Skip to main content
Log in

Some reliability measures and maintenance policies for a coherent system composed of different types of components

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

Consider an n-components coherent system monitored at one or two inspection times, and some information about the system and its components is obtained. Under these conditions, some variants of mean residual lifetimes can be defined. Also, the dual concept of the residual lifetime, i.e., inactivity time is defined for a failed system under different conditions. This article is concerned with the study of mean residual lives and mean inactivity times for a coherent system made of multiple types of dependent components. The dependency structure is modeled by a survival copula. The notion of survival signature is employed to represent the system’s reliability function and subsequently its mean residual lives and mean inactivity times under different events at the monitoring time. These dynamic measures are used frequently to study the reliability characteristics of a system. Also, they provide helpful tools for designing the optimal maintenance policies to preserving the system from sudden and costly failures. Here, we extend some maintenance strategies for a coherent system consists of multiple dependent components. Some illustrative examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Code Availability Statement

The mathematical software “Mathematica” was used to code the examples of the article.

Materials Availability Statement

Not applicable.

References

  • Asadi M, Berred A (2012) On the number of failed components in a coherent operating system. Statist Probab Lett 82(12):2156–2163

    Article  MathSciNet  MATH  Google Scholar 

  • Behrensdorf J, Regenhardt T-E, Broggi M, Beer M (2021) Numerically efficient computation of the survival signature for the reliability analysis of large networks. Reliab Eng Syst Saf 216:107935

    Article  Google Scholar 

  • Coolen FP, Coolen-Maturi T (2013) Generalizing the signature to systems with multiple types of components. In: Complex systems and dependability. Springer, Berlin, pp 115–130

  • Davies K, Dembińska A (2019) On the number of failed components in a k-out-of-n system upon system failure when the lifetimes are discretely distributed. Reliab Eng Syst Saf 188:47–61

    Article  Google Scholar 

  • Dong W, Liu S, Du Y (2019) Optimal periodic maintenance policies for a parallel redundant system with component dependencies. Comput Ind Eng 138:106133

    Article  Google Scholar 

  • Eryilmaz S (2011) The number of failed components in a coherent system with exchangeable components. IEEE Trans Reliab 61(1):203–207

    Article  Google Scholar 

  • Eryilmaz S (2015) Systems composed of two types of nonidentical and dependent components. Nav Res Logist 62:388–394

    Article  MathSciNet  MATH  Google Scholar 

  • Eryilmaz S (2016) Consecutive k-out-of-n lines with a change point. Proc Inst Mech Eng Part O J Risk Reliab 230(6):545–550

    Google Scholar 

  • Eryilmaz S (2018) The number of failed components in a k-out-of-n system consisting of multiple types of components. Reliab Eng Syst Saf 175:246–250

    Article  Google Scholar 

  • Eryilmaz S (2019) \((k_1, k_2,\ldots, k_m)\)-out-of-\(n\) system and its reliability. J Comput Appl Math 346:591–598

    Article  MathSciNet  MATH  Google Scholar 

  • Eryilmaz S, Pekalp MH (2020) On optimal age replacement policy for a class of coherent systems. J Comput Appl Math 377:112888

    Article  MathSciNet  MATH  Google Scholar 

  • Eryilmaz S, Coolen FP, Coolen-Maturi T (2018a) Marginal and joint reliability importance based on survival signature. Reliab Eng Syst Saf 172:118–128

  • Eryilmaz S, Coolen FP, Coolen-Maturi T (2018b) Mean residual life of coherent systems consisting of multiple types of dependent components. Nav Res Logist 65(1):86–97

  • Eryilmaz S, Özkurt FY, Erkan TE (2020) The number of failed components in series-parallel system and its application to optimal design. Comput Ind Eng 150:106879

  • Finkelstein M, Eryilmaz S (2021) On optimal maintenance of degrading multistate systems with state-dependent cost of repair. Appl Stoch Model Bus Ind 37(4):790–801

    Article  MathSciNet  Google Scholar 

  • Goli S (2019) On the conditional residual lifetime of coherent systems under double regularly checking. Nav Res Logist 66(4):352–363

    Article  MathSciNet  MATH  Google Scholar 

  • Goli S, Asadi M (2017) A study on the conditional inactivity time of coherent systems. Metrika 80(2):227–241

    Article  MathSciNet  MATH  Google Scholar 

  • Goliforushani S, Asadi M (2011) Stochastic ordering among inactivity times of coherent systems. Sankhya B 73(2):241–262

    Article  MathSciNet  MATH  Google Scholar 

  • Hashemi M, Asadi M (2020) On component failure in coherent systems with applications to maintenance strategies. Adv Appl Probab 52(4):1197–1223

    Article  MathSciNet  MATH  Google Scholar 

  • Hashemi M, Asadi M, Zarezadeh S (2020) Optimal maintenance policies for coherent systems with multi-type components. Reliab Eng Syst Saf 195:106674

    Article  Google Scholar 

  • Jasiński K (2021a) Some conditional reliability properties of k-out-of-n system composed of different types of components with discrete independent lifetimes. Metrika 84:1241–1251

  • Jasiński K (2021b) The number of failed components in a coherent working system when the lifetimes are discretely distributed. Metrika 84:1081–1094

  • Khaledi BE, Shaked M (2007) Ordering conditional lifetimes of coherent systems. J Stat Plan Inference 137(4):1173–1184

    Article  MathSciNet  MATH  Google Scholar 

  • Ling X, Li P (2013) Stochastic comparisons for the number of working components of a system in random environment. Metrika 76(8):1017–1030

    Article  MathSciNet  MATH  Google Scholar 

  • Liu P, Wang G (2021) Optimal periodic preventive maintenance policies for systems subject to shocks. Appl Math Model 93:101–114

    Article  MathSciNet  MATH  Google Scholar 

  • Memari M, Zarezadeh S, Asadi M (2021) Optimal preventive maintenance for reparable networks. Appl Stoch Model Bus Ind 37(6):1017–1041

    Article  MathSciNet  Google Scholar 

  • Navarro J, Calì C (2019) Inactivity times of coherent systems with dependent components under periodical inspections. Appl Stoch Model Bus Ind 35(3):871–892

    Article  MathSciNet  Google Scholar 

  • Navarro J, Balakrishnan N, Samaniego FJ (2008) Mixture representations of residual lifetimes of used systems. J Appl Probab 45(4):1097–1112

    Article  MathSciNet  MATH  Google Scholar 

  • Navarro J, Longobardi M, Pellerey F (2017) Comparison results for inactivity times of k-out-of-n and general coherent systems with dependent components. TEST 26(4):822–846

    Article  MathSciNet  MATH  Google Scholar 

  • Parvardeh A, Balakrishnan N (2013) Conditional residual lifetimes of coherent systems. Stat Probab Lett 83(12):2664–2672

    Article  MathSciNet  MATH  Google Scholar 

  • Parvardeh A, Balakrishnan N, Arshadipour A (2017) Conditional residual lifetimes of coherent systems under double monitoring. Commun Stat Theory Methods 46(7):3401–3410

    Article  MathSciNet  MATH  Google Scholar 

  • Poursaeed MH (2010) A note on the mean past and the mean residual life of a (n k+ 1)-out-of-n system under multi monitoring. Stat Pap 51(2):409–419

    Article  MathSciNet  MATH  Google Scholar 

  • Poursaeed MH, Nematollahi AR (2008) On the mean past and the mean residual life under double monitoring. Commun Stat Theory Methods 37(7):1119–1133

    Article  MathSciNet  MATH  Google Scholar 

  • Reed S, Löfstrand M, Andrews J (2019) An efficient algorithm for computing exact system and survival signatures of K-terminal network reliability. Reliab Eng Syst Saf 185:429–439

    Article  Google Scholar 

  • Tavangar M, Bairamov I (2015) On conditional residual lifetime and conditional inactivity time of k-out-of-n systems. Reliab Eng Syst Saf 144:225–233

    Article  Google Scholar 

  • Vijayan V, Chaturvedi SK (2021) Multi-component maintenance grouping optimization based on stochastic dependency. Proc Inst Mech Eng Part O J Risk Reliab 235(2):293–305

    Google Scholar 

  • Zarezadeh S, Asadi M (2019) Coherent systems subject to multiple shocks with applications to preventative maintenance. Reliab Eng Syst Saf 185:124–132

    Article  Google Scholar 

  • Zhang Z, Li X (2010) Some new results on stochastic orders and aging properties of coherent systems. IEEE Trans Reliab 59(4):718–724

    Article  Google Scholar 

  • Zhang Z, Meeker WQ (2013) Mixture representations of reliability in coherent systems and preservation results under double monitoring. Commun Stat Theory Methods 42(3):385–397

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Z, Yang Y (2010) Ordered properties on the residual life and inactivity time of (n k+ 1)-out-of-n systems under double monitoring. Stat Probab Lett 80(7–8):711–717

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou L, Yamamoto H, Xiao X (2020) Number of failed components in coherent systems. J Jpn Ind Manag Assoc 71(2E):92–98

    Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Kelkinnama.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Theorem 2.2

We have

$$\begin{aligned} A_{\mathbf {l},\mathbf {j}}^{\mathbf {n}}(s,t)&= Pr\left( T_{1}^{(1)}>s, \ldots , T_{l_1}^{(1)}>s, t<T_{l_1+1}^{(1)}\le s, \ldots , t<T_{j_1}^{(1)}\le s, T_{j_1+1}^{(1)}\right. \\&\quad \left. \le t, \ldots , T_{n_1}^{(1)}\le t, \ldots , T_{1}^{(K)}>s, \ldots , T_{l_K}^{(K)}>s, t<T_{l_K+1}^{(K)}\right. \\&\quad \left. \le s, \ldots , t<T_{j_K}^{(K)}\le s, T_{j_K+1}^{(K)}\le t, \ldots , T_{n_K}^{(K)}\le t \right) . \end{aligned}$$

Let

$$\begin{aligned} M&=\{ T_{1}^{(i)}>s, \ldots , T_{l_i}^{(i)}>s, T_{l_i+1}^{(i)}>t, \ldots , T_{j_i}^{(i)}>t, \text {for } i=1,\ldots ,K\},\\ N^c&=\{ T_{l_i+1}^{(i)}\le s, \ldots , T_{j_i}^{(i)}\le s, \text {for } i=1,\ldots ,K \},\\ L^c&=\{T_{j_i+1}^{(i)}\le t, \ldots , T_{n_i}^{(i)}\le t, \text {for } i=1,\ldots ,K \}. \end{aligned}$$

Hence, we can write

$$\begin{aligned} A_{\mathbf {l},\mathbf {j}}^{\mathbf {n}}(s,t)&=Pr(M\cap N^c \cap L^c )\nonumber \\&=Pr(M)-Pr(M\cap N)-Pr(M\cap L)+Pr(M \cap N \cap L). \end{aligned}$$
(18)

For the event M we have

$$\begin{aligned}&Pr(M)= \hat{C}\left( \underbrace{\bar{F}_1(s)}_{l_1},\underbrace{\bar{F}_1(t)}_{j_1-l_1},\underbrace{1}_{n_1-j_1}, \ldots , \underbrace{\bar{F}_K(s)}_{l_K},\underbrace{\bar{F}_K(t)}_{j_K-l_K},\underbrace{1}_{n_K-j_K}\right) . \end{aligned}$$

The event N can be written as the following

$$\begin{aligned} N=\cup _{i=1}^K \cup _{k_i=l_i+1}^{j_i} \{T_{k_i}^{(i)}>s\}, \end{aligned}$$

since there are \(\sum _{i=1}^K (j_i-l_i)\) events in N, for convenience we let

$$\begin{aligned} N\equiv \cup _{q=1}^{\sum _{i=1}^K (j_i-l_i)} \{E_q\}, \end{aligned}$$

hence using inclusion–exclusion formula we get

$$\begin{aligned}&Pr(M \cap N) =Pr\left( \cup _{q=1}^{\sum _{i=1}^K (j_i-l_i)} (M \cap E_q)\right) \\&\quad =\sum _{q=1}^{\sum _{i=1}^K (j_i-l_i)}(-1)^{q+1}\underset{r_1+\ldots +r_L=q}{\sum _{r_1=0}^{j_1-l_1}\ldots \sum _{r_K=0}^{j_K-l_K}} \left( {\begin{array}{c}j_1-l_1\\ r_1\end{array}}\right) \\&\qquad \ldots \left( {\begin{array}{c}j_K-l_K\\ r_K\end{array}}\right) \hat{C}\left( \underbrace{\bar{F}_1(s)}_{l_1+r_1},\underbrace{\bar{F}_1(t)}_{j_1-l_1-r_1},\underbrace{1}_{n_1-j_1},\right. \\&\qquad \left. \ldots , \underbrace{\bar{F}_K(s)}_{l_K+r_K},\underbrace{\bar{F}_K(t)}_{j_K-l_K-r_K},\underbrace{1}_{n_K-j_K}\right) . \end{aligned}$$

Similarly, for the event L we have

$$\begin{aligned} L=\cup _{i=1}^K \cup _{k_i=j_i+1}^{n_i} \{T_{k_i}^{(i)}>t\}, \end{aligned}$$

as there are \(n-\sum _{i=1}^K j_i\) events in L, for simplicity we denote the L by the following

$$\begin{aligned} L=\cup _{q=1}^{n-\sum _{i=1}^K j_i} \{D_q\}, \end{aligned}$$

subsequently, by inclusion-exclusion formula, we have

$$\begin{aligned}&Pr(M \cap L) =Pr\left( \cup _{q=1}^{n-\sum _{i=1}^K j_i} (M \cap D_q)\right) \\&\quad =\sum _{q=1}^{n-\sum _{i=1}^K j_i}(-1)^{q+1}\underset{r_1+\ldots +r_L=q}{\sum _{r_1=0}^{n_1-j_1}\ldots \sum _{r_K=0}^{n_K-j_K}} \left( {\begin{array}{c}n_1-j_1\\ r_1\end{array}}\right) \\&\qquad \ldots \left( {\begin{array}{c}n_K-j_K\\ r_K\end{array}}\right) \hat{C}\left( \underbrace{\bar{F}_1(s)}_{l_1},\underbrace{\bar{F}_1(t)}_{j_1-l_1+r_1},\underbrace{1}_{n_1-j_1-r_1},\right. \\&\qquad \left. \ldots \underbrace{\bar{F}_K(s)}_{l_K},\underbrace{\bar{F}_K(t)}_{j_K-l_K+r_K},\underbrace{1}_{n_K-j_K-r_K}\right) . \end{aligned}$$

Finally, using \(E_q\)’s and \(D_q\)’s we get the following

$$\begin{aligned}&Pr(M \cap N \cap L)=Pr\left( (M\cap L) \cap \cup _{q=1}^{\sum _{i=1}^K (j_i-l_i)} \{E_q\} \right) \\&\quad =Pr(\cup _{q=1}^{\sum _{i=1}^K (j_i-l_i)} ((M\cap L) \cap E_q))\\&\quad =\sum _{q=1}^{\sum _{i=1}^K (j_i-l_i)}(-1)^{q+1}\underset{r_1+\ldots +r_L=q}{\sum _{r_1=0}^{j_1-l_1}\ldots \sum _{r_K=0}^{j_K-l_K}} \left( {\begin{array}{c}j_1-l_1\\ r_1\end{array}}\right) \ldots \left( {\begin{array}{c}j_K-l_K\\ r_K\end{array}}\right) \\&\qquad \times \sum _{v=1}^{n-\sum _{i=1}^K j_i}(-1)^{v+1}\underset{y_1+\ldots +y_L=v}{\sum _{y_1=0}^{n_1-j_1}\ldots \sum _{y_K=0}^{n_K-j_K}} \left( {\begin{array}{c}n_1-j_1\\ y_1\end{array}}\right) \\&\quad \ldots \left( {\begin{array}{c}n_K-j_K\\ y_K\end{array}}\right) \hat{C}\left( \underbrace{\bar{F}_1(s)}_{l_1+r_1},\underbrace{\bar{F}_1(t)}_{j_1-l_1-r_1+y_1},\underbrace{1}_{n_1-j_1-y_1},\right. \\&\qquad \left. \ldots , \underbrace{\bar{F}_K(s)}_{l_K+r_K},\underbrace{\bar{F}_K(t)}_{j_K-l_K-r_K+y_K},\underbrace{1}_{n_K-j_K-y_K}\right) . \end{aligned}$$

Note that if \(q=0\) then we get \(Pr(M \cap N \cap L)=-Pr(M \cap L)\) and \(Pr(M\cap N)=-Pr(M)\). By replacing the obtained relations in (18), the following result is gained

$$\begin{aligned}&A_{\mathbf {l},\mathbf {j}}^{\mathbf {n}}(s,t)\\&\quad =-\sum _{q=0}^{\sum _{i=1}^K (j_i-l_i)}(-1)^{q+1}\underset{r_1+\ldots +r_L=q}{\sum _{r_1=0}^{j_1-l_1}\ldots \sum _{r_K=0}^{j_K-l_K}} \left( {\begin{array}{c}j_1-l_1\\ r_1\end{array}}\right) \\&\quad \ldots \left( {\begin{array}{c}j_K-l_K\\ r_K\end{array}}\right) \hat{C}\left( \underbrace{\bar{F}_1(s)}_{l_1+r_1},\underbrace{\bar{F}_1(t)}_{j_1-l_1-r_1},\underbrace{1}_{n_1-j_1}, \ldots ,\right. \\&\qquad \left. , \underbrace{\bar{F}_K(s)}_{l_K+r_K},\underbrace{\bar{F}_K(t)}_{j_K-l_K-r_K},\underbrace{1}_{n_K-j_K}\right) +\sum _{q=0}^{\sum _{i=1}^K (j_i-l_i)}(-1)^{q+1}\underset{r_1+\ldots +r_L=q}{\sum _{r_1=0}^{j_1-l_1}\ldots \sum _{r_K=0}^{j_K-l_K}} \left( {\begin{array}{c}j_1-l_1\\ r_1\end{array}}\right) \\&\quad \ldots \left( {\begin{array}{c}j_K-l_K\\ r_K\end{array}}\right) \times \sum _{v=1}^{n-\sum _{i=1}^K j_i}(-1)^{v+1}\underset{y_1+\ldots +y_L=v}{\sum _{y_1=0}^{n_1-j_1}\ldots \sum _{y_K=0}^{n_K-j_K}} \left( {\begin{array}{c}n_1-j_1\\ y_1\end{array}}\right) \\&\quad \ldots \left( {\begin{array}{c}n_K-j_K\\ y_K\end{array}}\right) \hat{C}\left( \underbrace{\bar{F}_i(s)}_{l_i+r_i},\underbrace{\bar{F}_i(t)}_{j_i-l_i-r_i+y_i},\underbrace{1}_{n_i-j_i-y_i}, \ldots \right. \\&\qquad \left. , \underbrace{\bar{F}_i(s)}_{l_i+r_i},\underbrace{\bar{F}_i(t)}_{j_i-l_i-r_i+y_i},\underbrace{1}_{n_i-j_i-y_i}\right) \\&\quad =\sum _{q=0}^{\sum _{i=1}^K (j_i-l_i)}(-1)^{q+1}\underset{r_1+\ldots +r_L=q}{\sum _{r_1=0}^{j_1-l_1}\ldots \sum _{r_K=0}^{j_K-l_K}} \left( {\begin{array}{c}j_1-l_1\\ r_1\end{array}}\right) \ldots \left( {\begin{array}{c}j_K-l_K\\ r_K\end{array}}\right) \\&\qquad \times \sum _{v=0}^{n-\sum _{i=1}^K j_i}(-1)^{v+1}\underset{y_1+\ldots +y_L=v}{\sum _{y_1=0}^{n_1-j_1}\ldots \sum _{y_K=0}^{n_K-j_K}} \left( {\begin{array}{c}n_1-j_1\\ y_1\end{array}}\right) \\&\quad \ldots \left( {\begin{array}{c}n_K-j_K\\ y_K\end{array}}\right) \hat{C}\left( \underbrace{\bar{F}_1(s)}_{l_1+r_1},\underbrace{\bar{F}_1(t)}_{j_1-l_1-r_1+y_1},\underbrace{1}_{n_1-j_1-y_1}, \right. \\&\quad \left. \ldots ,\underbrace{\bar{F}_K(s)}_{l_K+r_K},\underbrace{\bar{F}_K(t)}_{j_K-l_K-r_K+y_K},\underbrace{1}_{n_K-j_K-y_K}\right) \\&\quad ={\sum _{r_1=0}^{j_1-l_1}\ldots \sum _{r_K=0}^{j_K-l_K}}(-1)^{r_1+\ldots +r_L}\left( {\begin{array}{c}j_1-l_1\\ r_1\end{array}}\right) \\&\quad \ldots \left( {\begin{array}{c}j_K-l_K\\ r_K\end{array}}\right) {\sum _{y_1=0}^{n_1-j_1}\ldots \sum _{y_K=0}^{n_K-j_K}} (-1)^{y_1+\ldots +y_L}\left( {\begin{array}{c}n_1-j_1\\ y_1\end{array}}\right) \ldots \left( {\begin{array}{c}n_K-j_K\\ y_K\end{array}}\right) \\&\qquad \times \hat{C}\left( \underbrace{\bar{F}_1(s)}_{l_1+r_1},\underbrace{\bar{F}_1(t)}_{j_1-l_1-r_1+y_1},\underbrace{1}_{n_1-j_1-y_1}, \ldots , \underbrace{\bar{F}_K(s)}_{l_K+r_K},\underbrace{\bar{F}_K(t)}_{j_K-l_K-r_K+y_K},\underbrace{1}_{n_K-j_K-y_K}\right) . \end{aligned}$$

1.2 Proof of relation (8)

$$\begin{aligned}&Pr(W_{t_1}, t_1<T<t_2)\\&\quad ={\sum _{l_1=0}^{n_1}\ldots \sum _{l_K=0}^{n_K}}~~{\sum _{j_1=l_1}^{n_1}\ldots \sum _{j_K=l_K}^{n_K}} Pr(W_{t_1}, t_1<T<t_2, C_1(t_2)\\&\quad =l_1, \ldots , C_K(t_2)=l_K, C_1(t_1)=j_1, \ldots , C_K(t_1)=j_K)\\&\quad ={\sum _{l_1=0}^{n_1}\ldots \sum _{l_K=0}^{n_K}}~~\underset{(j_1,\ldots ,j_K) \in D_{W_{t_1}}}{\sum _{j_1=l_1}^{n_1}\ldots \sum _{j_K=l_K}^{n_K}} Pr(t_1<T<t_2| C_1(t_2)=l_1, \ldots , C_K(t_2)\\&\quad =l_K, C_1(t_1)=j_1, \ldots , C_K(t_1)=j_K)\\&\qquad \times Pr(C_1(t_2)=l_1, \ldots , C_K(t_2)=l_K, C_1(t_1)=j_1, \ldots , C_K(t_1)=j_K)\\&\quad ={\sum _{l_1=0}^{n_1}\ldots \sum _{l_K=0}^{n_K}}~~\underset{(j_1,\ldots ,j_K) \in D_{W_{t_1}}}{\sum _{j_1=l_1}^{n_1}\ldots \sum _{j_K=l_K}^{n_K}} \left[ Pr(T>t_1| C_1(t_2)=l_1, \ldots , C_K(t_2)=l_K, C_1(t_1)\right. \\&\quad =j_1, \ldots , C_K(t_1)=j_K)\\&\quad \left. -Pr(T>t_2| C_1(t_2)=l_1, \ldots , C_K(t_2)=l_K, C_1(t_1)=j_1, \ldots , C_K(t_1)=j_K)\right] \\&\quad \times Pr(C_1(t_2)=l_1, \ldots , C_K(t_2)=l_K, C_1(t_1)=j_1, \ldots , C_K(t_1)=j_K)\\&\quad ={\sum _{l_1=0}^{n_1}\ldots \sum _{l_K=0}^{n_K}}~~ \underset{(j_1,\ldots ,j_K) \in D_{W_{t_1}}}{\sum _{j_1=l_1}^{n_1}\ldots \sum _{j_K=l_K}^{n_K}} [\Phi (j_1,\ldots , j_K)-\Phi (l_1,\ldots , l_K)]PC_{\mathbf {l},\mathbf {j}}^{\mathbf {n}}(t_2,t_1). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelkinnama, M., Eryilmaz, S. Some reliability measures and maintenance policies for a coherent system composed of different types of components. Metrika 86, 57–82 (2023). https://doi.org/10.1007/s00184-022-00862-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-022-00862-5

Keywords

Navigation