl. Phys. Lett. 98, 153514 (2011).

    Article  Google Scholar 

  125. Das, U. K., Burrows, M. Z., Lu, M., Bowden, S. & Birkmire, R. W. Surface passivation and heterojunction cells on Si (100) and (111) wafers using dc and rf plasma deposited Si:H thin films. Appl. Phys. Lett. 92, 063504 (2008).

    Article  Google Scholar 

  126. Zhang, X., Cuevas, A., Demaurex, B. & De Wolf, S. Sputtered hydrogenated amorphous silicon for silicon heterojunction solar cell fabrication. Energy Procedia 55, 865–872 (2014).

    Article  CAS  Google Scholar 

  127. Koida, T., Fujiwara, H. & Kondo, M. High-mobility hydrogen-doped In2O3 transparent conductive oxide for a-Si:H/c-Si heterojunction solar cells. Sol. Energy Mater. Sol. Cells 93, 851–854 (2009).

    Article  CAS  Google Scholar 

  128. Yu, J. et al. Tungsten doped indium oxide film: ready for bifacial copper metallization of silicon heterojunction solar cell. Sol. Energy Mater. Sol. Cells 144, 359–363 (2015).

    Article  Google Scholar 

  129. Kobayashi, E., Watabe, Y., Yamamoto, T. & Yamada, Y. Cerium oxide and hydrogen co-doped indium oxide films for high-efficiency silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 149, 75–80 (2016).

    Article  CAS  Google Scholar 

  130. Morales-Masis, M. et al. Highly conductive and broadband transparent Zr-doped In2O3 as front electrode for solar cells. IEEE J. Photovolt. 8, 1202–1207 (2018).

    Article  Google Scholar 

  131. Senaud, L.-L. et al. Aluminium-doped zinc oxide rear reflectors for high-efficiency silicon heterojunction solar cells. IEEE J. Photovolt. 9, 1217–1224 (2019).

    Article  Google Scholar 

  132. Haschke, J. et al. Lateral transport in silicon solar cells. J. Appl. Phys. 127, 114501 (2020).

    Article  CAS  Google Scholar 

  133. Bryan, J. L. et al. Aluminum–silicon interdiffusion in silicon heterojunction solar cells with a-Si:H(i)/a-Si:H(n/p)/Al rear contacts. J. Phys. Appl. Phys. 54, 134002 (2021).

    Article  CAS  Google Scholar 

  134. Li, S. et al. Transparent-conductive-oxide-free front contacts for high-efficiency silicon heterojunction solar cells. Joule 5, 1535–1547 (2021).

    Article  Google Scholar 

  135. Ning, T. H. & Isaac, R. D. Effect of emitter contact on current gain of silicon bipolar devices. IEEE Trans. Electron. Devices 27, 2051–2055 (1980).

    Article  Google Scholar 

  136. Holman, Z. C. et al. Current losses at the front of silicon heterojunction solar cells. IEEE J. Photovolt. 2, 7–15 (2012).

    Article  Google Scholar 

  137. van Cleef, M. W. M. M. et al. Amorphous silicon carbide/crystalline silicon heterojunction solar cells: a comprehensive study of the photocarrier collection. Jpn. J. Appl. Phys. 37, 3926 (1998).

    Article  Google Scholar 

  138. Kirner, S. et al. Silicon heterojunction solar cells with nanocrystalline silicon oxide emitter: insights into charge carrier transport. IEEE J. Photovolt. 5, 1601–1605 (2015).

    Article  Google Scholar 

  139. Seif, J. P. et al. Nanometer-scale doped microcrystalline silicon Layers for silicon heterojunction solar cells. Nanoscale Adv. 3, 3373 (2021).

    Google Scholar 

  140. Nogay, G. et al. in Proceedings of the 2017 IEEE 44th Photovoltaic Specialist Conference 1–3 (IEEE, 2017).

  141. Mazzarella, L. et al. Nanocrystalline silicon emitter optimization for Si-HJ solar cells: substrate selectivity and CO2 plasma treatment effect. Phys. Status Solidi A 214, 1532958 (2017).

    Article  Google Scholar 

  142. Fioretti, A. N., Boccard, M., Monnard, R. & Ballif, C. Low-temperature p-type microcrystalline silicon as carrier selective contact for silicon heterojunction solar cells. IEEE J. Photovolt. 9, 1158–1165 (2019).

    Article  Google Scholar 

  143. Bivour, M., Temmler, J., Steinkemper, H. & Hermle, M. Molybdenum and tungsten oxide: high work function wide band gap contact materials for hole selective contacts of silicon solar cells. Sol. Energy Mater. Sol. Cells 142, 34–41 (2015).

    Article  CAS  Google Scholar 

  144. Gudovskikh, A. S. et al. Study of GaP/Si heterojunction solar cells. Energy Procedia 102, 56–63 (2016).

    Article  CAS  Google Scholar 

  145. Glatthaar, M., Kafedjiska, I., Bivour, M. & Hopman, S. Self-aligned carrier-selective PEDOT:PSS contacts on optically highly transparent boron-emitters. Sol. Energy Mater. Sol. Cells 173, 92–95 (2017).

    Article  CAS  Google Scholar 

  146. Bullock, J. et al. Stable dopant-free asymmetric heterocontact silicon solar cells with efficiencies above 20%. ACS Energy Lett. 3, 508–513 (2018).

    Article  CAS  Google Scholar 

  147. Essig, S. et al. Toward annealing-stable molybdenum-oxide-based hole-selective contacts for silicon photovoltaics. Sol. RRL 2, 1700227 (2018).

    Article  Google Scholar 

  148. Melskens, J. et al. Passivating contacts for crystalline silicon solar cells: from concepts and materials to prospects. IEEE J. Photovolt. 8, 373–388 (2018).

    Article  Google Scholar 

  149. Yang, X. et al. Dual-function electron-conductive, hole-blocking titanium nitride contacts for efficient silicon solar cells. Joule 3, 1314–1327 (2019).

    Article  CAS  Google Scholar 

  150. Yang, X. et al. High-performance TiO2-based electron-selective contacts for crystalline silicon solar cells. Adv. Mater. 28, 5891–5897 (2016).

    Article  CAS  Google Scholar 

  151. Dréon, J. et al. 23.5%-efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact. Nano Energy 70, 104495 (2020).

    Article  Google Scholar 

  152. Bullock, J. et al. Dopant-free partial rear contacts enabling 23% silicon solar cells. Adv. Energy Mater. 9, 1803367 (2019).

    Article  Google Scholar 

  153. Wu, W. et al. 22% efficient dopant-free interdigitated back contact silicon solar cells. AIP Conf. Proc. 1999, 040025 (2018).

    Article  Google Scholar 

  154. Zhong, S. et al. Mitigating plasmonic absorption losses at rear electrodes in high-efficiency silicon solar cells using dopant-free contact stacks. Adv. Funct. Mater. 30, 1907840 (2020).

    Article  CAS  Google Scholar 

  155. Paduthol, A. et al. Impact of different capping layers on carrier injection efficiency between amorphous and crystalline silicon measured using photoluminescence. Sol. Energy Mater. Sol. Cells 187, 55–60 (2018).

    Article  CAS  Google Scholar 

  156. Masuko, K. et al. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 4, 1433–1435 (2014).

    Article  Google Scholar 

  157. Boccard, M. & Holman, Z. C. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells. J. Appl. Phys. 118, 065704 (2015).

    Article  Google Scholar 

  158. Defresne, A., Plantevin, O. & RocaCabarrocas, P. Robustness up to 400 °C of the passivation of c-Si by p-type a-Si:H thanks to ion implantation. AIP Adv. 6, 125107 (2016).

    Article  Google Scholar 

  159. Shi, J., Boccard, M. & Holman, Z. Plasma-initiated rehydrogenation of amorphous silicon to increase the temperature processing window of silicon heterojunction solar cells. Appl. Phys. Lett. 109, 031601 (2016).

    Article  Google Scholar 

  160. Geissbühler, J. Metallization techniques and interconnection schemes for high efficiency silicon heterojunction PV. Photovolt. Int. 37, 61–69 (2017).

    Google Scholar 

  161. Kamino, B. A. et al. Low-temperature screen-printed metallization for the scale-up of two-terminal perovskite–silicon tandems. ACS Appl. Energy Mater. 2, 3815–3821 (2019).

    Article  CAS  Google Scholar 

  162. Kivambe, M. M. et al. Record-efficiency n-type and high-efficiency p-type monolike silicon heterojunction solar cells with a high-temperature gettering process. ACS Appl. Energy Mater. 2, 4900–4906 (2019).

    Article  CAS  Google Scholar 

  163. Harrison, S. et al. in Proceedings of the 32nd European Photovoltaic Solar Energy Conference and Exhibition 358–362 (EU PVSEC, 2016).

  164. Augusto, A., Looney, E., Del Cañizo, C., Bowden, S. G. & Buonassisi, T. Thin silicon solar cells: pathway to cost-effective and defect-tolerant cell design. Energy Procedia 124, 706–711 (2017).

    Article  CAS  Google Scholar 

  165. Descoeudres, A. et al. >21% efficient silicon heterojunction solar cells on n-and p-type wafers compared. IEEE J. Photovolt. 3, 83–89 (2013).

    Article  Google Scholar 

  166. Zhao, J. et al. in Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion 1514–1519 (IEEE, 2018).

  167. Dupré, O. et al. Reassessment of cell to module gains and losses: accounting for the current boost specific to cells located on the edges. AIP Conf. Proc. 1999, 90001 (2018).

    Article  Google Scholar 

  168. Papet, P. et al. New cell metallization patterns for heterojunction solar cells interconnected by the smart wire connection technology. Energy Procedia 67, 203–209 (2015).

    Article  CAS  Google Scholar 

  169. Braun, S., Hahn, G., Nissler, R., Pönisch, C. & Habermann, D. The multi-busbar design: an overview. Energy Procedia 43, 86–92 (2013).

    Article  CAS  Google Scholar 

  170. Faes, A. et al. in Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion 1998–2001 (IEEE, 2018).

  171. Dickson, J. D. C. Photo-voltaic semiconductor apparatus or the like. US Patent US2938938A (1960).

  172. Zhao, J., Wang, A., Abbaspour-Sani, E., Yun, F. & Green, M. A. Improved efficiency silicon solar cell module. IEEE Electron. Device Lett. 18, 48–50 (1997).

    Article  CAS  Google Scholar 

  173. Carr, A. J. et al. in Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference 1–5 (IEEE, 2015).

  174. Gérenton, F. et al. in Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference 3258–3262 (IEEE, 2019).

  175. Chunduri, S. K. & Schmela, M. Advanced module technologies 2019. TaiyangNews http://taiyangnews.info/reports/advanced-module-technologies-2019/ (2019).

  176. Baliozian, P. et al. Bifacial p-type silicon shingle solar cells – the “pSPEER” concept. Sol. RRL 2, 1700171 (2018).

    Article  Google Scholar 

  177. Klasen, N., Mondon, A., Kraft, A. & Eitner, U. Shingled cell interconnection: a new generation of bifacial PV-modules. SSRN Electron. J. https://doi.org/10.2139/ssrn.3152478 (2018).

    Article  Google Scholar 

  178. Park, J. et al. Analysis of solar cells interconnected by electrically conductive adhesives for high-density photovoltaic modules. Appl. Surf. Sci. 484, 732–739 (2019).

    Article  CAS  Google Scholar 

  179. Schulte-Huxel, H., Blankemeyer, S., Morlier, A., Brendel, R. & Köntges, M. Interconnect-shingling: maximizing the active module area with conventional module processes. Sol. Energy Mater. Sol. Cells 200, 109991 (2019).

    Article  CAS  Google Scholar 

  180. Ballif, C., Dicker, J., Borchert, D. & Hofmann, T. Solar glass with industrial porous SiO2 antireflection coating: measurements of photovoltaic module properties improvement and modelling of yearly energy yield gain. Sol. Energy Mater. Sol. Cells 82, 331–344 (2004).

