Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly selective and productive reduction of carbon dioxide to multicarbon products via in situ CO management using segmented tandem electrodes

Abstract

Electrochemical CO2 reduction provides a promising route to the sustainable generation of valuable chemicals and fuels. Tandem catalysts enable sequential CO2-to-CO and CO-to-multicarbon (C2+) product conversions on complementary active sites, to produce high C2+ Faradaic efficiency (FE). Unfortunately, previous tandem catalysts exhibit poor management of CO intermediates, which diminishes C2+ FE. Here, we design segmented gas-diffusion electrodes (s-GDEs) in which a CO-selective catalyst layer (CL) segment at the inlet prolongs CO residence time in the subsequent C2+-selective segment, enhancing conversion. This phenomenon enables increases in both the CO utilization and C2+ current density for a Cu/Ag s-GDE compared to pure Cu, by increasing the *CO coverage within the Cu CL. Lastly, we develop a Cu/Fe-N-C s-GDE with 90% C2+ FE at C2+ partial current density (jC2+) exceeding 1 A cm−2. These results prove the importance of transport and establish design principles to improve C2+ FE and jC2+ in tandem CO2 reduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of segmented tandem gas-diffusion electrodes.
Fig. 2: Along-the-channel conversion of generated CO in a s-GDE.
Fig. 3: Effect of Cu:Ag area ratio on the performance of s-GDEs for CO2 reduction.
Fig. 4: Multiphysics model of mass transport and CO adsorption in an s-GDE.
Fig. 5: The compatibility between Cu and CO-selective catalysts.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All data generated and analysed during the present study are available from the authors upon reasonable request.

References

  1. Jouny, M., Luc, W. W. & Jiao, F. A general techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    Article  CAS  Google Scholar 

  2. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Gao, Y. et al. Recent advances in intensified ethylene production—a review. ACS Catal. 9, 8592–8621 (2019).

    Article  CAS  Google Scholar 

  5. Montoya, J. H., Peterson, A. A. & Nørskov, J. K. Insights into C-C coupling in CO2 electroreduction on copper electrodes. ChemCatChem 5, 737–742 (2013).

    Article  CAS  Google Scholar 

  6. Montoya, J. H., Shi, C., Chan, K. & Norskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Schouten, K. J. P., Kwon, Y., van der Ham, C. J. M., Qin, Z. & Koper, M. T. M. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2, 1902–1909 (2011).

    Article  CAS  Google Scholar 

  8. Schouten, K. J. P., Pérez Gallent, E. & Koper, M. T. M. Structure sensitivity of the electrochemical reduction of carbon monoxide on copper single crystals. ACS Catal. 3, 1292–1295 (2013).

    Article  CAS  Google Scholar 

  9. Liu, X. et al. pH effects on the electrochemical reduction of CO2 towards C2 products on stepped copper. Nat. Commun. 10, 32 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Garza, A. J., Bell, A. T. & Head-Gordon, M. Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 8, 1490–1499 (2018).

    Article  CAS  Google Scholar 

  11. Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Li, J. et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2, 1124–1131 (2019).

    Article  CAS  Google Scholar 

  13. Choi, C. et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 3, 804–812 (2020).

    Article  CAS  Google Scholar 

  14. Gu, Z. et al. Efficient electrocatalytic CO2 reduction to C2+ alcohols at defect-site-rich Cu surface. Joule 5, 429–440 (2021).

    Article  CAS  Google Scholar 

  15. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Vasileff, A., Xu, C., Jiao, Y., Zheng, Y. & Qiao, S.-Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 4, 1809–1831 (2018).

    Article  CAS  Google Scholar 

  17. Huang, Y., Handoko, A. D., Hirunsit, P. & Yeo, B. S. Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene. ACS Catal. 7, 1749–1756 (2017).

    Article  CAS  Google Scholar 

  18. Monzó, J. et al. Enhanced electrocatalytic activity of Au@Cu core-shell nanoparticles towards CO2 reduction. J. Mater. Chem. A 3, 23690–23698 (2015).

    Article  Google Scholar 

  19. Morales-Guio, C. G. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018).

    Article  CAS  Google Scholar 

  20. Chen, C. et al. Cu-Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule 4, 1688–1699 (2020).

    Article  CAS  Google Scholar 

  21. Wang, X. et al. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 14, 1063–1070 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Gao, J. et al. Selective C-C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by operando Raman spectroscopy. J. Am. Chem. Soc. 141, 18704–18714 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Fu, J. et al. Bipyridine‐assisted assembly of Au nanoparticles on Cu nanowires to enhance electrochemical reduction of CO2. Angew. Chem. Int. Ed. Engl. 131, 14238–14241 (2019).

    Article  Google Scholar 

  24. Hoang, T. T. H. et al. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Li, F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat. Catal. 3, 75–82 (2019).

    Article  Google Scholar 

  26. Wang, L. et al. Electrochemical carbon monoxide reduction on polycrystalline copper: effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. ACS Catal. 8, 7445–7454 (2018).

    Article  CAS  Google Scholar 

  27. Schreier, M., Yoon, Y., Jackson, M. N. & Surendranath, Y. Competition between H and CO for active sites governs copper-mediated electrosynthesis of hydrocarbon fuels. Angew. Chem. Int. Ed. Engl. 57, 10221–10225 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Ren, D. et al. Atomic layer deposition of ZnO on CuO enables selective and efficient electroreduction of carbon dioxide to liquid fuels. Angew. Chem. Int. Ed. Engl. 58, 15036–15040 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. She, X. et al. Tandem electrodes for carbon dioxide reduction into C2+ products at simultaneously high production efficiency and rate. Cell Rep. Phys. Sci. 1, 100051 (2020).

    Article  Google Scholar 

  30. Zhang, T., Li, Z., Zhang, J. & Wu, J. Enhance CO2-to-C2+ products yield through spatial management of CO transport in Cu/ZnO tandem electrodes. J. Catal. 387, 163–169 (2020).

    Article  CAS  Google Scholar 

  31. Levenspiel, O. Chemical Reaction Engineering 3rd edn, Ch. 5 (John Wiley & Sons, 1999).

  32. Weng, L.-C., Bell, A. T. & Weber, A. Z. A systematic analysis of Cu-based membrane-electrode assemblies for CO2 reduction through multiphysics simulation. Energy Environ. Sci. 13, 3592–3606 (2020).

    Article  CAS  Google Scholar 

  33. Kas, R. et al. Along the channel gradients impact on the spatioactivity of gas diffusion electrodes at high conversions during CO2 electroreduction. ACS Sustain. Chem. Eng. 9, 1286–1296 (2021).

    Article  CAS  Google Scholar 

  34. Bui, J. C., Kim, C., Weber, A. Z. & Bell, A. T. Dynamic boundary layer simulation of pulsed CO2 electrolysis on a copper catalyst. ACS Energy Lett. 6, 1181–1188 (2021).

    Article  CAS  Google Scholar 

  35. Dunwell, M., Luc, W., Yan, Y., Jiao, F. & Xu, B. Understanding surface-mediated electrochemical reactions: CO2 reduction and beyond. ACS Catal. 8, 8121–8129 (2018).

    Article  CAS  Google Scholar 

  36. Moradzaman, M., Martínez, C. S. & Mul, G. Effect of partial pressure on product selectivity in Cu-catalyzed electrochemical reduction of CO2. Sustain. Energy Fuels 4, 5195–5202 (2020).

    Article  CAS  Google Scholar 

  37. Hori, Y., Takahashi, R., Yoshinami, Y. & Murata, A. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101, 7075–7081 (1997).

    Article  CAS  Google Scholar 

  38. Wang, L. et al. Selective reduction of CO to acetaldehyde with CuAg electrocatalysts. Proc. Natl Acad. Sci. USA 117, 12572–12575 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Corral, D. et al. Advanced manufacturing for electrosynthesis of fuels and chemicals from CO2. Energy Environ. Sci. 14, 3064–3074 (2021).

    Article  CAS  Google Scholar 

  40. Tan, Y. C., Lee, K. B., Song, H. & Oh, J. Modulating local CO2 concentration as a general strategy for enhancing C−C coupling in CO2 electroreduction. Joule 4, 1104–1120 (2020).

    Article  CAS  Google Scholar 

  41. Salvatore, D. A. et al. Electrolysis of gaseous CO2 to CO in a flow cell with a bipolar membrane. ACS Energy Lett. 3, 149–154 (2017).

    Article  Google Scholar 

  42. Chen, Y. et al. A robust, scalable platform for the electrochemical conversion of CO2 to formate: identifying pathways to higher energy efficiencies. ACS Energy Lett. 5, 1825–1833 (2020).

    Article  CAS  Google Scholar 

  43. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. McCallum, C. et al. Reducing the crossover of carbonate and liquid products during carbon dioxide electroreduction. Cell Rep. Phys. Sci. 2, 100522 (2021).

    Article  CAS  Google Scholar 

  45. Li, T. et al. Electrolytic conversion of bicarbonate into CO in a flow cell. Joule 3, 1487–1497 (2019).

    Article  CAS  Google Scholar 

  46. Weng, L.-C., Bell, A. T. & Weber, A. Z. Towards membrane-electrode assembly systems for CO2 reduction: a modeling study. Energy Environ. Sci. 12, 1950–1968 (2019).

    Article  CAS  Google Scholar 

  47. Zhang, T. et al. Nickel-nitrogen-carbon molecular catalysts for high rate CO2 electro-reduction to CO: on the role of carbon substrate and reaction chemistry. ACS Appl. Energy Mater. 3, 1617–1626 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Office of Fossil Energy and Carbon Management of the US Department of Energy under award number DE-FE0031919 and performed at the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the US Department of Energy under award number DE-SC0004993 and the National Institutes of Health under grant no. S10OD023532. The authors at University of Cincinnati also thank National Science Foundation for financial support (award no. CBET-2033343). J.C.B. acknowledges funding from the National Science Foundation Graduate Research Fellowship under grant no. DGE 1752814. J.C.B. acknowledges funding, in part, by a fellowship award through the National Defense Science and Engineering Graduate (NDSEG) Fellowship Program sponsored by the Army Research Office (ARO). J.C.B. would also like to acknowledge fruitful discussion regarding along-the-channel transport in CO2 electrolysers with E. Lees.

Author information

Authors and Affiliations

Authors

Contributions

J.W., A.Z.W. and A.T.B. supervised the project. J.W. and T.Z. designed the experiments. T.Z. prepared the electrodes, performed electrochemical experiments and characterizations with the help of Z.L. J.C.B. performed multiphysics simulation. T.Z., Z.L. and J.C.B. performed data interpretation. T.Z., J.C.B., A.T.B., A.Z.W. and J.W. wrote the manuscript. All authors discussed, commented on and revised the manuscript.

Corresponding authors

Correspondence to Adam Z. Weber or Jingjie Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Edward Anthony and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–31, Notes 1–3, Tables 1–4 and numerical methods.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Bui, J.C., Li, Z. et al. Highly selective and productive reduction of carbon dioxide to multicarbon products via in situ CO management using segmented tandem electrodes. Nat Catal 5, 202–211 (2022). https://doi.org/10.1038/s41929-022-00751-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00751-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing