Skip to main content
Log in

Design and optimization of reactive distillation: a review

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Reactive distillation process, a representative process intensification technology, has been widely applied in the chemical industry. However, due to the strong interaction between reaction and separation, the extension of reactive distillation technology is restricted by the difficulties in process analysis and design. To overcome this problem, the design and optimization of reactive distillation have been widely studied and illustrated for plenty of reactive mixtures over the past three decades. These design and optimization methods of the reactive distillation process are classified into three categories: graphical, optimization-based, and evolutionary/heuristic methods. The primary objective of this article is to provide an up-to-date review of the existing design and optimization methods. Desired and output information, advantages and limitations of each method are stated, the modification and development for original methodologies are also reviewed. Perspectives on future research on the design and optimization of reactive distillation method are proposed for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tian Y, Demirel S E, Hasan M M F, Pistikopoulos E N. An overview of process systems engineering approaches for process intensification: state of the art. Chemical Engineering and Processing, 2018, 133: 160–210

    Article  CAS  Google Scholar 

  2. Lutze P, Gani R, Woodley J M. Process intensification: a perspective on process synthesis. Chemical Engineering and Processing, 2010, 49(6): 547–558

    Article  CAS  Google Scholar 

  3. Ponce-Ortega J M, Al-Thubaiti M M, El-Halwagi M M. Process intensification: new understanding and systematic approach. Chemical Engineering and Processing, 2012, 53: 63–75

    Article  CAS  Google Scholar 

  4. Malone M F, Doherty M F. Reactive distillation. Industrial & Engineering Chemistry Research, 2000, 39(11): 3953–3957

    Article  CAS  Google Scholar 

  5. Taylor R, Krishna R. Modelling reactive distillation. Chemical Engineering Science, 2000, 55(22): 5183–5229

    Article  CAS  Google Scholar 

  6. Kiss A A, Jobson M, Gao X. Reactive distillation: stepping up to the next level of process intensification. Industrial & Engineering Chemistry Research, 2019, 58(15): 5909–5918

    Article  CAS  Google Scholar 

  7. Backhaus A A. Continuous process for the manufacture of esters. US Patent, 1400849, 1921-12-20

  8. Backhaus A A. Apparatus for producing high-grade esters. US Patent, 1403224, 1922-01-10

  9. Wang F, Zhao N, Li J, Xiao F, Wei W, Sun Y. Non-equilibrium model for catalytic distillation process. Frontiers of Chemical Engineering in China, 2008, 2(4): 379–384

    Article  CAS  Google Scholar 

  10. Towler G P, Frey S J. Reactive Distillation. Reactive Separation Processes. Boca Raton: CRC Press, 2002, 18–50

    Google Scholar 

  11. Almeida-Rivera C P, Swinkels P L J, Grievink J. Designing reactive distillation processes: present and future. Computers & Chemical Engineering, 2004, 28(10): 1997–2020

    Article  CAS  Google Scholar 

  12. Segovia-Hernández J G, Hernández S, Bonilla-Petriciolet A. Reactive distillation: a review of optimal design using deterministic and stochastic techniques. Chemical Engineering and Processing, 2015, 97: 134–143

    Article  CAS  Google Scholar 

  13. Gao X, Zhao Y, Li H, Li X. Review of basic and application investigation of reactive distillation technology for process intensification. CIESC Journal, 2018, 69(1): 218–238

    CAS  Google Scholar 

  14. Barbosa D, Doherty M F. The influence of equilibrium chemical reactions on vapor-liquid phase diagrams. Chemical Engineering Science, 1988, 43(3): 529–540

    Article  CAS  Google Scholar 

  15. Barbosa D, Doherty M F. The simple distillation of homogeneous reactive mixtures. Chemical Engineering Science, 1988, 43(3): 541–550

    Article  CAS  Google Scholar 

  16. Barbosa D, Doherty M F, Rowlinson J S. A new set of composition variables for the representation of reactive-phase diagrams. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1845, 1987(413): 459–464

    Google Scholar 

  17. Ung S, Doherty M F. Vapor-liquid phase equilibrium in systems with multiple chemical reactions. Chemical Engineering Science, 1995, 50(1): 23–48

    Article  CAS  Google Scholar 

  18. Ung S, Doherty M F. Calculation of residue curve maps for mixtures with multiple equilibrium chemical reactions. Industrial & Engineering Chemistry Research, 1995, 34(10): 3195–3202

    Article  CAS  Google Scholar 

  19. Ung S, Doherty M F. Synthesis of reactive distillation systems with multiple equilibrium chemical reactions. Industrial & Engineering Chemistry Research, 1995, 34(8): 2555–2565

    Article  CAS  Google Scholar 

  20. Thiel C, Sundmacher K, Hoffmann U. Residue curve maps for heterogeneously catalysed reactive distillation of fuel ethers MTBE and TAME. Chemical Engineering Science, 1997, 52(6): 993–1005

    Article  CAS  Google Scholar 

  21. Thiel C, Sundmacher K, Hoffmann U. Synthesis of ETBE: residue curve maps for the heterogeneously catalysed reactive distillation process. Chemical Engineering Journal, 1997, 66(3): 181–191

    Article  CAS  Google Scholar 

  22. Song W, Venimadhavan G, Manning J M, Malone M F, Doherty M F. Measurement of residue curve maps and heterogeneous kinetics in methyl acetate synthesis. Industrial & Engineering Chemistry Research, 1998, 37(5): 1917–1928

    Article  CAS  Google Scholar 

  23. Güttinger T E, Morari M. Predicting multiple steady states in distillation: singularity analysis and reactive systems. Computers & Chemical Engineering, 1997, 21(1–2): S995–S1000

    Article  Google Scholar 

  24. Güttinger T E, Morari M. Predicting multiple steady states in equilibrium reactive distillation. 2. Analysis of hybrid systems. Industrial & Engineering Chemistry Research, 1999, 38(4): 1649–1665

    Article  Google Scholar 

  25. Güttinger T E, Morari M. Predicting multiple steady states in equilibrium reactive distillation. 1. Analysis of nonhybrid systems. Industrial & Engineering Chemistry Research, 1999, 38(4): 1633–1648

    Article  Google Scholar 

  26. Venimadhavan G, Buzad G, Doherty M F, Malone M F. Effect of kinetics on residue curve maps for reactive distillation. AIChE Journal, 1994, 40(11): 1814–1824

    Article  CAS  Google Scholar 

  27. Okasinski M J, Doherty M F. Thermodynamic behavior of reactive azeotropes. AIChE Journal, 1997, 43(9): 2227–2238

    Article  CAS  Google Scholar 

  28. Espinosa J, Aguirre P, Frey T, Stichlmair J. Analysis of finishing reactive distillation columns. Industrial & Engineering Chemistry Research, 1999, 38(1): 187–196

    Article  CAS  Google Scholar 

  29. Venimadhavan G, Malone M F, Doherty M F. Bifurcation study of kinetic effects in reactive distillation. AIChE Journal, 1999, 45(3): 546–556

    Article  CAS  Google Scholar 

  30. Qi Z, Sundmacher K. Bifurcation analysis of reactive distillation systems with liquid-phase splitting. Computers & Chemical Engineering, 2002, 26(10): 1459–1471

    Article  CAS  Google Scholar 

  31. Huang Y S, Sundmacher K, Qi Z, Schlünder E U. Residue curve maps of reactive membrane separation. Chemical Engineering Science, 2004, 59(14): 2863–2879

    Article  CAS  Google Scholar 

  32. Qi Z, Flockerzi D, Sundmacher K. Singular points of reactive distillation systems. AIChE Journal, 2004, 50(11): 2866–2876

    Article  CAS  Google Scholar 

  33. Thong D Y C, Castillo F J L, Towler G P. Distillation design and retrofit using stage-composition lines. Chemical Engineering Science, 2000, 55(3): 625–640

    Article  CAS  Google Scholar 

  34. Groemping M, Dragomir R M, Jobson M. Conceptual design of reactive distillation columns using stage composition lines. Chemical Engineering and Processing, 2004, 43(3): 369–382

    Article  CAS  Google Scholar 

  35. Dragomir R M, Jobson M. Conceptual design of single-feed kinetically controlled reactive distillation columns. Chemical Engineering Science, 2005, 60(18): 5049–5068

    Article  CAS  Google Scholar 

  36. Dragomir R M, Jobson M. Conceptual design of single-feed hybrid reactive distillation columns. Chemical Engineering Science, 2005, 60(16): 4377–4395

    Article  CAS  Google Scholar 

  37. Barbosa D, Doherty M F. Design and minimum-reflux calculations for single-feed multicomponent reactive distillation columns. Chemical Engineering Science, 1988, 43(7): 1523–1537

    Article  CAS  Google Scholar 

  38. Barbosa D, Doherty M F. Design and minimum-reflux calculations for double-feed multicomponent reactive distillation columns. Chemical Engineering Science, 1988, 43(9): 2377–2389

    Article  CAS  Google Scholar 

  39. Buzad G, Doherty M F. Design of three-component kinetically controlled reactive distillation columns using fixed-points methods. Chemical Engineering Science, 1994, 49(12): 1947–1963

    Article  CAS  Google Scholar 

  40. Buzad G, Doherty M F. New tools for the design of kinetically controlled reactive distillation columns for ternary mixtures. Computers & Chemical Engineering, 1995, 19(4): 395–408

    Article  CAS  Google Scholar 

  41. Mahajani S M, Kolah A K. Some design aspects of reactive distillation columns (RDC). Industrial & Engineering Chemistry Research, 1996, 35(12): 4587–4596

    Article  CAS  Google Scholar 

  42. Mahajani S M. Design of reactive distillation columns for multicomponent kinetically controlled reactive systems. Chemical Engineering Science, 1999, 54(10): 1425–1430

    Article  CAS  Google Scholar 

  43. Okasinski M J, Doherty M F. Design method for kinetically controlled, staged reactive distillation columns. Industrial & Engineering Chemistry Research, 1998, 37(7): 2821–2834

    Article  CAS  Google Scholar 

  44. Avami A, Marquardt W, Saboohi Y, Kraemer K. Shortcut design of reactive distillation columns. Chemical Engineering Science, 2012, 71: 166–177

    Article  CAS  Google Scholar 

  45. Avami A. Conceptual design of double-feed reactive distillation columns. Chemical Engineering & Technology, 2013, 36(1): 186–191

    Article  CAS  Google Scholar 

  46. Li H, Meng Y, Li X, Gao X. A fixed point methodology for the design of reactive distillation columns. Chemical Engineering Research & Design, 2016, 111: 479–491

    Article  CAS  Google Scholar 

  47. Giessler S, Danilov R Y, Pisarenko R Y, Serafimov L A, Hasebe S, Hashimoto I. Feasibility study of reactive distillation using the analysis of the statics. Industrial & Engineering Chemistry Research, 1998, 37(11): 4375–4382

    Article  CAS  Google Scholar 

  48. Giessler S, Danilov R Y, Pisarenko R Y, Serafimov L A, Hasebe S, Hashimoto I. Feasible separation modes for various reactive distillation systems. Industrial & Engineering Chemistry Research, 1999, 38(10): 4060–4067

    Article  CAS  Google Scholar 

  49. Giessler S, Danilov R Y, Pisarenko R Y, Serafimov L A, Hasebe S, Hashimoto I. Design and synthesis of feasible reactive distillation processes. Computers & Chemical Engineering, 1999, 23: S811–S814

    Article  Google Scholar 

  50. Giessler S, Danilov R Y, Pisarenko R Y, Serafimov L A, Hasebe S, Hashimoto I. Systematic structure generation for reactive distillation processes. Computers & Chemical Engineering, 2001, 25(1): 49–60

    Article  CAS  Google Scholar 

  51. Chadda N, Malone M F, Doherty M F. Effect of chemical kinetics on feasible splits for reactive distillation. AIChE Journal, 2001, 47(3): 590–601

    Article  CAS  Google Scholar 

  52. Chadda N, Malone M F, Doherty M F. Feasibility and synthesis of hybrid reactive distillation systems. AIChE Journal, 2002, 48(12): 2754–2768

    Article  CAS  Google Scholar 

  53. Nisoli A, Doherty M F, Malone M F. Effects of vapor-liquid mass transfer on feasibility of reactive distillation. AIChE Journal, 2004, 50(8): 1795–1813

    Article  CAS  Google Scholar 

  54. Gadewar S B, Malone M F, Doherty M F. Feasible products for double-feed reactive distillation columns. Industrial & Engineering Chemistry Research, 2007, 46(10): 3255–3264

    Article  CAS  Google Scholar 

  55. Nisoli A, Malone M F, Doherty M F. Attainable regions for reaction with separation. AIChE Journal, 1997, 43(2): 374–387

    Article  CAS  Google Scholar 

  56. Gadewar S B, Malone M F, Doherty M F. Feasible region for a countercurrent cascade of vapor-liquid CSTRS. AIChE Journal, 2002, 48(4): 800–814

    Article  CAS  Google Scholar 

  57. Gadewar S B, Tao L, Malone M F, Doherty M F. Process alternatives for coupling reaction and distillation. Chemical Engineering Research & Design, 2004, 82(2): 140–147

    Article  CAS  Google Scholar 

  58. Agarwal V, Thotla S, Kaur R, Mahajani S M. Attainable regions of reactive distillation. Part II: Single reactant azeotropic systems. Chemical Engineering Science, 2008, 63(11): 2928–2945

    Article  CAS  Google Scholar 

  59. Agarwal V, Thotla S, Mahajani S M. Attainable regions of reactive distillation—Part I. Single reactant non-azeotropic systems. Chemical Engineering Science, 2008, 63(11): 2946–2965

    Article  CAS  Google Scholar 

  60. Amte V, Nistala S, Malik R, Mahajani S. Attainable regions of reactive distillation—Part III. Complex reaction scheme: van de Vusse reaction. Chemical Engineering Science, 2011, 66(11): 2285–2297

    Article  CAS  Google Scholar 

  61. Amte V, Gaikwad R, Malik R, Mahajani S. Attainable region of reactive distillation—Part IV: Inclusion of multistage units for complex reaction schemes. Chemical Engineering Science, 2012, 68(1): 166–183

    Article  CAS  Google Scholar 

  62. Hauan S, Lien K M. Geometric visualisation of reactive fixed points. Computers & Chemical Engineering, 1996, 20: S133–S138

    Article  CAS  Google Scholar 

  63. Hauan S, Lien K M. A phenomena based design approach to reactive distillation. Chemical Engineering Research & Design, 1998, 76(3): 396–407

    Article  CAS  Google Scholar 

  64. Hauan S, Westerberg A W, Lien K M. Phenomena-based analysis of fixed points in reactive separation systems. Chemical Engineering Science, 2000, 55(6): 1053–1075

    Article  CAS  Google Scholar 

  65. Hauan S, Ciric A R, Westerberg A W, Lien K M. Difference points in extractive and reactive cascades. I. Basic properties and analysis. Chemical Engineering Science, 2000, 55(16): 3145–3159

    Article  CAS  Google Scholar 

  66. Lee J W, Hauan S, Lien K M, Westerberg A W. Difference points in extractive and reactive cascades. II. Generating design alternatives by the lever rule for reactive systems. Chemical Engineering Science, 2000, 55(16): 3161–3174

    Article  CAS  Google Scholar 

  67. Hoffmaster W R, Hauan S. Difference points in reactive and extractive cascades. III. Properties of column section profiles with arbitrary reaction distribution. Chemical Engineering Science, 2004, 59(17): 3671–3693

    Article  CAS  Google Scholar 

  68. Hoffmaster W R, Hauan S. Difference points in reactive and extractive cascades: IV. Feasible regions for multisection columns with kinetic reactions and side streams. Chemical Engineering Science, 2005, 60(24): 7075–7090

    Article  CAS  Google Scholar 

  69. Lee J W, Westerberg A W. Visualization of stage calculations in ternary reacting mixtures. Computers & Chemical Engineering, 2000, 24(2): 639–644

    Article  CAS  Google Scholar 

  70. Lee J W, Westerberg A W. Graphical design applied to MTBE and methyl acetate reactive distillation processes. AIChE Journal, 2001, 47(6): 1333–1345

    Article  CAS  Google Scholar 

  71. Chin J, Kattukaran H J, Lee J W. Generalized feasibility evaluation of equilibrated quaternary reactive distillation systems. Industrial & Engineering Chemistry Research, 2004, 43(22): 7092–7102

    Article  CAS  Google Scholar 

  72. Kang D, Lee K, Lee J W. Feasibility evaluation of quinary heterogeneous reactive extractive distillation. Industrial & Engineering Chemistry Research, 2014, 53(31): 12387–12398

    Article  CAS  Google Scholar 

  73. Guo Z, Chin J, Lee J W. Feasibility of continuous reactive distillation with azeotropic mixtures. Industrial & Engineering Chemistry Research, 2004, 43(14): 3758–3769

    Article  CAS  Google Scholar 

  74. Kang D, Lee J W. Graphical design of integrated reaction and distillation in dividing wall columns. Industrial & Engineering Chemistry Research, 2015, 54(12): 3175–3185

    Article  CAS  Google Scholar 

  75. Bessling B, Schembecker G, Simmrock K H. Design of processes with reactive distillation line diagrams. Industrial & Engineering Chemistry Research, 1997, 36(8): 3032–3042

    Article  CAS  Google Scholar 

  76. Bessling B, Löning J M, Ohligschläger A, Schembecker G, Sundmacher K. Investigations on the synthesis of methyl acetate in a heterogeneous reactive distillation process. Chemical Engineering & Technology, 1998, 21(5): 393–400

    Article  CAS  Google Scholar 

  77. Frey T, Stichlmair J. Thermodynamic fundamentals of reactive distillation. Chemical Engineering & Technology, 1999, 22(1): 11–18

    Article  CAS  Google Scholar 

  78. Stichlmair J, Frey T. Reactive distillation processes. Chemical Engineering & Technology, 1999, 22(2): 95–103

    Article  CAS  Google Scholar 

  79. Carrera-Rodríguez M, Segovia-Hernández J G, Bonilla-Petriciolet A. Short-cut method for the design of reactive distillation columns. Industrial & Engineering Chemistry Research, 2011, 50(18): 10730–10743

    Article  CAS  Google Scholar 

  80. Carrera-Rodríguez M, Segovia-Hernández J G, Hernández-Escoto H, Hernández S, Bonilla-Petriciolet A. A note on an extended short-cut method for the design of multicomponent reactive distillation columns. Chemical Engineering Research & Design, 2014, 92(1): 1–12

    Article  CAS  Google Scholar 

  81. Espinosa J, Scenna N, Perez G. Graphical procedure for reactive distillation systems. Chemical Engineering Communications, 1993, 119(1): 109–124

    Article  CAS  Google Scholar 

  82. Lee J W, Hauan S, Lien K M, Westerberg A W. A graphical method for designing reactive distillation columns. I. The Ponchon-Savarit method. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2000, 456(2000): 1953–1964

    Article  CAS  Google Scholar 

  83. Lee J W, Hauan S, Lien K M, Westerberg A W. A graphical method for designing reactive distillation columns. II. The McCabe-Thiele method. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2000, 456(2000): 1965–1978

    Article  CAS  Google Scholar 

  84. Lee J W, Hauan S, Westerberg A W. Graphical methods for reaction distribution in a reactive distillation column. AIChE Journal, 2000, 46(6): 1218–1233

    Article  CAS  Google Scholar 

  85. Lee J W, Hauan S, Westerberg A W. Extreme conditions in binary reactive distillation. AIChE Journal, 2000, 46(11): 2225–2236

    Article  CAS  Google Scholar 

  86. Daza O S, Pérez-Cisneros E S, Bek-Pedersen E, Gani R. Graphical and stage-to-stage methods for reactive distillation column design. AIChE Journal, 2003, 49(11): 2822–2841

    Article  CAS  Google Scholar 

  87. Gani R, Bek-Pedersen E. Simple new algorithm for distillation column design. AIChE Journal, 2000, 46(6): 1271–1274

    Article  CAS  Google Scholar 

  88. Lewis W, Matheson G. Study in distillation design of rectifying columns for natural and refinery gasoline. Industrial & Engineering Chemistry, 1932, 24(5): 494–498

    Article  CAS  Google Scholar 

  89. Jantharasuk A, Gani R, Górak A, Assabumrungrat S. Methodology for design and analysis of reactive distillation involving multielement systems. Chemical Engineering Research & Design, 2011, 89(8): 1295–1307

    Article  CAS  Google Scholar 

  90. Mansouri S S, Sales-Cruz M, Huusom J K, Gani R. Systematic integrated process design and control of reactive distillation processes involving multi-elements. Chemical Engineering Research & Design, 2016, 115: 348–364

    Article  CAS  Google Scholar 

  91. Lopez-Arenas T, Mansouri S S, Sales-Cruz M, Gani R, Pérez-Cisneros E S. A Gibbs energy-driving force method for the optimal design of non-reactive and reactive distillation columns. Computers & Chemical Engineering, 2019, 128: 53–68

    Article  CAS  Google Scholar 

  92. Lopez-Arenas T, Sales-Cruz M, Gani R, Pérez-Cisneros E S. Thermodynamic analysis of the driving force approach: reactive systems. Computers & Chemical Engineering, 2019, 129: 106509

    Article  CAS  Google Scholar 

  93. Muthia R, Reijneveld A G T, van der Ham A G J, ten Kate A J B, Bargeman G, Kersten S R A, Kiss A A. Novel method for mapping the applicability of reactive distillation. Chemical Engineering and Processing, 2018, 128: 263–275

    Article  CAS  Google Scholar 

  94. Muthia R, van der Ham A G J, Jobson M, Kiss A A. Effect of boiling point rankings and feed locations on the applicability of reactive distillation to quaternary systems. Chemical Engineering Research & Design, 2019, 145: 184–193

    Article  CAS  Google Scholar 

  95. Muthia R, Jobson M, Kiss A A. A systematic framework for assessing the applicability of reactive distillation for quaternary mixtures using a mapping method. Computers & Chemical Engineering, 2020, 136: 106804

    Article  CAS  Google Scholar 

  96. Kreul L U, Górak A, Dittrich C, Barton P I. Dynamic catalytic distillation: advanced simulation and experimental validation. Computers & Chemical Engineering, 1998, 22: S371–S378

    Article  CAS  Google Scholar 

  97. Keller T, Górak A. Modelling of homogeneously catalysed reactive distillation processes in packed columns: experimental model validation. Computers & Chemical Engineering, 2013, 48: 74–88

    Article  CAS  Google Scholar 

  98. Cheng J K, Lee H Y, Huang H P, Yu C C. Optimal steady-state design of reactive distillation processes using simulated annealing. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(2): 188–196

    Article  CAS  Google Scholar 

  99. Xiao W, Zhang Y, Jiang X, Li X, Wu X, He G. Multi-objective optimisation of MTBE reactive distillation process parameters based on NSGA-II. Chemical Engineering Transactions, 2018, 70: 1621–1626

    Google Scholar 

  100. Behroozsarand A, Shafiei S. Multiobjective optimization of reactive distillation with thermal coupling using non-dominated sorting genetic algorithm-II. Journal of Natural Gas Science and Engineering, 2011, 3(2): 365–374

    Article  CAS  Google Scholar 

  101. Ciric A R, Gu D. Synthesis of nonequilibrium reactive distillation processes by MINLP optimization. AIChE Journal, 1994, 40(9): 1479–1487

    Article  CAS  Google Scholar 

  102. Sand G, Barkmann S, Engell S, Schembecker G. Structuring of reactive distillation columns for non-ideal mixtures using MINLP-techniques. Computer-Aided Chemical Engineering, 2004, 18: 493–498

    Article  CAS  Google Scholar 

  103. Gangadwala J, Kienle A, Haus U U, Michaels D, Weismantel R. Global bounds on optimal solutions for the production of 2,3-dimethylbutene-1. Industrial & Engineering Chemistry Research, 2006, 45(7): 2261–2271

    Article  CAS  Google Scholar 

  104. Gangadwala J, Kienle A. MINLP optimization of butyl acetate synthesis. Chemical Engineering and Processing, 2007, 46(2): 107–118

    Article  CAS  Google Scholar 

  105. Filipe R M, Turnberg S, Hauan S, Matos H A, Novais A Q. Multiobjective design of reactive distillation with feasible regions. Industrial & Engineering Chemistry Research, 2008, 47(19): 7284–7293

    Article  CAS  Google Scholar 

  106. Gangadwala J, Haus U U, Jach M, Kienle A, Michaels D, Weismantel R. Global analysis of combined reaction distillation processes. Computers & Chemical Engineering, 2008, 32(1): 343–355

    Article  CAS  Google Scholar 

  107. Jackson J R, Grossmann I E. A disjunctive programming approach for the optimal design of reactive distillation columns. Computers & Chemical Engineering, 2001, 25(11): 1661–1673

    Article  CAS  Google Scholar 

  108. Frey T, Stichlmair J. MINLP optimization of reactive distillation columns. Computer-Aided Chemical Engineering, 2000, 8: 115–120

    Article  CAS  Google Scholar 

  109. Stichlmair J, Frey T. Mixed-integer nonlinear programming optimization of reactive distillation processes. Industrial & Engineering Chemistry Research, 2001, 40(25): 5978–5982

    Article  CAS  Google Scholar 

  110. Poth N, Brusis D, Stichlmair J. Rigorous optimization of reactive distillation in GAMS with the use of external functions. Computer-Aided Chemical Engineering, 2003, 14: 869–874

    Article  CAS  Google Scholar 

  111. Bildea C S, Győrgy R, Sánchez-Ramírez E, Quiroz-Ramírez J J, Segovia-Hernandez J G, Kiss A A. Optimal design and plantwide control of novel processes for di-n-pentyl ether production. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2015, 90(6): 992–1001

    Article  CAS  Google Scholar 

  112. Karacan S, Karacan F. Steady-state optimization for biodiesel production in a reactive distillation column. Clean Technologies and Environmental Policy, 2015, 17(5): 1207–1215

    Article  CAS  Google Scholar 

  113. Cardoso M F, Salcedo R L, de Azevedo S F, Barbosa D. Optimization of reactive distillation processes with simulated annealing. Chemical Engineering Science, 2000, 55(21): 5059–5078

    Article  CAS  Google Scholar 

  114. Gómez J M, Reneaume J M, Roques M, Meyer M, Meyer X. A mixed integer nonlinear programming formulation for optimal design of a catalytic distillation column based on a generic nonequilibrium model. Industrial & Engineering Chemistry Research, 2006, 45(4): 1373–1388

    Article  CAS  Google Scholar 

  115. Babu B V, Khan M. Optimization of reactive distillation processes using differential evolution strategies. Asia-Pacific Journal of Chemical Engineering, 2007, 2(4): 322–335

    Article  CAS  Google Scholar 

  116. Babu K S, Kumar M V P, Kaistha N. Controllable optimized designs of an ideal reactive distillation system using genetic algorithm. Chemical Engineering Science, 2009, 64(23): 4929–4942

    Article  CAS  Google Scholar 

  117. Bîldea C S, Győrgy R, Brunchi C C, Kiss A A. Optimal design of intensified processes for DME synthesis. Computers & Chemical Engineering, 2017, 105: 142–151

    Article  CAS  Google Scholar 

  118. Domingues L, Pinheiro C I C, Oliveira N M C. Economic comparison of a reactive distillation-based process with the conventional process for the production of ethyl tert-butyl ether (ETBE). Computers & Chemical Engineering, 2017, 100: 9–26

    Article  CAS  Google Scholar 

  119. Urselmann M, Barkmann S, Sand G, Engell S. Optimization-based design of reactive distillation columns using a memetic algorithm. Computers & Chemical Engineering, 2011, 35(5): 787–805

    Article  CAS  Google Scholar 

  120. Urselmann M, Engell S. Design of memetic algorithms for the efficient optimization of chemical process synthesis problems with structural restrictions. Computers & Chemical Engineering, 2015, 72: 87–108

    Article  CAS  Google Scholar 

  121. Miranda-Galindo E Y, Segovia-Hernández J G, Hernández S, Gutiérrez-Antonio C, Briones-Ramírez A. Reactive thermally coupled distillation sequences: Pareto front. Industrial & Engineering Chemistry Research, 2011, 50(2): 926–938

    Article  CAS  Google Scholar 

  122. Vázquez-Ojeda M, Segovia-Hernández J G, Hernández S, Hernández-Aguirre A, Maya-Yescas R. Optimization and controllability analysis of thermally coupled reactive distillation arrangements with minimum use of reboilers. Industrial & Engineering Chemistry Research, 2012, 51(17): 5856–5865

    Article  CAS  Google Scholar 

  123. Kiss A A, Segovia-Hernández J G, Bildea C S, Miranda-Galindo E Y, Hernández S. Reactive DWC leading the way to FAME and fortune. Fuel, 2012, 95: 352–359

    Article  CAS  Google Scholar 

  124. Ignat R M, Kiss A A. Optimal design, dynamics and control of a reactive DWC for biodiesel production. Chemical Engineering Research & Design, 2013, 91(9): 1760–1767

    Article  CAS  Google Scholar 

  125. Qian X, Jia S, Luo Y, Yuan X, Yu K T. Selective hydrogenation and separation of C3 stream by thermally coupled reactive distillation. Chemical Engineering Research & Design, 2015, 99: 176–184

    Article  CAS  Google Scholar 

  126. Santaella M A, Orjuela A, Narváez P C. Comparison of different reactive distillation schemes for ethyl acetate production using sustainability indicators. Chemical Engineering and Processing, 2015, 96: 1–13

    Article  CAS  Google Scholar 

  127. Santaella M A, Jiménez L E, Orjuela A, Segovia-Hernández J G. Design of thermally coupled reactive distillation schemes for triethyl citrate production using economic and controllability criteria. Chemical Engineering Journal, 2017, 328: 368–381

    Article  CAS  Google Scholar 

  128. Niesbach A, Kuhlmann H, Keller T, Lutze P, Górak A. Optimisation of industrial-scale n-butyl acrylate production using reactive distillation. Chemical Engineering Science, 2013, 100: 360–372

    Article  CAS  Google Scholar 

  129. Ma Y, Luo Y, Yuan X. Equation-oriented optimization of reactive distillation systems using pseudo-transient models. Chemical Engineering Science, 2019, 195: 381–398

    Article  CAS  Google Scholar 

  130. Papalexandri K P, Pistikopoulos E N. Generalized modular representation framework for process synthesis. AIChE Journal, 1996, 42(4): 1010–1032

    Article  CAS  Google Scholar 

  131. Ismail S R, Pistikopoulos E N, Papalexandri K P. Synthesis of reactive and combined reactor/separation systems utilizing a mass/heat exchange transfer module. Chemical Engineering Science, 1999, 54(13): 2721–2729

    Article  CAS  Google Scholar 

  132. Ismail S R, Proios P, Pistikopoulos E N. Modular synthesis framework for combined separation/reaction systems. AIChE Journal, 2001, 47(3): 629–649

    Article  CAS  Google Scholar 

  133. Algusane T Y, Proios P, Georgiadis M C, Pistikopoulos E N. A framework for the synthesis of reactive absorption columns. Chemical Engineering and Processing, 2006, 45(4): 276–290

    Article  CAS  Google Scholar 

  134. Tian Y, Pistikopoulos E N. Synthesis of operable process intensification systems—steady-state design with safety and operability considerations. Industrial & Engineering Chemistry Research, 2019, 58(15): 6049–6068

    Article  CAS  Google Scholar 

  135. Tian Y, Pappas I, Burnak B, Katz J, Pistikopoulos E N. A systematic framework for the synthesis of operable process intensification systems—reactive separation systems. Computers & Chemical Engineering, 2020, 134: 106675

    Article  CAS  Google Scholar 

  136. Lutze P, Babi D K, Woodley J M, Gani R. Phenomena based methodology for process synthesis incorporating process intensification. Industrial & Engineering Chemistry Research, 2013, 52(22): 7127–7144

    Article  CAS  Google Scholar 

  137. Babi D K, Lutze P, Woodley J M, Gani R. A process synthesisintensification framework for the development of sustainable membrane-based operations. Chemical Engineering and Processing, 2014, 86: 173–195

    Article  CAS  Google Scholar 

  138. Babi D K, Holtbruegge J, Lutze P, Gorak A, Woodley J M, Gani R. Sustainable process synthesis-intensification. Computers & Chemical Engineering, 2015, 81: 218–244

    Article  CAS  Google Scholar 

  139. Anantasarn N, Suriyapraphadilok U, Babi D K. A computer-aided approach for achieving sustainable process design by process intensification. Computers & Chemical Engineering, 2017, 105: 56–73

    Article  CAS  Google Scholar 

  140. Tula A K, Babi D K, Bottlaender J, Eden M R, Gani R. A computer-aided software-tool for sustainable process synthesis-intensification. Computers & Chemical Engineering, 2017, 105: 74–95

    Article  CAS  Google Scholar 

  141. Demirel S E, Li J, Hasan M M F. Systematic process intensification using building blocks. Computers & Chemical Engineering, 2017, 105: 2–38

    Article  CAS  Google Scholar 

  142. Demirel S E, Li J, Hasan M M F. A general framework for process synthesis, integration, and intensification. Industrial & Engineering Chemistry Research, 2019, 58(15): 5950–5967

    Article  CAS  Google Scholar 

  143. Wilson S, Manousiouthakis V. IDEAS approach to process network synthesis: application to multicomponent MEN. AIChE Journal, 2000, 46(12): 2408–2416

    Article  CAS  Google Scholar 

  144. Burri J F, Manousiouthakis V I. Global optimization of reactive distillation networks using IDEAS. Computers & Chemical Engineering, 2004, 28(12): 2509–2521

    Article  CAS  Google Scholar 

  145. da Cruz F E, Manousiouthakis V I. Process intensification of reactive separator networks through the IDEAS conceptual framework. Computers & Chemical Engineering, 2017, 105: 39–55

    Article  CAS  Google Scholar 

  146. da Cruz F E, Manousiouthakis V I. Process intensification of multipressure reactive distillation networks using infinite dimensional state-space (IDEAS). Industrial & Engineering Chemistry Research, 2019, 58(15): 5968–5983

    Article  CAS  Google Scholar 

  147. Seferlis P, Grievink J. Optimal design and sensitivity analysis of reactive distillation units using collocation models. Industrial & Engineering Chemistry Research, 2001, 40(7): 1673–1685

    Article  CAS  Google Scholar 

  148. Dalaouti N, Seferlis P. A unified modeling framework for the optimal design and dynamic simulation of staged reactive separation processes. Computers & Chemical Engineering, 2006, 30(8): 1264–1277

    Article  CAS  Google Scholar 

  149. Damartzis T, Seferlis P. Optimal design of staged three-phase reactive distillation columns using nonequilibrium and orthogonal collocation models. Industrial & Engineering Chemistry Research, 2010, 49(7): 3275–3285

    Article  CAS  Google Scholar 

  150. Cervantes A, Biegler L T. Large-scale DAE optimization using a simultaneous NLP formulation. AIChE Journal, 1998, 44(5): 1038–1050

    Article  CAS  Google Scholar 

  151. Kawathekar R, Riggs J B. Nonlinear model predictive control of a reactive distillation column. Control Engineering Practice, 2007, 15(2): 231–239

    Article  Google Scholar 

  152. Lopez-Saucedo E S, Grossmann I E, Segovia-Hernandez J G, Hernández S. Rigorous modeling, simulation and optimization of a conventional and nonconventional batch reactive distillation column: a comparative study of dynamic optimization approaches. Chemical Engineering Research & Design, 2016, 111: 83–99

    Article  CAS  Google Scholar 

  153. Noshadi I, Amin N A S, Parnas R S. Continuous production of biodiesel from waste cooking oil in a reactive distillation column catalyzed by solid heteropolyacid: optimization using response surface methodology (RSM). Fuel, 2012, 94: 156–164

    Article  CAS  Google Scholar 

  154. Mallaiah M, Reddy G V. Optimization studies on a continuous catalytic reactive distillation column for methyl acetate production with response surface methodology. Journal of the Taiwan Institute of Chemical Engineers, 2016, 69: 25–40

    Article  CAS  Google Scholar 

  155. Deng T, Ding J, Zhao G, Liu Y, Lu Y. Catalytic distillation for esterification of acetic acid with ethanol: promising SS-fiber@HZSM-5 catalytic packings and experimental optimization via response surface methodology. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2018, 93(3): 827–841

    Article  CAS  Google Scholar 

  156. Venkateswarlu C, Reddy A D. Nonlinear model predictive control of reactive distillation based on stochastic optimization. Industrial & Engineering Chemistry Research, 2008, 47(18): 6949–6960

    Article  CAS  Google Scholar 

  157. Behroozsarand A, Shafiei S. Control of TAME reactive distillation using non-dominated sorting genetic algorithm-II. Journal of Loss Prevention in the Process Industries, 2012, 25(1): 192–201

    Article  CAS  Google Scholar 

  158. Vijaya Raghavan S R, Radhakrishnan T K, Srinivasan K. Soft sensor based composition estimation and controller design for an ideal reactive distillation column. ISA Transactions, 2011, 50(1): 61–70

    Article  CAS  PubMed  Google Scholar 

  159. Sharma N, Singh K. Model predictive control and neural network predictive control of TAME reactive distillation column. Chemical Engineering and Processing, 2012, 59: 9–21

    Article  CAS  Google Scholar 

  160. Sharma N, Singh K. Neural network and support vector machine predictive control of tert-amyl methyl ether reactive distillation column. Systems Science & Control Engineering, 2014, 2(1): 512–526

    Article  Google Scholar 

  161. Georgiadis M C, Schenk M, Pistikopoulos E N, Gani R. The interactions of design control and operability in reactive distillation systems. Computers & Chemical Engineering, 2002, 26(4): 735–746

    Article  CAS  Google Scholar 

  162. Georgiadis M C, Schenk M, Gani R, Pistikopoulos E N. The interactions of design, control and operability in reactive distillation systems. Computer-Aided Chemical Engineering, 2001, 9: 997–1002

    Article  CAS  Google Scholar 

  163. Panjwani P, Schenk M, Georgiadis M C, Pistikopoulos E N. Optimal design and control of a reactive distillation system. Engineering Optimization, 2005, 37(7): 733–753

    Article  Google Scholar 

  164. Paramasivan G, Kienle A. A reactive distillation case study for decentralized control system design using mixed integer optimization. Computer-Aided Chemical Engineering, 2010, 28: 565–570

    Article  CAS  Google Scholar 

  165. Contreras-Zarazúa G, Vázquez-Castillo J A, Ramírez-Márquez C, Segovia-Hernández J G, Alcántara-Ávila J R. Multi-objective optimization involving cost and control properties in reactive distillation processes to produce diphenyl carbonate. Computers & Chemical Engineering, 2017, 105: 185–196

    Article  CAS  Google Scholar 

  166. Tian Y, Pappas I, Burnak B, Katz J, Pistikopoulos E N. Simultaneous design & control of a reactive distillation system—a parametric optimization & control approach. Chemical Engineering Science, 2021, 230: 116232

    Article  CAS  Google Scholar 

  167. Bernal D E, Carrillo-Diaz C, Gómez J M, Ricardez-Sandoval L A. Simultaneous design and control of catalytic distillation columns using comprehensive rigorous dynamic models. Industrial & Engineering Chemistry Research, 2018, 57(7): 2587–2608

    Article  CAS  Google Scholar 

  168. Subawalla H, Fair J R. Design guidelines for solid-catalyzed reactive distillation systems. Industrial & Engineering Chemistry Research, 1999, 38(10): 3696–3709

    Article  CAS  Google Scholar 

  169. Luyben W L, Yu C C. Reactive Distillation Design and Control. Hoboken: John Wiley & Sons, 2009

    Google Scholar 

  170. Schoenmakers H G, Bessling B. Reactive and catalytic distillation from an industrial perspective. Chemical Engineering and Processing, 2003, 42(3): 145–155

    Article  CAS  Google Scholar 

  171. Kiss A A. Novel catalytic reactive distillation processes for a sustainable chemical industry. Topics in Catalysis, 2019, 62(17): 1132–1148

    Article  CAS  Google Scholar 

  172. Shah M, Kiss A A, Zondervan E, de Haan A B. A systematic framework for the feasibility and technical evaluation of reactive distillation processes. Chemical Engineering and Processing, 2012, 60: 55–64

    Article  CAS  Google Scholar 

  173. Kaymak D B, Luyben W L. Effect of the chemical equilibrium constant on the design of reactive distillation columns. Industrial & Engineering Chemistry Research, 2004, 43(14): 3666–3671

    Article  CAS  Google Scholar 

  174. Kaymak D B, Luyben W L. Quantitative comparison of reactive distillation with conventional multiunit reactor/column/recycle systems for different chemical equilibrium constants. Industrial & Engineering Chemistry Research, 2004, 43(10): 2493–2507

    Article  CAS  Google Scholar 

  175. Frey T, Stichlmair J. Reactive azeotropes in kinetically controlled reactive distillation. Chemical Engineering Research & Design, 1999, 7(77): 613–618

    Article  Google Scholar 

  176. Huang K, Iwakabe K, Nakaiwa M, Tsutsumi A. Towards further internal heat integration in design of reactive distillation columns—Part I. The design principle. Chemical Engineering Science, 2005, 60(17): 4901–4914

    Article  CAS  Google Scholar 

  177. Huang K, Nakaiwa M, Wang S J, Tsutsumi A. Reactive distillation design with considerations of heats of reaction. AIChE Journal, 2006, 52(7): 2518–2534

    Article  CAS  Google Scholar 

  178. Sun J, Huang K, Wang S. Deepening internal mass integration in design of reactive distillation columns. 1: Principle and procedure. Industrial & Engineering Chemistry Research, 2009, 48(4): 2034–2048

    Article  CAS  Google Scholar 

  179. Wang S, Huang K, Lin Q, Wang S J. Understanding the impact of operating pressure on process intensification in reactive distillation columns. Industrial & Engineering Chemistry Research, 2010, 49(9): 4269–4284

    Article  CAS  Google Scholar 

  180. Baur R, Krishna R. Distillation column with reactive pump arounds: an alternative to reactive distillation. Chemical Engineering and Processing, 2004, 43(3): 435–445

    Article  CAS  Google Scholar 

  181. Kaymak D B, Luyben W L. Design of distillation columns with external side reactors. Industrial & Engineering Chemistry Research, 2004, 43(25): 8049–8056

    Article  CAS  Google Scholar 

  182. Tung S T, Yu C C. Effects of relative volatility ranking to the design of reactive distillation. AIChE Journal, 2007, 53(5): 1278–1297

    Article  CAS  Google Scholar 

  183. Chen C S, Yu C C. Effects of relative volatility ranking on design and control of reactive distillation systems with ternary decomposition reactions. Industrial & Engineering Chemistry Research, 2008, 47(14): 4830–4844

    Article  CAS  Google Scholar 

  184. Chen H, Huang K, Zhang L, Wang S. Reactive distillation columns with a top-bottom external recycle. Industrial & Engineering Chemistry Research, 2012, 51(44): 14473–14488

    Article  CAS  Google Scholar 

  185. Chen H, Huang K, Liu W, Zhang L, Wang S, Wang S J. Enhancing mass and energy integration by external recycle in reactive distillation columns. AIChE Journal, 2013, 59(6): 2015–2032

    Article  CAS  Google Scholar 

  186. Zhang L, Chen H, Yuan Y, Wang S, Huang K. Adopting feed splitting in design of reactive distillation columns with two reactive sections. Chemical Engineering and Processing, 2015, 89: 9–18

    Article  CAS  Google Scholar 

  187. Chen H, Zhang L, Huang K, Yuan Y, Zong X, Wang S, Liu L. Reactive distillation columns with two reactive sections: feed splitting plus external recycle. Chemical Engineering and Processing, 2016, 108: 189–196

    Article  CAS  Google Scholar 

  188. Luyben W L. Economic and dynamic impact of the use of excess reactant in reactive distillation systems. Industrial & Engineering Chemistry Research, 2000, 39(8): 2935–2946

    Article  CAS  Google Scholar 

  189. Cheng Y C, Yu C C. Effects of feed tray locations to the design of reactive distillation and its implication to control. Chemical Engineering Science, 2005, 60(17): 4661–4677

    Article  CAS  Google Scholar 

  190. Pavan Kumar M V, Kaistha N. Internal heat integration and controllability of double feed reactive distillation columns. 1. Effect of feed tray location. Industrial & Engineering Chemistry Research, 2008, 47(19): 7294–7303

    Article  CAS  Google Scholar 

  191. Lee H Y, Jan C H, Chien I L, Huang H P. Feed-splitting operating strategy of a reactive distillation column for energy-saving production of butyl propionate. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41(4): 403–413

    Article  CAS  Google Scholar 

  192. Sneesby M G, Tadé M O, Datta R, Smith T N. Detrimental influence of excessive fractionation on reactive distillation. AIChE Journal, 1998, 44(2): 388–393

    Article  CAS  Google Scholar 

  193. Bisowarno B H, Tian Y C, Tadé M O. Interaction of separation and reactive stages on ETBE reactive distillation columns. AIChE Journal, 2004, 50(3): 646–653

    Article  CAS  Google Scholar 

  194. Cheng J K, Ward J D, Yu C C. Determination of catalyst loading and shortcut design for binary reactive distillation. Industrial & Engineering Chemistry Research, 2010, 49(22): 11517–11529

    Article  CAS  Google Scholar 

  195. Melles S, Grievink J, Schrans S M. Optimisation of the conceptual design of reactive distillation columns. Chemical Engineering Science, 2000, 55(11): 2089–2097

    Article  CAS  Google Scholar 

  196. Daniel G, Jobson M. Conceptual design of equilibrium reactor—reactive distillation flowsheets. Industrial & Engineering Chemistry Research, 2007, 46(2): 559–570

    Article  CAS  Google Scholar 

  197. Srinivas S, Malik R K, Mahajani S M. Feasibility of reactive distillation for Fischer-Tropsch synthesis. Industrial & Engineering Chemistry Research, 2008, 47(3): 889–899

    Article  CAS  Google Scholar 

  198. Yang P, Li X, Li H, Cong H, Kiss A A, Gao X. Unraveling the influence of residence time distribution on the performance of reactive distillation—process optimization and experimental validation. Chemical Engineering Science, 2021, 237: 116559

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Gao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, C., Li, X., Li, H. et al. Design and optimization of reactive distillation: a review. Front. Chem. Sci. Eng. 16, 799–818 (2022). https://doi.org/10.1007/s11705-021-2128-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2128-9

Keywords

Navigation