    Article  CAS  Google Scholar 

  181. Pan, X., Zhang, S., Xu, J., Feng, Z. & Verlinden, P. J. in Proceedings of the 31st European Photovoltaic Solar Energy Conference and Exhibition 89–92 (EU PVSEC, 2015).

  182. Zhang, S. et al. 335-W world-record p-type monocrystalline module with 20.6% efficient PERC solar cells. IEEE J. Photovolt. 6, 145–152 (2015).

    Article  Google Scholar 

  183. Pingel, S. et al. in Proceedings of the 2010 35th IEEE Photovoltaic Specialists Conference 002817–002822 (IEEE, 2010).

  184. Naumann, V. et al. Explanation of potential-induced degradation of the shunting type by Na decoration of stacking faults in Si solar cells. Sol. Energy Mater. Sol. Cells 120, 383–389 (2014).

    Article  CAS  Google Scholar 

  185. Virtuani, A., Annigoni, E. & Ballif, C. One-type-fits-all-systems: strategies for preventing potential-induced degradation in crystalline silicon solar photovoltaic modules. Prog. Photovolt. Res. Appl. 27, 13–21 (2019).

    Article  Google Scholar 

  186. Wohlgemuth, J. H. Photovoltaic Module Reliability (Wiley, 2020).

  187. Jordan, D. C., Kurtz, S. R., VanSant, K. & Newmiller, J. Compendium of photovoltaic degradation rates. Prog. Photovolt. Res. Appl. 24, 978–989 (2016).

    Article  Google Scholar 

  188. Schweiger, M., Bonilla, J., Herrmann, W., Gerber, A. & Rau, U. Performance stability of photovoltaic modules in different climates. Prog. Photovolt. Res. Appl. 25, 968–981 (2017).

    Article  CAS  Google Scholar 

  189. Ishii, T. & Masuda, A. Annual degradation rates of recent crystalline silicon photovoltaic modules. Prog. Photovolt. Res. Appl. 25, 953–967 (2017).

    Article  CAS  Google Scholar 

  190. Carigiet, F., Brabec, C. J. & Baumgartner, F. P. Long-term power degradation analysis of crystalline silicon PV modules using indoor and outdoor measurement techniques. Renew. Sustain. Energy Rev. 144, 111005 (2021).

    Article  CAS  Google Scholar 

  191. Yamaguchi, S., Yamamoto, C., Ohdaira, K. & Masuda, A. Comprehensive study of potential-induced degradation in silicon heterojunction photovoltaic cell modules. Prog. Photovolt. Res. Appl. 26, 697–708 (2018).

    Article  CAS  Google Scholar 

  192. Arriaga Arruti, O., Gnocchi, L., Virtuani, A. & Ballif, C. in Proceedings of the 37th European Photovoltaic Solar Energy Conference and Exhibition 974–977 (EU PVSEC, 2020).

  193. Cattin, J. et al. Influence of light soaking on silicon heterojunction solar cells with various architectures. IEEE J. Photovolt. 11, 575–583 (2021).

    Article  Google Scholar 

  194. Virtuani, A. et al. 35 years of photovoltaics: analysis of the TISO-10-kW solar plant, lessons learnt in safety and performance — Part 1. Prog. Photovolt. Res. Appl. 27, 328–339 (2019).

    Article  Google Scholar 

  195. Richter, R. in Proceedings of 7th World Conference on Photovoltaic Energy Conversion (IEEE, 2018).

  196. Kopecek, R. & Libal, J. Bifacial Photovoltaics: Technology, Applications and Economics (Institution of Engineering and Technology, 2018).

  197. Kopecek, R. & Libal, J. Towards large-scale deployment of bifacial photovoltaics. Nat. Energy 3, 443–446 (2018).

    Article  Google Scholar 

  198. Heggarty, T. Global solar installations to reach record high in 2019. Greentech Media https://www.greentechmedia.com/articles/read/global-solar-pv-installations-to-reach-record-high-in-2019#gs.zztl38 (2019).

  199. Deign, J. Mexican solar sets a record low price for Latin America. Greentech Media https://www.greentechmedia.com/articles/read/mexican-solar-record-low-price-latin-america#gs.zztcyw (2017).

  200. Di Paola, A. Saudi Arabia gets cheapest bids for solar power in auction. Bloomberg https://www.bloomberg.com/news/articles/2017-10-03/saudi-arabia-gets-cheapest-ever-bids-for-solar-power-in-auction (2017).

  201. Haegel, N. M. et al. Terawatt-scale photovoltaics: transform global energy. Science 364, 836–838 (2019).

    Article  CAS  Google Scholar 

  202. Breyer, C. et al. On the role of solar photovoltaics in global energy transition scenarios. Prog. Photovolt. Res. Appl. 25, 727–745 (2017).

    Article  Google Scholar 

  203. Verlinden, P. J. Future challenges for photovoltaic manufacturing at the terawatt level. J. Renew. Sustain. Energy 12, 053505 (2020).

    Article  Google Scholar 

  204. Altermatt, P. P. et al. in Proceedings of the 37th European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC, 2020).

  205. Chen, Y. et al. From laboratory to production: learning models of efficiency and manufacturing cost of industrial crystalline silicon and thin-film photovoltaic technologies. IEEE J. Photovolt. 8, 1531–1538 (2018).

    Article  Google Scholar 

  206. Zweibel, K. The impact of tellurium supply on cadmium telluride photovoltaics. Science 328, 699–701 (2010).

    Article  CAS  Google Scholar 

  207. Vijh, A., Washington, L. & Parenti, R. C. in Proceedings of the 2017 44th Photovoltaic Specialist Conference 3520–3523 (IEEE, 2017).

  208. Essig, S. et al. Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nat. Energy 2, 17144 (2017).

    Article  CAS  Google Scholar 

  209. Cariou, R. et al. III–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration. Nat. Energy 3, 326–333 (2018).

    Article  CAS  Google Scholar 

  210. Fan, S. et al. Current-matched III–V/Si epitaxial tandem solar cells with 25.0% efficiency. Cell Rep. Phys. Sci. 1, 100208 (2020).

    Article  Google Scholar 

  211. Feifel, M. et al. Epitaxial GaInP/GaAs/Si triple-junction solar cell with 25.9% AM1.5g efficiency enabled by transparent metamorphic AlxGa1−xAsyP1−y step-graded buffer structures. Sol. RRL 5, 2000763 (2021).

    Article  CAS  Google Scholar 

  212. Bush, K. A. et al. Minimizing current and voltage losses to reach 25% efficient monolithic two-terminal perovskite-silicon tandem solar cells. ACS Energy Lett. 3, 2173–2180 (2018).

    Article  CAS  Google Scholar 

  213. Sahli, F. et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17, 820–820 (2018).

    Article  CAS  Google Scholar 

  214. Chen, B. et al. Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%. Joule 3, 177–190 (2019).

    Article  CAS  Google Scholar 

  215. Mazzarella, L. et al. Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Adv. Energy Mater. 9, 1803241 (2019).

    Article  Google Scholar 

  216. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article  CAS  Google Scholar 

  217. Green, M. A. et al. Solar cell efficiency tables (Version 58). Prog. Photovolt. Res. Appl. 29, 657–667 (2021).

    Article  Google Scholar 

  218. Hutchins, M. A 26.5% efficient perovskite-silicon tandem cell. PV Magazine https://www.pv-magazine.com/2020/12/09/a-26-5-efficient-perovskite-silicon-tandem-cell/ (2020).

  219. Werner, J., Niesen, B. & Ballif, C. Perovskite/silicon tandem solar cells: marriage of convenience or true love story? – An overview. Adv. Mater. Interfaces 5, 1700731 (2018).

    Article  Google Scholar 

  220. Descoeudres, A. et al. The versatility of passivating carrier-selective silicon thin films for diverse high-efficiency screen-printed heterojunction-based solar cells. Prog. Photovolt. Res. Appl. 28, 569–577 (2020).

    Article  CAS  Google Scholar 

  221. Smith, D. D. et al. in Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference 3351–3355 (IEEE, 2016).

  222. LONGi. LONGi breaks world record for HJT solar cell efficiency twice in one week. LONGi https://en.longi-solar.com/home/events/press_detail/id/364_LONGi_breaks_world_record_for_HJT_solar_cell_efficiency_twice_in_one_week.html (2022).

  223. Yamamoto, K. et al. in Proceedings of the 31st European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC, 2015).

  224. Richter, A. et al. n-Type Si solar cells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation. Sol. Energy Mater. Sol. Cells 173, 96–105 (2017).

    Article  CAS  Google Scholar 

  225. Glunz, S. W. & Feldmann, F. SiO2 surface passivation layers — a key technology for silicon solar cells. Sol. Energy Mater. Sol. Cells 185, 260–269 (2018).

    Article  CAS  Google Scholar 

  226. Wang, Q. Status of crystalline silicon PERC solar cells. Presented at the NIST/UL Workshop on Photovoltaic Material Durability (NIST, 2019).

  227. Stenzel, F. et al. in Proceedings of the 36th European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC, 2019).

  228. Müller, J. et al. in 30th International Photovoltaic Science and Engineering Conference (PVSEC, 2020).

  229. Guoqiang, T. et al. Numerical simulations of a 96-rod polysilicon CVD reactor. J. Cryst. Growth 489, 68–71 (2018).

    Article  Google Scholar 

  230. Altermatt, P. P. et al. in Proceedings of the 38th European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC, 2021).

  231. Philipps, S. & Warmuth, W. Photovoltaics report, updated September 2020. Fraunhofer ISE https://www.ise.fraunhofer.de/en/publications/studies/photovoltaics-report.html (2020).

  232. Graf, A., Herguth, A. & Hahn, G. Determination of BO-LID and LeTID related activation energies in Cz-Si and FZ-Si using constant injection conditions. AIP Conf. Proc. 2147, 140003 (2019).

    Article  Google Scholar 

  233. Joos, S. & Hahn, G. Marktführer mit zukunft. Phys. unserer Zeit 47, 240–246 (2016).

    Article  CAS  Google Scholar 

  234. Gatz, S. et al. 19.4%-efficient large-area fully screen-printed silicon solar cells. Phys. Status Solidi Rapid Res. Lett. 5, 147–149 (2011).

    Article  CAS  Google Scholar 

  235. Klasen, N., Mondon, A., Kraft, A. & Eitner, U. Shingled cell interconnection: aiming for a new generation of bifacial PV-modules. Franuhofer ISE http://www.metallizationworkshop.info/fileadmin/layout/images/Konstanz-2017/MWS2017/VIII_4_Klasen.pdf (2017).

  236. McNair, S. et al. Longi shows off its new “shingled” seamless soldered module. Solar Power Panels https://www.solarpowerpanels.net.au/longi-shows-off-its-new-shingled-seamless-soldered-module/ (2019).

  237. Christensen, E. Flat-Plate Solar Array Project: 10 years of progress, no. 400 (Jet Propulsion Laboratory, 1985).

  238. Blakers, A. W. & Green, M. A. 20% efficiency silicon solar cells. Appl. Phys. Lett. 48, 215–217 (1986).

    Article  CAS  Google Scholar 

  239. Verlinden, P., Sinton, R. A. & Swanson, R. M. High efficiency large area back contact concentrator solar cells witction. Int. J. Sol. Energy 6, 347–366 (1988).

    Article  Google Scholar 

  240. Basore, P. A. & Gee, J. M. in Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion 2254–2257 (IEEE, 1994).

  241. Green, M. A. How did solar cells get so cheap? Joule 3, 631–633 (2019).

    Article  Google Scholar 

  242. Yang, Y. M. et al. Development of high-performance multicrystalline silicon for photovoltaic industry. Prog. Photovolt. Res. Appl. 23, 340–351 (2015).

    Article  CAS  Google Scholar 

  243. Lan, C. W. et al. The emergence of high-performance multi-crystalline silicon in photovoltaics. J. Cryst. Growth 468, 17–23 (2017).

    Article  CAS  Google Scholar 

  244. Stoddard, N. et al. Casting single crystal silicon: novel defect profiles from BP Solar’s mono2TM wafers. Solid. State Phenom. 131–133, 1–8 (2007).

    Article  Google Scholar 

  245. Lan, C.-W., Hsieh, C.-K. & Hsu, W.-C. in Crystal Growth of Si for Solar Cells (eds Nakajima, K. & Usami, N.) 25–39 (Springer, 2009).

  246. Xu, H. Characterization of n-type mono-crystalline silicon ingots produced by continuous Czochralski (Cz) technology. Energy Procedia 77, 658–664 (2015).

    Article  CAS  Google Scholar 

  247. Wang, Y., Xie, T., Green, L. & City, X. Supply of low-cost and high-efficiency multi-GW mono wafers. Photovolt. Int. 36, 38–42 (2017).

    CAS  Google Scholar 

  248. Mosel, F. et al. in Proceedings of the 32nd European Photovoltaic Solar Energy Conference and Exhibition 1064–1068 (EU-PVSEC, 2016).

  249. Brendel, R. Review of layer transfer processes for crystalline thin-film silicon solar cells. Jpn. J. Appl. Phys. 40, 4431 (2001).

    Article  CAS  Google Scholar 

  250. Milenkovic, N., Drießen, M., Weiss, C. & Janz, S. Porous silicon reorganization: influence on the structure, surface roughness and strain. J. Cryst. Growth 432, 139–145 (2015).

    Article  CAS  Google Scholar 

  251. Hahn, G. & Schönecker, A. New crystalline silicon ribbon materials for photovoltaics. J. Phys. Condens. Matter 16, R1615 (2004).

    Article  CAS  Google Scholar 

  252. Van Mierlo, F., Jonczyk, R. & Qian, V. Next generation Direct Wafer® technology delivers low cost, high performance to silicon wafer industry. Energy Procedia 130, 2–6 (2017).

    Article  Google Scholar 

  253. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  CAS  Google Scholar 

  254. Swanson, R. M. in Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference 889–894 (IEEE, 2005).

  255. Kerr, M. J. & Cuevas, A. General parameterization of Auger recombination in crystalline silicon. J. Appl. Phys. 91, 2473–2480 (2002).

    Article  CAS  Google Scholar 

  256. Richter, A., Hermle, M. & Glunz, S. W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J. Photovolt. 3, 1184–1191 (2013).

    Article  Google Scholar 

  257. Veith-Wolf, B. A., Schäfer, S., Brendel, R. & Schmidt, J. Reassessment of intrinsic lifetime limit in n-type crystalline silicon and implication on maximum solar cell efficiency. Sol. Energy Mater. Sol. Cells 186, 194–199 (2018).

    Article  CAS  Google Scholar 

  258. Schäfer, S. & Brendel, R. Accurate calculation of the absorptance enhances efficiency limit of crystalline silicon solar cells with lambertian light trapping. IEEE J. Photovolt. 8, 1156–1158 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank S. Joos and M. Lehman for the design of Fig. 4 and the figure in Box 2, respectively. C.B., M.B. and F.-J.H. acknowledge funding by the Horizon 2020 programme of the European Union within the projects Ampere under grant 745601 and Highlight under grant 857793, and by the Swiss Federal Office for Energy within the project CHESS under grant SI501253-01. G.H. acknowledges support from the German Federal Ministry of Economic Affairs and Energy.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Christophe Ballif.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Stefan Glunz and Martin Green for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

A record value of 29.1%: www.businesswire.com/news/home/ 20181212005060/en/ Alta-Devices-Sets-29.1-Solar-Efficiency-Record

International Energy Agency: https://www.iea.org/reports/world-energy-outlook-2020

SmartCalc.CTM: www.cell-to-module.com

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballif, C., Haug, FJ., Boccard, M. et al. Status and perspectives of crystalline silicon photovoltaics in research and industry. Nat Rev Mater 7, 597–616 (2022). https://doi.org/10.1038/s41578-022-00423-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00423-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing