Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Threshold potentials for fast kinetics during mediated redox catalysis of insulators in Li–O2 and Li–S batteries

Abstract

Redox mediators could catalyse otherwise slow and energy-inefficient cycling of Li–S and Li–O2 batteries by shuttling electrons or holes between the electrode and the solid insulating storage materials. For mediators to work efficiently they need to oxidize the solid with fast kinetics but with the lowest possible overpotential. However, the dependence of kinetics and overpotential is unclear, which hinders informed improvement. Here, we find that when the redox potentials of mediators are tuned via, for example, Li+ concentration in the electrolyte, they exhibit distinct threshold potentials, where the kinetics accelerate several-fold within a range as small as 10 mV. This phenomenon is independent of types of mediator and electrolyte. The acceleration originates from the overpotentials required to activate fast Li+/e extraction and the following chemical step at specific abundant surface facets. Efficient redox catalysis at insulating solids therefore requires careful consideration of the surface conditions of the storage materials and electrolyte-dependent redox potentials, which may be tuned by salt concentrations or solvents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential-dependent kinetics of mediated oxidation of Li2S and Li2O2.
Fig. 2: Potential-dependent kinetics of Li2O2 oxidation in various systems.
Fig. 3: The surface structures and energy profiles during oxidation of two Li2O2 facets.
Fig. 4: Kinetics of TEMPO+ oxidizing Li2O2 over a wide potential range.
Fig. 5: In situ DEMS during mediated charging.

Similar content being viewed by others

Data availability

Source Data for Figs. 15 are provided with the paper. All other data are available from the authors on reasonable request.

References

  1. Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    Article  CAS  Google Scholar 

  2. Qiao, Y., Jiang, K., Deng, H. & Zhou, H. A high-energy-density and long-life lithium-ion battery via reversible oxide–peroxide conversion. Nat. Catal. 2, 1035–1044 (2019).

    Article  CAS  Google Scholar 

  3. Cameron, J. M. et al. Molecular redox species for next-generation batteries. Chem. Soc. Rev. 50, 5863–5883 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Kwak, W.-J. et al. Lithium–oxygen batteries and related systems: potential, status, and future. Chem. Rev. 120, 6626–6683 (2020).

  5. Ko, Y. et al. Anchored mediator enabling shuttle-free redox mediation in lithium-oxygen batteries. Angew. Chem. Int. Ed. 59, 5376–5380 (2020).

    Article  CAS  Google Scholar 

  6. Wang, Y. & Lu, Y.-C. Nonaqueous lithium–oxygen batteries: reaction mechanism and critical open questions. Energy Storage Mater. 28, 235–246 (2020).

    Article  Google Scholar 

  7. Wu, S. et al. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes. Nat. Commun. 8, 15607 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qiao, Y. et al. Li-CO2 electrochemistry: a new strategy for CO2 fixation and energy storage. Joule 1, 359–370 (2017).

  9. Lu, Y.-C., He, Q. & Gasteiger, H. A. Probing the lithium–sulfur redox reactions: a rotating-ring disk electrode study. J. Phys. Chem. C. 118, 5733–5741 (2014).

    Article  CAS  Google Scholar 

  10. Bonnick, P. & Muldoon, J. The Dr Jekyll and Mr Hyde of lithium sulfur batteries. Energy Environ. Sci. 13, 4808–4833 (2020).

    Article  CAS  Google Scholar 

  11. Kwak, W.-J. et al. Controllable and stable organometallic redox mediators for lithium oxygen batteries. Mater. Horiz. 7, 214–222 (2020).

    Article  CAS  Google Scholar 

  12. Park, J.-B. et al. Redox mediators for Li–O2 batteries: status and perspectives. Adv. Mat. 30, 1704162 (2018).

    Article  CAS  Google Scholar 

  13. Kwak, W.-J. et al. Review—a comparative evaluation of redox mediators for Li-O2 batteries: a critical review. J. Electrochem. Soc. 165, A2274–A2293 (2018).

    Article  CAS  Google Scholar 

  14. Meini, S. et al. The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li–S battery systems. J. Phys. Chem. Lett. 5, 915–918 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Pande, V. & Viswanathan, V. Criteria and considerations for the selection of redox mediators in nonaqueous Li–O2 batteries. ACS Energy Lett. 2, 60–63 (2017).

    Article  CAS  Google Scholar 

  16. McCloskey, B. D. et al. Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 3, 997–1001 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, Y., Lu, Y.-R., Dong, C.-L. & Lu, Y.-C. Critical factors controlling superoxide reactions in lithium–oxygen batteries. ACS Energy Lett. 5, 1355–1363 (2020).

  18. Liang, Z., Zhou, Y. & Lu, Y.-C. Dynamic oxygen shield eliminates cathode degradation in lithium–oxygen batteries. Energy Environ. Sci. 11, 3500–3510 (2018).

    Article  CAS  Google Scholar 

  19. Gao, X. et al. A rechargeable lithium–oxygen battery with dual mediators stabilizing the carbon cathode. Nat. Energy 2, 17118 (2017).

    Article  CAS  Google Scholar 

  20. Petit, Y. K. et al. Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation. Nat. Chem. 13, 465–471 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Liang, Z. & Lu, Y.-C. Critical role of redox mediator in suppressing charging instabilities of lithium–oxygen batteries. J. Am. Chem. Soc. 138, 7574–7583 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Kwak, W.-J. et al. Deactivation of redox mediators in lithium-oxygen batteries by singlet oxygen. Nat. Commun. 10, 1380 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Liang, Z., Zou, Q., Xie, J. & Lu, Y.-C. Suppressing singlet oxygen generation in lithium–oxygen batteries with redox mediators. Energy Environ. Sci. 13, 2870–2877 (2020).

    Article  CAS  Google Scholar 

  24. Mu, X., Pan, H., He, P. & Zhou, H. Li–CO2 and Na–CO2 batteries: toward greener and sustainable electrical energy storage. Adv. Mat. 32, 1903790 (2020).

    CAS  Google Scholar 

  25. Zhao, M. et al. An organodiselenide comediator to facilitate sulfur redox kinetics in lithium-sulfur batteries. Adv. Mat. 33, 2007298 (2021).

    Article  CAS  Google Scholar 

  26. Zhao, M. et al. Redox comediation with organopolysulfides in working lithium-sulfur batteries. Chem. 6, 3297–3311 (2020).

    Article  CAS  Google Scholar 

  27. Tsao, Y. et al. Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li-S batteries. Joule 3, 872–884 (2019).

    Article  CAS  Google Scholar 

  28. Chen, Y., Gao, X., Johnson, L. R. & Bruce, P. G. Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium–oxygen cell. Nat. Commun. 9, 767 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Henstridge, M. C., Laborda, E., Rees, N. V. & Compton, R. G. Marcus–Hush–Chidsey theory of electron transfer applied to voltammetry: a review. Electrochim. Acta 84, 12–20 (2012).

    Article  CAS  Google Scholar 

  30. Wild, M. et al. Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 8, 3477–3494 (2015).

    Article  CAS  Google Scholar 

  31. Wang, Y. et al. A solvent-controlled oxidation mechanism of Li2O2 in lithium–oxygen batteries. Joule 2, 2364–2380 (2018).

    Article  CAS  Google Scholar 

  32. Zou, Q. & Lu, Y.-C. Solvent-dictated lithium sulfur redox reactions: an operando UV–vis spectroscopic study. J. Phys. Chem. Lett. 7, 1518–1525 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Ko, Y. et al. A comparative kinetic study of redox mediators for high-power lithium–oxygen batteries. J. Mat. Chem. A. 7, 6491–6498 (2019).

    Article  CAS  Google Scholar 

  34. Bawol, P. P. et al. A new thin layer cell for battery related DEMS-experiments: the activity of redox mediators in the Li–O2 cell. Phys. Chem. Chem. Phys. 20, 21447–21456 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Leverick, G. et al. Solvent-dependent oxidizing power of LiI redox couples for Li–O2 batteries. Joule 3, 1106–1126 (2019).

    Article  CAS  Google Scholar 

  36. Zhang, Y. et al. Amorphous Li2O2: chemical synthesis and electrochemical properties. Angew. Chem. Int. Ed. 55, 10717–10721 (2016).

    Article  CAS  Google Scholar 

  37. Kang, S., Mo, Y., Ong, S. P. & Ceder, G. A facile mechanism for recharging Li2O2 in Li–O2 batteries. Chem. Mat. 25, 3328–3336 (2013).

    Article  CAS  Google Scholar 

  38. Hummelshoj, J. S., Luntz, A. C. & Norskov, J. K. Theoretical evidence for low kinetic overpotentials in Li-O2 electrochemistry. J. Chem. Phys. 138, 034703 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Zhu, J. et al. Unraveling the catalytic mechanism of Co3O4 for the oxygen evolution reaction in a Li–O2 battery. ACS Catal. 5, 73–81 (2015).

    Article  CAS  Google Scholar 

  40. Zhu, J. et al. Surface acidity as descriptor of catalytic activity for oxygen evolution reaction in Li-O2 battery. J. Am. Chem. Soc. 137, 13572–13579 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Mourad, E. et al. Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O2 batteries. Energy Environ. Sci. 12, 2559–2568 (2019).

    Article  CAS  Google Scholar 

  42. Mahne, N. et al. Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries. Nat. Energy 2, 17036 (2017).

    Article  CAS  Google Scholar 

  43. Dai, W. et al. Defect chemistry in discharge products of Li–O2 batteries. Small Methods 3, 1800358 (2019).

  44. Marcus, R. A. Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 65, 599–610 (1993).

    Article  CAS  Google Scholar 

  45. Savéant, J.-M. & Constentin, C. Elements of Molecular and Biomolecular Electrochemistry 2nd edn (John Wiley & Sons, 2019).

  46. Burke, C. M. et al. Implications of 4 e oxygen reduction via iodide redox mediation in Li–O2 batteries. ACS Energy Lett. 1, 747–756 (2016).

    Article  CAS  Google Scholar 

  47. Cornut, R., Griveau, S. & Lefrou, C. Accuracy study on fitting procedure of kinetics SECM feedback experiments. J. Electroanal. Chem. 650, 55–61 (2010).

    Article  CAS  Google Scholar 

  48. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  49. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  50. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B. 50, 17953–17979 (1994).

    Article  Google Scholar 

  51. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B. 13, 5188–5192 (1976).

    Article  Google Scholar 

  53. Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B. 40, 3616–3621 (1989).

    Article  CAS  Google Scholar 

  54. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  CAS  Google Scholar 

  55. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. He, B. et al. High-throughput screening platform for solid electrolytes combining hierarchical ion-transport prediction algorithms. Sci. Data 7, 151 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chase, M. W. NIST-JANAF Thermochemical Tables 4th edn, 1510 (ACS, AIP NIST, 1998).

  58. Mo, Y., Ong, S. P. & Ceder, G. First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery. Phys. Rev. B. 84, 205446 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant nos. 51773092, 21975124, 11874254, 51802187 and U2030206). It was further supported by Fujian science & technology innovation laboratory for energy devices of China (21C-LAB), Key Research Project of Zhejiang Laboratory (grant no. 2021PE0AC02) and the Cultivation Program for the Excellent Doctoral Dissertation of Nanjing Tech University. S.A.F. is indebted to IST Austria for support.

Author information

Authors and Affiliations

Authors

Contributions

Y.C., S.S. and S.A.F. conceived and directed the project. D.C., X.S., A.W., F.Y., and Y.W. performed experiments and DFT calculations. S.A.F., Y.C. and S.S. wrote the paper. All authors discussed and revised the paper.

Corresponding authors

Correspondence to Siqi Shi, Stefan A. Freunberger or Yuhui Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Notes 1–4 and References.

Supplementary Data 1

Atomic coordinates of the optimized computational models.

Source data

Source Data Fig. 1

Source Data Fig. 1.

Source Data Fig. 2

Source Data Fig. 2.

Source Data Fig. 3

Source Data Fig. 3.

Source Data Fig. 4

Source Data Fig. 4.

Source Data Fig. 5

Source Data Fig. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, D., Shen, X., Wang, A. et al. Threshold potentials for fast kinetics during mediated redox catalysis of insulators in Li–O2 and Li–S batteries. Nat Catal 5, 193–201 (2022). https://doi.org/10.1038/s41929-022-00752-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00752-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing