Skip to main content
Log in

Residual Terrain Modelling: The Harmonic Correction for Geoid Heights

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The harmonic correction (HC) is one of the key quantities when using residual terrain modelling (RTM) for high-frequency gravity field modelling. In the RTM technique, high-frequency topographic gravitational signals are obtained through removing gravitational effects of a long-wavelength reference surface, e.g., MERIT2160. There might be points located below the reference surface. In such cases, the RTM gravity field is calculated in the non-harmonic condition, HC is therefore required. Over past decades, though various methods have been proposed to handle the HC issue for the RTM technique, most of them were focused on the HC for RTM gravity anomaly rather than for other gravity functionals, such as RTM geoid height. In practice, the HC for RTM geoid height was generally assumed to be negligible, but a detailed quantification was missing for present-day RTM computations. This might cause large errors in the regional geoid determination over rugged areas. In this study, we derive HC expressions for the RTM geoid height in the framework of the classical condensation method. The HC terms are derived under four different assumptions separately: residual masses approximated by an unlimited Bouguer plate, residual masses approximated by a limited Bouguer plate which overcomes the mass inconsistency effect, residual masses approximated by a Bouguer shell which overcomes the effect of planar approximation, and residual masses approximated by a limited Bouguer shell which overcomes the errors induced by both planar approximation and mass-inconsistency. The errors due to various approximations in HC terms are investigated through comparison among various terms. Besides, HC terms are computed using an expansion up to degree and order 2159. Our results show that HC for RTM geoid height is less 1 mm and could be ignored over \(\sim 99\)% of continental areas, but be of great significance for regional geoid determination over mountain areas, e.g., more than 10 cm effect over very rugged areas. The validation through comparison with terrestrial measurements and a baseline solution of the RTM technique proves that the HC terms provided in this study can improve the accuracy of RTM geoid heights and are expected to be useful for applications of the RTM technique in regional and global gravity field modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

BS:

Bouguer shell

DEM:

Digital elevation model

DL:

Disc layer

RTM:

Residual terrain modelling

GGM:

Global gravity field model

HC:

Harmonic correction

LBP:

Limited Bouguer plate

LBS:

Limited Bouguer shell

LSL:

Limited Spherical layer

ML:

Mass layer

NI:

Numerical integration

SGM:

Spectral gravity forward modelling

SHC:

Spherical harmonic coefficients

SL:

Spherical layer

UBP:

Unlimited Bouguer plate

References

  • Alex RD (2005) P441-analytical mechanics—I: gravitational field and its potential. Lecture notes. Web publication site. http://www.dzre.com/alex/P441/lectures/lec_19.pdf

  • AllahTavakoli Y, Safari A, Ardalan A, Bahrodi A (2015) Application of the RTM-technique to gravity reduction for tracking near-surface mass-density anomalies: a case study of salt diapirs in Iran. Stud Geophys Geod 59(3):409–423. https://doi.org/10.1007/s11200-014-0215-9

    Article  Google Scholar 

  • Anderson EG (1976) The effect of topography on solutions of Stokes’ problem. Tech. rep., Unisurv S-14, Rep, School of Surveying, University of New South Wales, Australia

  • Barnes D, Barnes D, Beale J, Small H, Ingalls S (2020) Introducing EGM2020. In: EGU general assembly conference abstracts, p 9884

  • Bucha B, Janák J, Papčo J, Bezděk A (2016) High-resolution regional gravity field modelling in a mountainous area from terrestrial gravity data. Geophys J Int 207(2):949–966. https://doi.org/10.1093/gji/ggw311

    Article  Google Scholar 

  • Bucha B, Hirt C, Kuhn M (2019) Cap integration in spectral gravity forward modelling: near-and far-zone gravity effects via Molodensky’s truncation coefficients. J Geodesy 93(1):65–83. https://doi.org/10.1007/s00190-018-1139-x

  • Bucha B, Hirt C, Yang M, Kuhn M, Rexer M (2019) Residual terrain modelling (RTM) in terms of the cap-modified spectral technique: RTM from a new perspective. J Geodesy 93(10):2089–2108. https://doi.org/10.1007/s00190-019-01303-4

    Article  Google Scholar 

  • Deng XL, Shen WB (2017) Formulas of gravitational curvatures of tesseroid both in spherical and cartesian integral kernels. In: Geophysical research abstracts, vol 19, p 93

  • Deng XL, Shen WB (2018) Evaluation of gravitational curvatures of a tesseroid in spherical integral kernels. J Geodesy 92(4):415–429. https://doi.org/10.1007/s00190-017-1073-3

    Article  Google Scholar 

  • Deng XL, Shen WB (2018) Evaluation of optimal formulas for gravitational tensors up to gravitational curvatures of a tesseroid. Surv Geophys 39(3):365–399. https://doi.org/10.1007/s10712-018-9460-8

    Article  Google Scholar 

  • Deng XL, Shen WB (2019) Topographic effects up to gravitational curvatures of tesseroids: a case study in China. Stud Geophys Geod 63(3):345–366. https://doi.org/10.1007/s11200-018-0772-4

    Article  Google Scholar 

  • Deng XL, Grombein T, Shen WB, Heck B, Seitz K (2016) Corrections to comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling(Heck and Seitz, 2007) and optimized formulas for the gravitational field of a tesseroid (Grombein et al., 2013). J Geodesy 90(6):585–587

  • Duríčková Z, Janák J (2016) RTM-based omission error corrections for global geopotential models: case study in Central Europe. Stud Geophys Geod 60(4):622–643. https://doi.org/10.1007/s11200-015-0598-2

    Article  Google Scholar 

  • D’Urso MG (2017) A new formula of the gravitational curvature for the prism. In: Geophys res abstr, vol 19, p 4152

  • Elhabiby M, Sampietro D, Sanso F, Sideris M (2009) BVP, global models and residual terrain correction. In: Observing our changing earth. Springer, pp 211–217. https://doi.org/10.1007/978-3-540-85426-525

  • Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. , Tech rep, Ohio State University Columbus Department Of Geodetic Science and Surveying

  • Forsberg R (1993) Modelling the fine-structure of the geoid: methods, data requirements and some results. Surv Geophys 14(4–5):403–418

    Article  Google Scholar 

  • Forsberg R, Tscherning CC (1981) The use of height data in gravity field approximation by collocation. J Geophys Res: Solid Earth 86(B9):7843–7854. https://doi.org/10.1029/JB086iB09p07843

    Article  Google Scholar 

  • Forsberg R, Tscherning CC (1997) Topographic effects in gravity field modelling for BVP. Springer, Berlin, Heidelberg, pp 239–272. https://doi.org/10.1007/BFb0011707

  • Forsberg R, Olesen AV, Einarsson I, Manandhar N, Shreshta K (2014) Geoid of Nepal from airborne gravity survey. In: Earth on the edge: science for a sustainable planet. Springer, pp 521–527. https://doi.org/10.1007/978-3-642-37222-369

  • Fujisada H, Urai M, Iwasaki A (2012) Technical methodology for ASTER global DEM. IEEE Trans Geosci Remote Sens 50(10):3725–3736

    Article  Google Scholar 

  • Fukushima T (2010) Precise computation of acceleration due to uniform ring or disk. Celest Mech Dyn Astron 108(4):339–356. https://doi.org/10.1007/s10569-010-9304-4

    Article  Google Scholar 

  • Fukushima T (2018) Accurate computation of gravitational field of a tesseroid. J Geodesy 92(12):1371–1386

    Article  Google Scholar 

  • Grombein T, Seitz K, Heck B (2013) Optimized formulas for the gravitational field of a tesseroid. J Geodesy 87(7):645–660

    Article  Google Scholar 

  • Grombein T, Seitz K, Heck B (2017) On high-frequency topography-implied gravity signals for a height system unification using GOCE-based global geopotential models. Surv Geophys. https://doi.org/10.1007/s10712-016-9400-4

  • Gruber T, Gerlach C, Haagmans R (2012) Intercontinental height datum connection with GOCE and GPS-levelling data. J Geod Sci 2(4):270–280. https://doi.org/10.2478/v10156-012-0001-y

    Article  Google Scholar 

  • Harrison J, Dickinson M (1989) Fourier transform methods in local gravity modeling. Bull Géodés 63(2):149–166

    Article  Google Scholar 

  • Heck B, Seitz K (2007) A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J Geodesy 81(2):121–136

    Article  Google Scholar 

  • Hensel EG (1992) On: an exact solution for the gravity curvature (Bullard B) correction by TR LaFehr (Geophysics, 56, 1179–1184, August 1991). Geophysics 57(8):1093–1094

    Article  Google Scholar 

  • Hirt C, Featherstone W (2012) A 1.5 km-resolution gravity field model of the Moon. Earth Planet Sci Lett 329:22–30. https://doi.org/10.1016/j.epsl.2012.02.012

    Article  Google Scholar 

  • Hirt C, Featherstone W, Marti U (2010) Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data. J Geodesy 84(9):557–567

  • Hirt C, Claessens S, Kuhn M, Featherstone W (2012) Kilometer-resolution gravity field of Mars: MGM2011. Planet Space Sci 67(1):147–154. https://doi.org/10.1016/j.pss.2012.02.006

    Article  Google Scholar 

  • Hirt C, Claessens S, Fecher T, Kuhn M, Pail R, Rexer M (2013) New ultrahigh-resolution picture of Earth’s gravity field. Geophys Res Lett 40(16):4279–4283. https://doi.org/10.1002/grl.50838

  • Hirt C, Bucha B, Yang M, Kuhn M (2019a) A numerical study of residual terrain modelling (RTM) techniques and the harmonic correction using ultra-high-degree spectral gravity modelling. J Geodesy. https://doi.org/10.1007/s00190-019-01261-x

  • Hirt C, Yang M, Kuhn M, Bucha B, Kurzmann A, Pail R (2019) SRTM2gravity: an ultrahigh resolution global model of gravimetric terrain corrections. Geophys Res Lett 46(9):4618–4627. https://doi.org/10.1029/2019GL082521

    Article  Google Scholar 

  • Hofmann-Wellenhof B, Moritz H (2006) Physical geodesy. Springer

  • Jarvis A, Reuter HI, Nelson A, Guevara E, et al (2008) Hole-filled SRTM for the globe version 4. Web publication site, CGIAR consortium for spatial information. http://srtm.csi.cgiar.org

  • Kadlec M (2011) Refining gravity field parameters by residual terrain modeling. PhD thesis, University of West Bohemia, Pilsen Czech Republic

  • Krogh FT, Ng EW, Snyder WV (1982) The gravitational field of a disk. Celest Mech 26(4):395–405. https://doi.org/10.1007/BF01230419

    Article  Google Scholar 

  • LaFehr T (1991) An exact solution for the gravity curvature (Bullard B) correction. Geophysics 56(8):1179–1184

    Article  Google Scholar 

  • Lass H, Blitzer L (1983) The gravitational potential due to uniform disks and rings. Celest Mech 30:225–228

    Article  Google Scholar 

  • Li F, Yan J, Xu L, Jin S, Rodriguez JAP, Dohm JH (2015) A 10 km-resolution synthetic Venus gravity field model based on topography. Icarus 247:103–111. https://doi.org/10.1016/j.icarus.2014.09.052

    Article  Google Scholar 

  • Mainville A, Véronneau M, Forsberg R, Sideris M (1995) A comparison of geoid and quasigeoid modeling methods in rough topography. In: Gravity and geoid. Springer, pp 491–501. https://doi.org/10.1007/978-3-642-79721-752

  • Merryman Boncori J (2016) Caveats concerning the use of SRTM DEM version 4.1 (CGIAR-CSI). Remote Sensing 8(10):793

  • Na SH, Rim H, Shin YH, Lim M, Park YS (2015) Calculation of gravity due to a vertical cylinder using a spherical harmonic series and numerical integration. Explor Geophys 46(4):381–386

    Article  Google Scholar 

  • Nagy D, Papp G, Benedek J (2000) The gravitational potential and its derivatives for the prism. J Geodesy 74(7–8):552–560

    Article  Google Scholar 

  • Omang OC, Tscherning CC, Forsberg R (2012) Generalizing the harmonic reduction procedure in residual topographic modeling. In: VII Hotine–Marussi symposium on mathematical geodesy. Springer, pp 233–238. https://doi.org/10.1007/978-3-642-22078-435

  • Pavlis NK, Factor JK, Holmes SA (2007) Terrain-related gravimetric quantities computed for the next EGM. In: Proceedings of the 1st international symposium of the international gravity field service (IGFS), Istanbul, pp 318–323

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res: Solid Earth. https://doi.org/10.1029/2011JB008916

  • Rexer M, Hirt C, Bucha B, Holmes S (2018) Solution to the spectral filter problem of residual terrain modelling (RTM). J Geodesy 92(6):675–690. https://doi.org/10.1007/s00190-017-1086-y

    Article  Google Scholar 

  • Root B, Novák P, Dirkx D, Kaban M, van der Wal W, Vermeersen L (2016) On a spectral method for forward gravity field modelling. J Geodyn 97:22–30. https://doi.org/10.1016/j.jog.2016.02.008

    Article  Google Scholar 

  • Roy KK (2008) Potential theory in applied geophysics. Springer, Berlin. https://doi.org/10.1007/978-3-540-72334-9

  • Simav M (2020) The use of gravity reductions in the indirect strapdown airborne gravimetry processing. Surv Geophys 41(5):1029–1048

    Article  Google Scholar 

  • Singh SK (1977) Gravitational attraction of a circular disc. Geophysics 42(1):111–113. https://doi.org/10.1190/1.1440704

    Article  Google Scholar 

  • Šprlák M, Novák P (2015) Integral formulas for computing a third-order gravitational tensor from volumetric mass density, disturbing gravitational potential, gravity anomaly and gravity disturbance. J Geodesy 89(2):141–157. https://doi.org/10.1007/s00190-014-0767-z

    Article  Google Scholar 

  • Tadono T, Ishida H, Oda F, Naito S, Minakawa K, Iwamoto H (2014) Precise global DEM generation by ALOS PRISM. ISPRS Ann Photogr, Remote Sensing Spat Inf Sci 2(4):71

    Article  Google Scholar 

  • Tatum J (2007) Celestial mechanics. Department of Physics and Astronomy University of Victoria, pp 23–26

  • Taylor AE (1952) L’hospital’s rule. Am Math Mon 59(1):20–24

  • Tenzer R, Moore P, Nesvadba O (2007) Analytical solution of Newton’s integral in terms of polar spherical coordinates. In: Dynamic planet. Springer, pp 410–415

  • Tsoulis D (1999) Analytical and numerical methods in gravity field modelling of ideal and real masses, Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften, Reihe C, Heft Nr 510, München

  • Tziavos IN, Vergos G, Grigoriadis V (2010) Investigation of topographic reductions and aliasing effects on gravity and the geoid over Greece based on various digital terrain models. Surv Geophys 31(1):23. https://doi.org/10.1007/s10712-009-9085-z

    Article  Google Scholar 

  • Uieda L, Barbosa VC, Braitenberg C (2016) Tesseroids: forward-modeling gravitational fields in spherical coordinates. Geophysics 81(5):F41–F48

    Article  Google Scholar 

  • Vergos GS, Erol B, Natsiopoulos DA, Grigoriadis VN, Işık MS, Tziavos IN (2018) Preliminary results of GOCE-based height system unification between Greece and Turkey over marine and land areas. Acta Geod Geoph 53(1):61–79. https://doi.org/10.1007/s40328-017-0204-x

    Article  Google Scholar 

  • Wessel B, Huber M, Wohlfart C, Marschalk U, Kosmann D, Roth A (2018) Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS J Photogramm Remote Sens 139:171–182. https://doi.org/10.1016/j.isprsjprs.2018.02.017

    Article  Google Scholar 

  • Wild-Pfeiffer F (2008) A comparison of different mass elements for use in gravity gradiometry. J Geodesy 82(10):637–653

    Article  Google Scholar 

  • Willberg M, Gruber T, Vergos GS (2017) Analysis of GOCE omission error and its contribution to vertical datum offsets in Greece and its Islands. In: International symposium on gravity, geoid and height systems 2016. Springer, pp 143–148. https://doi.org/10.1007/13453

  • Willberg M, Zingerle P, Pail R (2019) Residual least-squares collocation: use of covariance matrices from high-resolution global geopotential models. J Geodesy 93(9):1739–1757. https://doi.org/10.1007/s00190-019-01279-1

    Article  Google Scholar 

  • Willberg M, Zingerle P, Pail R (2020) Integration of airborne gravimetry data filtering into residual least-squares collocation: example from the 1 cm geoid experiment. J Geodesy 94(8):1–17. https://doi.org/10.1007/s00190-020-01396-2

    Article  Google Scholar 

  • Wu Y, Abulaitijiang A, Featherstone W, McCubbine J, Andersen O (2019) Coastal gravity field refinement by combining airborne and ground-based data. J Geodesy 93(12):2569–2584. https://doi.org/10.1007/s00190-019-01320-3

    Article  Google Scholar 

  • Yamazaki D, Ikeshima D, Tawatari R, Yamaguchi T, O’Loughlin F, Neal JC, Sampson CC, Kanae S, Bates PD (2017) A high-accuracy map of global terrain elevations. Geophys Res Lett 44(11):5844–5853. https://doi.org/10.1002/2017GL072874

  • Yang M (2020) Investigation of the residual terrain modelling (RTM) technique for high-frequency gravity calculations. PhD thesis, Technische Universität München

  • Yang M, Hirt C, Tenzer R, Pail R (2018) Experiences with the use of mass-density maps in residual gravity forward modelling. Stud Geophys Geod 62(4):596–623. https://doi.org/10.1007/s11200-017-0656-z

    Article  Google Scholar 

  • Yang M, Hirt C, Pail R (2020) TGF: a new MATLAB-based software for terrain-related gravity field calculations. Remote Sensing 12(7):1063. https://doi.org/10.3390/rs12071063

    Article  Google Scholar 

  • Yildiz H, Forsberg R, Ågren J, Tscherning C, Sjöberg L (2012) Comparison of remove-compute-restore and least squares modification of Stokes’ formula techniques to quasi-geoid determination over the Auvergne test area. J Geodet Sci 2(1):53–64. https://doi.org/10.2478/v10156-011-0024-9

  • Zingerle P, Pail R, Gruber T, Oikonomidou X (2020) The combined global gravity field model XGM2019e. J Geodesy 94(7):1–12. https://doi.org/10.1007/s00190-020-01398-0

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB 41000000), the National Natural Science Foundation of China (Grant No. 42104083), and the Natural Science Foundation of Guangdong Province, China (Grant No. 2021A1515011425).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Feng or Min Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Derivation of Harmonic Correction for the Geoid Height under Unlimited Bouguer Plate Approximation

As is introduced in Sect. 2.1, the HC-UBP with unlimited Bouguer plate approximation is value of HC-LBP with limited Bouguer plate approximation when \(R\rightarrow \infty\),

$$\begin{aligned} N^{\text {HC-UBP}}(P_+)= & {} \frac{1}{\gamma }\lim _{R\rightarrow \infty }V^{\text {HC-LBP}}(P_+) \nonumber \\= & {} \frac{1}{\gamma }\lim _{R\rightarrow \infty }[2\pi G\rho hR-\pi G\rho (R^2\mathrm {\ln }\frac{R}{\sqrt{R^2+h^2}-h}-h^2+h\sqrt{R^2+h^2})]\nonumber \\= & {} \frac{\pi G\rho }{\gamma }\lim _{R\rightarrow \infty }[2hR-R^2\mathrm {\ln }\frac{R}{\sqrt{R^2+h^2}-h}+h^2-h\sqrt{R^2+h^2}]\nonumber \\= & {} \frac{\pi G\rho }{\gamma }\lim _{R\rightarrow \infty }[2hR-R^2\mathrm {\ln }\frac{R}{\sqrt{R^2+h^2}-h}-h\sqrt{R^2+h^2}]+\frac{\pi G\rho h^2 }{\gamma } \end{aligned}$$
(21)

Let \(\kappa =\frac{1}{R}\), then

$$\begin{aligned}&\lim _{R \rightarrow \infty }[2hR-R^2\ln \frac{R}{\sqrt{R^2+h^2}-h}-h\sqrt{R^2+h^2}]\nonumber \\&\quad =\lim _{\kappa \rightarrow 0}[\frac{2h}{\kappa }+\frac{1}{\kappa ^2}\ln (\sqrt{1+\kappa ^2h^2}-\kappa h)-\frac{h}{\kappa }\sqrt{1+\kappa ^2h^2}]\nonumber \\&\quad =\lim _{\kappa \rightarrow 0}\frac{2h+\frac{1}{\kappa }\ln (\sqrt{1+\kappa ^2h^2}-\kappa h)-h\sqrt{1+\kappa ^2h^2}}{\kappa } \end{aligned}$$
(22)

It follows from L’Hospital’s rule (Taylor 1952) that

$$\begin{aligned}&\lim _{\kappa \rightarrow 0}\frac{2h+\frac{1}{\kappa }\ln (\sqrt{1+\kappa ^2h^2}-\kappa h)-h\sqrt{1+\kappa ^2h^2}}{\kappa }\nonumber \\&\quad =\lim _{\kappa \rightarrow 0}\frac{d}{d\kappa }[2h+\frac{1}{\kappa }\ln (\sqrt{1+\kappa ^2h^2}-\kappa h)-h\sqrt{1+\kappa ^2h^2}]\nonumber \\&\quad =\lim _{\kappa \rightarrow 0}[\frac{h^2-\kappa h^3(\sqrt{1+\kappa ^2h^2}-\kappa h)}{\sqrt{1+\kappa ^2h^2}(\sqrt{1+\kappa ^2h^2}-\kappa h)}-\frac{\frac{\kappa h}{\sqrt{1+\kappa ^2h^2}-\kappa h}+\ln (\sqrt{1+\kappa ^2h^2}-\kappa h)}{\kappa ^2}] \end{aligned}$$
(23)

When \(\kappa \rightarrow 0\), the first term above tends to \(h^2\). The limit of the second term is concluded by applying L’Hospital’s rule again, that is

$$\begin{aligned}&\lim _{\kappa \rightarrow 0}\frac{\frac{\kappa h}{\sqrt{1+\kappa ^2h^2}-\kappa h}+\ln (\sqrt{1+\kappa ^2h^2}-\kappa h)}{\kappa ^2} \nonumber \\&\quad =\lim _{\kappa \rightarrow 0}\frac{\frac{d}{d\kappa }[\frac{\kappa h}{\sqrt{1+\kappa ^2h^2}-\kappa h}+\ln (\sqrt{1+\kappa ^2h^2}-\kappa h)]}{2\kappa } \end{aligned}$$
(24)

By direct computation of derivatives, we yield

$$\begin{aligned}&\frac{d}{d\kappa }[\frac{\kappa h}{\sqrt{1+\kappa ^2h^2}-\kappa h}]=\frac{h}{\sqrt{1+\kappa ^2h^2}-\kappa h}-\frac{\kappa ^2h^3}{(\sqrt{1+\kappa ^2h^2}-\kappa h)^2\sqrt{1+\kappa ^2h^2}}+\frac{\kappa h^2}{(\sqrt{1+\kappa ^2h^2}-\kappa h)^2}\end{aligned}$$
(25)
$$\begin{aligned}&\frac{d}{d\kappa }[\ln (\sqrt{1+\kappa ^2h^2}-\kappa h]=\frac{\kappa h^2}{(\sqrt{1+\kappa ^2h^2}-\kappa h)\sqrt{1+\kappa ^2h^2}}-\frac{h}{\sqrt{1+\kappa ^2h^2}-\kappa h} \end{aligned}$$
(26)

Therefore,

$$\begin{aligned}&\lim _{\kappa \rightarrow 0}\frac{\frac{d}{d\kappa }[\frac{\kappa h}{\sqrt{1+\kappa ^2h^2}-\kappa h}+\ln (\sqrt{1+\kappa ^2h^2}-\kappa h)]}{2\kappa }\nonumber \\&\quad =\lim _{\kappa \rightarrow 0}\frac{1}{2}[\frac{h^2(2\sqrt{1+\kappa ^2h^2}-\kappa h)}{(\sqrt{1+\kappa ^2h^2}-\kappa h)^2\sqrt{1+\kappa ^2h^2}}-\frac{\kappa h^3}{(\sqrt{1+\kappa ^2h^2}-\kappa h)^2\sqrt{1+\kappa ^2h^2}}]\nonumber \\&\quad =h^2 \end{aligned}$$
(27)

Combing Eqs. (23), (24) and (27), we obtain

$$\begin{aligned} \lim _{\kappa \rightarrow 0}\frac{2h+\frac{1}{\kappa }\ln (\sqrt{1+\kappa ^2h^2}-\kappa h)-h\sqrt{1+\kappa ^2h^2}}{\kappa }=0 \end{aligned}$$
(28)

Therefore,

$$\begin{aligned} N^{\text {HC-UBP}}(P_+)=\frac{\pi G\rho h^2}{\gamma } \end{aligned}$$
(29)

Appendix B: Derivation of Harmonic Correction for Geoid Height under Limited Bouguer Shell Approximation

Fig. 14
figure 14

Geometry of limited Bouguer shell (spherical cap) and respective compressed mass layer. The left panel displays a limited Bouguer shell where the inner radius is denoted as \(r_1\), the outer radius \(r_2\), the thickness h, and the density \(\rho\). The computation point \(P_+\) locates above the inner boundary and its respective point on the outer boundary is \(P^\mathrm {R}\). The right panel displays the respective compressed mass layer of the limited Bouguer shell. It shares the same masses with the spherical cap. \(\psi _0\) is the half-angle subtended at the Earth’s centre

The geometry of the limited Bouguer shell is represented by a spherical cap at the left panel of Fig. 14. The inner radius of spherical cap is \(r_1\), outer radius \(r_2\), and density \(\rho\). \(\psi _0\) is the half-angle subtended at the Earth’s centre. \(P_+ (0,0,r)\) denotes the computation point when it is located below the reference surface and the subscript \('+'\) indicates that the point adheres to or just above the Earth’s surface. The magnitude of height difference between \(P_+\) and its respective point \(P^{\mathrm {R}}\) on the reference surface is h. Its generated gravitational potential is (Tenzer et al. 2007; Kadlec 2011)

$$\begin{aligned} V=G\rho \int _{0}^{2\pi }\int _{0}^{\psi }\int _{r_1}^{r_2}\frac{1}{l}r'^2\sin \psi 'dr'd\psi 'd\alpha ' \end{aligned}$$
(30)

with \((\psi ',\alpha ',r')\) indicating the coordinates of integration point and

$$\begin{aligned} l=\sqrt{r^2+r'^2-2rr'\cos \psi '} \end{aligned}$$
(31)

Its analytical solution was widely discussed by LaFehr (1991), Hensel (1992), Heck and Seitz (2007), Tenzer et al. (2007), and Kadlec (2011). Here, the general solution in Kadlec (2011) was adopted. It adapts for various cases when computation points are located out or in the spherical cap.

$$\begin{aligned} V^{\mathrm {SC}}= & {} 2\pi G\rho \left[ \frac{(r_1-r)\vert r-r_1\vert (r+2r_1)+(r-r_2)\vert r-r_2\vert (r+2r_2)}{6r}\right. \nonumber \\&\quad +\,\frac{1}{2}r^2\sin ^2\psi \cos \psi \ln (\frac{r_2+l_2-r\cos \psi }{r_1+l_1-r\cos \psi })+\frac{l_2^3-l_1^3}{3r}\nonumber \\&\quad +\,\frac{1}{2}\cos \psi (l_2(r_2-r\cos \psi )-l_1(r_1-r\cos \psi )))\left. \right] \end{aligned}$$
(32)

where

$$\begin{aligned} l_1= & {} \sqrt{r^2+r_1^2-2rr_1\cos \psi }\nonumber \\ l_2= & {} \sqrt{r^2+r_2^2-2rr_2\cos \psi } \end{aligned}$$
(33)

In the framework of the condensation method under limited Bouguer shell approximation, the spherical cap is compressed into a mass layer with a constant radius \(r_1\), infinitesimal thickness, and shares the same mass with the spherical cap. The spherical cap layer is moved down to just below the computation point \(P_+\) (right panel at Fig. 14). Its generated gravitational potential could be derived following (Tenzer et al. 2007; Kadlec 2011)

$$\begin{aligned} V^{\mathrm {SCL}}=G\rho _c\int _{0}^{2\pi }\int _{0}^{\psi }\frac{1}{l}r_1^2\sin \psi 'd\psi ' \end{aligned}$$
(34)

with \(\rho _c\) indicating the density of compressed masses, \((\psi ',\alpha ',r_1)\) the coordinates of integration point and

$$\begin{aligned} l=\sqrt{2r_1^2-2r_1^2\cos \psi '} \end{aligned}$$
(35)

After integration over \(\alpha '\), we get

$$\begin{aligned} V^{\mathrm {SCL}}=2\pi G\rho _c\int _{0}^{\psi }\frac{1}{l}r_1^2\sin \psi 'd\psi 'd\alpha ' \end{aligned}$$
(36)

After integration over \(\psi '\), we get

$$\begin{aligned} V^{\mathrm {SCL}}=\frac{2\pi G\rho _c r_1}{r}({\sqrt{r^2+r_1^2-2rr_1\cos \psi }-\sqrt{r^2+r_1^2-2rr_1}}) \end{aligned}$$
(37)

For computation point \(P_+\), the HC for geoid height is

$$\begin{aligned} N^{\text {HC-LBS}}_{\mathrm {Spherical\, Cap}}(P_+)=\frac{V^{\mathrm {SCL}}(P_+)-V^{\mathrm {SC}}(P_+)}{\gamma (P_+)} \end{aligned}$$
(38)
Fig. 15
figure 15

Differences of HC for geoid height based on various LBS, one using tesseroid for calculation, another uses spherical cap. \(N^{\text {HC-LBS}}\) indicates HC for geoid height under LBS using tesseroid for calculation, \(N^{\text {HC-LBS}}_{\text {Spherical Cap}}\) HC for geoid height under LBS using spherical cap for calculation

The comparison between two kinds of HC under LBS is implemented with an integration radius varying from 0 to 550 km. In this experiment, \(N^{\text {HC-LBS}}\) is calculated following the method introduced in Sect. 2.3. The tesseroid is bounded by surfaces defined by \(\lambda =-\psi\) and \(\lambda =\psi\), \(\varphi =-\psi\) and \(\varphi =\psi\), and \(r=r_1\) and \(r=r_2\). The HC has calculated through diving the integration masses into a series of the prism at a resolution of \(15^{\prime \prime }\). \(N^{\text {HC-LBS}}_{\text {Spherical Cap}}\) is calculated with Eq.(38). The differences are shown in Fig. 15. It is obvious that the differences between \(N^{\text {HC-LBS}}\) and \(N^{\text {HC-LBS}}_{\text {Spherical Cap}}\) reduce with increasing integration radius. When the integration radius is larger than \(\sim 20\) km, the differences would be less than 0.05 cm, which is able to be ignored in the most practical applications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Hirt, C., Wu, B. et al. Residual Terrain Modelling: The Harmonic Correction for Geoid Heights. Surv Geophys 43, 1201–1231 (2022). https://doi.org/10.1007/s10712-022-09694-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-022-09694-4

Keywords

Navigation