Skip to main content
Log in

Platinum on nitrogen doped graphene and tungsten carbide supports for ammonia electro-oxidation reaction

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Ammonia electrooxidation reaction involving multistep electron-proton transfer is a significant reaction for fuel cells, hydrogen production and understanding nitrogen cycle. Platinum has been established as the best electrocatalyst for ammonia oxidation in aqueous alkaline media. In this study, Pt/nitrogen-doped graphene (NDG) and Pt/tungsten monocarbide (WC)/NDG are synthesized by a wet chemistry method and their ammonia oxidation activities are compared to commercial Pt/C. Pt/NDG exhibits a specific activity of 0.472 mA·cm−2, which is 44% higher than commercial Pt/C, thus establishing NDG as a more effective support than carbon black. Moreover, it is demonstrated that WC as a support also impacts the activity with further 30% increase in comparison to NDG. Surface modification with Ir resulted in the best electrocatalytic activity with Pt-Ir/WC/NDG having almost thrice the current density of commercial Pt/C. This work adds insights regarding the role of NDG and WC as efficient supports along with significant impact of Ir surface modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Siddharth K, Chan Y, Wang L, Shao M. Ammonia electro-oxidation reaction: recent development in mechanistic understanding and electrocatalyst design. Current Opinion in Electrochemistry, 2018, 9: 151–157

    Article  CAS  Google Scholar 

  2. Li Z F, Wang Y, Botte G. Revisiting the electrochemical oxidation of ammonia on carbon-supported metal nanoparticle catalysts. Electrochimica Acta, 2017, 228: 351–360

    Article  CAS  Google Scholar 

  3. Boggs B K, Botte G. On-board hydrogen storage and production: an application of ammonia electrolysis. Journal of Power Sources, 2009, 192(2): 573–581

    Article  CAS  Google Scholar 

  4. Zhong C, Hu W B, Cheng Y F. Recent advances in electrocatalysts for electro-oxidation of ammonia. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(10): 3216–3238

    Article  CAS  Google Scholar 

  5. Chan Y T, Siddharth K, Shao M. Investigation of cubic Pt alloys for ammonia oxidation reaction. Nano Research, 2020, 13(7): 1920–1927

    Article  CAS  Google Scholar 

  6. Siddharth K, Hong Y, Qin X, Lee H J, Chan Y T, Zhu S, Chen G, Choi S I, Shao M. Surface engineering in improving activity of Pt nanocubes for ammonia electrooxidation reaction. Applied Catalysis B: Environmental, 2020, 269: 118821

    Article  CAS  Google Scholar 

  7. Siddharth K, Alam P, Hossain M D, Xie N, Nambafu G S, Rehman F, Lam J W, Chen G, Cheng J, Luo Z, Chen G, Tang B Z, Shao M. Hydrazine detection during ammonia electro-oxidation using an aggregation-induced emission dye. Journal of the American Chemical Society, 2021, 143(5): 2433–2440

    Article  CAS  PubMed  Google Scholar 

  8. Vitse F, Cooper M, Botte G. On the use of ammonia electrolysis for hydrogen production. Journal of Power Sources, 2005, 142(1–2): 18–26

    Article  CAS  Google Scholar 

  9. Abbasi R, Setzler B P, Wang J, Zhao Y, Wang T, Gottesfeld S, Yan Y. Low-temperature direct ammonia fuel cells: recent developments and remaining challenges. Current Opinion in Electrochemistry, 2020, 21: 335–344

    Article  CAS  Google Scholar 

  10. Guo Y, Pan Z, An L. Carbon-free sustainable energy technology: direct ammonia fuel cells. Journal of Power Sources, 2020, 476: 228454

    Article  CAS  Google Scholar 

  11. Herron J A, Ferrin P, Mavrikakis M. Electrocatalytic oxidation of ammonia on transition-metal surfaces: a first-principles study. Journal of Physical Chemistry C, 2015, 119(26): 14692–14701

    Article  CAS  Google Scholar 

  12. Boggs B K, Botte G. Optimization of Pt-Ir on carbon fiber paper for the electro-oxidation of ammonia in alkaline media. Electrochimica Acta, 2010, 55(19): 5287–5293

    Article  CAS  Google Scholar 

  13. Bonnin E P, Biddinger E J, Botte G. Effect of catalyst on electrolysis of ammonia effluents. Journal of Power Sources, 2008, 182(1): 284–290

    Article  CAS  Google Scholar 

  14. Cooper M, Botte G. Hydrogen production from the electro-oxidation of ammonia catalyzed by platinum and rhodium on raney nickel substrate. Journal of the Electrochemical Society, 2006, 153(10): A1894

    Article  CAS  Google Scholar 

  15. Daramola D A, Botte G. Theoretical study of ammonia oxidation on platinum clusters—adsorption of ammonia and water fragments. Computational & Theoretical Chemistry, 2012, 989: 7–17

    Article  CAS  Google Scholar 

  16. Rees N V, Compton R G. Carbon-free energy: a review of ammonia- and hydrazine-based electrochemical fuel cells. Energy & Environmental Science, 2011, 4(4): 1255–1260

    Article  CAS  Google Scholar 

  17. Adli N M, Zhang H, Mukherjee S, Wu G. Ammonia oxidation electrocatalysis for hydrogen generation and fuel cells. Journal of the Electrochemical Society, 2018, 165(15): J3130–J3147

    Article  CAS  Google Scholar 

  18. Shanmugam S, Gedanken A. Carbon-coated anatase TiO2 nanocomposite as a high-performance electrocatalyst support. Small, 2007, 3(7): 1189–1193

    Article  CAS  PubMed  Google Scholar 

  19. Chai G S, Yoon S B, Kim J H, Yu J S. Spherical carbon capsules with hollow macroporous core and mesoporous shell structures as a highly efficient catalyst support in the direct methanol fuel cell. Chemical Communications, 2004, (23): 2766–2767

  20. Chandler G K, Genders J D, Pletcher D. Electrodes based on noble metals. Platinum Metals Review, 1997, 41(2): 54–63

    CAS  Google Scholar 

  21. Takasaki F, Matsuie S, Takabatake Y, Noda Z, Hayashi A, Shiratori Y, Ito K, Sasaki K. Carbon-free Pt electrocatalysts supported on SnO2 for polymer electrolyte fuel cells: electrocatalytic activity and durability. Journal of the Electrochemical Society, 2011, 158(10): B1270

    Article  CAS  Google Scholar 

  22. Jayabal S, Saranya G, Geng D, Lin L Y, Meng X. Insight into the correlation of Pt-support interactions with electrocatalytic activity and durability in fuel cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(19): 9420–9446

    Article  CAS  Google Scholar 

  23. Vidal-Iglesias F J, Solla-Gullón J, Montiel V, Feliu J M, Aldaz A. Screening of electrocatalysts for direct ammonia fuel cell: ammonia oxidation on PtMe (Me: Ir, Rh, Pd, Ru) and preferentially oriented Pt (1 0 0) nanoparticles. Journal of Power Sources, 2007, 171(2): 448–456

    Article  CAS  Google Scholar 

  24. Wang X, Kong Q, Han Y, Tang Y, Wang X, Huang X, Lu T. Construction of Ir-Co/C nanocomposites and their application in ammonia oxidation reaction. Journal of Electroanalytical Chemistry (Lausanne, Switzerland), 2019, 838: 101–106

    CAS  Google Scholar 

  25. Lomocso T L, Baranova E A. Electrochemical oxidation of ammonia on carbon-supported bi-metallic PtM (M = Ir, Pd, SnOx) nanoparticles. Electrochimica Acta, 2011, 56(24): 8551–8558

    Article  CAS  Google Scholar 

  26. Samad S, Loh K S, Wong W Y, Lee T K, Sunarso J, Chong S T, Daud W R. Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. International Journal of Hydrogen Energy, 2018, 43(16): 7823–7854

    Article  CAS  Google Scholar 

  27. Chen M, Liu J, Zhou W, Lin J, Shen Z. Nitrogen-doped graphene-supported transition-metals carbide electrocatalysts for oxygen reduction reaction. Scientific Reports, 2015, 5(1): 1–10

    Google Scholar 

  28. Fei H, Dong J, Arellano-Jiménez M J, Ye G, Dong Kim N, Samuel E L G, Peng Z, Zhu Z, Qin F, Bao J, Yacaman M J, Ajayan P M, Chen D, Tour J M. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nature Communications, 2015, 6(1): 1–8

    Article  Google Scholar 

  29. Zhang C, Sha J, Fei H, Liu M, Yazdi S, Zhang J, Zhong Q, Zou X, Zhao N, Yu H, Jiang Z, Ringe E, Yakobson B I, Dong J, Chen D, Tour J M. Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium. ACS Nano, 2017, 11(7): 6930–6941

    Article  CAS  PubMed  Google Scholar 

  30. Wu G, Li D, Dai C, Wang D, Li N. Well-dispersed high-loading Pt nanoparticles supported by shell-core nanostructured carbon for methanol electrooxidation. Langmuir, 2008, 24(7): 3566–3575

    Article  CAS  PubMed  Google Scholar 

  31. Lepró X, Terrés E, Vega-Cantú Y, Rodríguez-Macías F J, Muramatsu H, Kim Y A, Hayahsi T, Endo M, Torres M, Terrones M. Efficient anchorage of Pt clusters on N-doped carbon nanotubes and their catalytic activity. Chemical Physics Letters, 2008, 463(1–3): 124–129

    Article  CAS  Google Scholar 

  32. Chhina H, Campbell S, Kesler O. High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells. Journal of Power Sources, 2008, 179(1): 50–59

    Article  CAS  Google Scholar 

  33. Esposito D V, Chen J G. Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations. Energy & Environmental Science, 2011, 4(10): 3900–3912

    Article  CAS  Google Scholar 

  34. Ganesan R, Lee J S. Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation. Angewandte Chemie International Edition, 2005, 44(40): 6557–6560

    Article  CAS  PubMed  Google Scholar 

  35. Meng H, Shen P K. Tungsten carbide nanocrystal promoted Pt/C electrocatalysts for oxygen reduction. Journal of Physical Chemistry B, 2005, 109(48): 22705–22709

    Article  CAS  PubMed  Google Scholar 

  36. Shao M, Merzougui B, Shoemaker K, Stolar L, Protsailo L, Mellinger Z J, Hsu I J, Chen J G. Tungsten carbide modified high surface area carbon as fuel cell catalyst support. Journal of Power Sources, 2011, 196(18): 7426–7434

    Article  CAS  Google Scholar 

  37. Wang Y, Song S, Maragou V, Shen P K, Tsiakaras P. High surface area tungsten carbide microspheres as effective Pt catalyst support for oxygen reduction reaction. Applied Catalysis B: Environmental, 2009, 89(1–2): 223–228

    CAS  Google Scholar 

  38. Zhang J, Chen J, Jiang Y, Zhou F, Wang G, Wang R. Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction. Applied Surface Science, 2016, 389: 157–164

    Article  CAS  Google Scholar 

  39. Hwu H, Chen J G. Surface chemistry of transition metal carbides. Chemical Reviews, 2005, 105(1): 185–212

    Article  CAS  PubMed  Google Scholar 

  40. Liu Y, Mustain W E. Evaluation of tungsten carbide as the electrocatalyst support for platinum hydrogen evolution/oxidation catalysts. International Journal of Hydrogen Energy, 2012, 37(11): 8929–8938

    Article  CAS  Google Scholar 

  41. Nie M, Shen P K, Wei Z. Nanocrystaline tungsten carbide supported Au-Pd electrocatalyst for oxygen reduction. Journal of Power Sources, 2007, 167(1): 69–73

    Article  CAS  Google Scholar 

  42. Meng H, Shen P K. Novel Pt-free catalyst for oxygen electroreduction. Electrochemistry Communications, 2006, 8(4): 588–594

    Article  CAS  Google Scholar 

  43. Meng H, Shen P K. The beneficial effect of the addition of tungsten carbides to Pt catalysts on the oxygen electroreduction. Chemical Communications, 2005, (35): 4408–4410

  44. Yu G Q, Huang B Y, Chen S M, Liao J W, Yin W J, Teobaldi G, Li X B. The combined role of faceting and heteroatom doping for hydrogen evolution on a WC electrocatalyst in aqueous solution: a density functional theory study. Journal of Physical Chemistry C, 2021, 125(8): 4602–4613

    Article  CAS  Google Scholar 

  45. Sulaiman J E, Zhu S, Xing Z, Chang Q, Shao M. Pt-Ni octahedra as electrocatalysts for the ethanol electro-oxidation reaction. ACS Catalysis, 2017, 7(8): 5134–5141

    Article  CAS  Google Scholar 

  46. Marcano D C, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z, Slesarev A, Alemany L B, Lu W, Tour J M. Improved synthesis of graphene oxide. ACS Nano, 2010, 4(8): 4806–4814

    Article  CAS  PubMed  Google Scholar 

  47. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Physical Review. B, 1993, 47(1): 558–561

    Article  CAS  Google Scholar 

  48. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15–50

    Article  CAS  Google Scholar 

  49. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868

    Article  CAS  PubMed  Google Scholar 

  50. Blöchl P E. Projector augmented-wave method. Physical Review. B, 1994, 50(24): 17953–17979

    Article  Google Scholar 

  51. Mukerjee S, Srinivasan S, Soriaga M P, McBreen J. Effect of preparation conditions of Pt alloys on their electronic, structural, and electrocatalytic activities for oxygen reduction-XRD, XAS, and electrochemical studies. Journal of Physical Chemistry, 1995, 99(13): 4577–4589

    Article  CAS  Google Scholar 

  52. Alov N V. Determination of the states of oxidation of metals in thin oxide films by X-ray photoelectron spectroscopy. Journal of Analytical Chemistry, 2005, 60(5): 431–435

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (Grant No. SMSEGL20SC01), Innovation and Technology Commission (Grant No. ITC-CNERC14EG03) of the Hong Kong Special Administrative Region, and startup funding of Hong Kong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minhua Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddharth, K., Wang, Y., Wang, J. et al. Platinum on nitrogen doped graphene and tungsten carbide supports for ammonia electro-oxidation reaction. Front. Chem. Sci. Eng. 16, 930–938 (2022). https://doi.org/10.1007/s11705-021-2130-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2130-2

Keywords

Navigation