Skip to main content
Log in

Synthesis of Carbon Nanohorns by Inductively Coupled Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

We demonstrate a new pathway for the synthesis of carbon nanohorns (CNHs) in a reactor by using inductively coupled plasma (ICP) and gaseous precursors. Thermal plasma synthesis allows the formation of different carbon allotropes such as carbon nanoflakes, hybrid forms of flakes and nanotubules, CNHs embryos, seed-like CNHs and onion-like polyhedral graphitic nanocapsules. In this study, pressure has the greatest impact on the selectivity of carbon nanostructures: pressure below 53.3 kPa favors the growth of carbon nanoflakes and higher pressures, 66.7 kPa and above, promotes the formation of CNHs. The ratio between methane and hydrogen as well as the global concentration of CH4 + H2 inside the plasma flame are also crucial to the reaction. CNHs are formed preferentially by injection of a 1:2 ratio of H2 to CH4 at 82.7 kPa with a production rate of 20 g/h. The synthesis pathway is easily scalable and could be made continuous, which offers an interesting alternative compared to methods based on laser-, arc- or induction-based vaporization of graphite rods.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Karousis N, Suarez-Martinez I, Ewels CP, Tagmatarchis N (2016) Structure, properties, functionalization, and applications of carbon nanohorns. Chem Rev 116(8):4850–4883. https://doi.org/10.1021/acs.chemrev.5b00611

    Article  CAS  PubMed  Google Scholar 

  2. Murakami T, Ajima K, Miyawaki J, Yudasaka M, Iijima S, Shiba K (2004) Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Mol Pharmaceutics 1(6):399–405. https://doi.org/10.1021/mp049928e

    Article  CAS  Google Scholar 

  3. Ojeda I et al (2014) Carbon nanohorns as a scaffold for the construction of disposable electrochemical immunosensing platforms. application to the determination of fibrinogen in human plasma and urine. Anal Chem 86(15):7749–7756. https://doi.org/10.1021/ac501681n

    Article  CAS  PubMed  Google Scholar 

  4. Valentini F et al (2016) Sensor properties of pristine and functionalized carbon nanohorns. Electroanalysis 28(10):2489–2499. https://doi.org/10.1002/elan.201501171

    Article  CAS  Google Scholar 

  5. Zhang Z, Han S, Wang C, Li J, Xu G (2015) Single-walled carbon nanohorns for energy applications. Nanomaterials. https://doi.org/10.3390/nano5041732

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tanaka A et al (2005) Friction and wear of carbon nanohorn-containing polyimide composites. Tribol Lett 19(2):135–142. https://doi.org/10.1007/s11249-005-5094-3

    Article  CAS  Google Scholar 

  7. Miyawaki J, Yudasaka M, Azami T, Kubo Y, Iijima S (2008) Toxicity of single-walled carbon nanohorns. ACS Nano. https://doi.org/10.1021/nn700185t

    Article  PubMed  Google Scholar 

  8. He B et al (2018) Single-walled carbon-nanohorns improve biocompatibility over nanotubes by triggering less protein-initiated pyroptosis and apoptosis in macrophages. Nat Commun. https://doi.org/10.1038/s41467-018-04700-z

    Article  PubMed  PubMed Central  Google Scholar 

  9. Iijima S et al (1999) Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett. https://doi.org/10.1016/S0009-2614(99)00642-9

    Article  Google Scholar 

  10. Kasuya D, Yudasaka M, Takahashi K, Kokai F, Iijima S (2002) Selective production of single-wall carbon nanohorn aggregates and their formation mechanism. J Phys Chem B 106(19):4947–4951. https://doi.org/10.1021/jp020387n

    Article  CAS  Google Scholar 

  11. Maser WK et al (1998) Production of high-density single-walled nanotube material by a simple laser-ablation method. Chem Phys Lett 292(4–6):587–593. https://doi.org/10.1016/S0009-2614(98)00776-3

    Article  CAS  Google Scholar 

  12. Kokai F, Takahashi K, Kasuya D, Yudasaka M, Iijima S (2002) Growth dynamics of single-wall carbon nanotubes and nanohorn aggregates by CO2 laser vaporization at room temperature. Appl Surf Sci 197–198:650–655. https://doi.org/10.1016/S0169-4332(02)00434-8

    Article  Google Scholar 

  13. Azami T et al (2008) Large-scale production of single-wall carbon nanohorns with high purity. J Phys Chem C 112(5):1330–1334. https://doi.org/10.1021/jp076365o

    Article  CAS  Google Scholar 

  14. Yuge R, Yudasaka M, Toyama K, Yamaguchi T, Iijima S, Manako T (2012) Buffer gas optimization in CO2 laser ablation for structure control of single-wall carbon nanohorn aggregates. Carbon 50(5):1925–1933. https://doi.org/10.1016/j.carbon.2011.12.043

    Article  CAS  Google Scholar 

  15. Wang H, Chhowalla M, Sano N, Jia S, Amaratunga GAJ (2004) Large-scale synthesis of single-walled carbon nanohorns by submerged arc. Nanotechnology 15(5):546–550. https://doi.org/10.1088/0957-4484/15/5/024

    Article  CAS  Google Scholar 

  16. Sano N (2004) Low-cost synthesis of single-walled carbon nanohorns using the arc in water method with gas injection. J Phys D Appl Phys 37(8):L17–L20. https://doi.org/10.1088/0022-3727/37/8/L01

    Article  CAS  Google Scholar 

  17. Yamaguchi T, Bandow S, Iijima S (2004) Synthesis of carbon nanohorn particles by simple pulsed arc discharge ignited between pre-heated carbon rods. Chem Phys Lett 389(1–3):181–185. https://doi.org/10.1016/j.cplett.2004.03.068

    Article  CAS  Google Scholar 

  18. Gattia DM, Antisari MV, Marazzi R (2007) AC arc discharge synthesis of single-walled nanohorns and highly convoluted graphene sheets. Nanotechnology 18(25):255604. https://doi.org/10.1088/0957-4484/18/25/255604

    Article  CAS  Google Scholar 

  19. Li N, Wang Z, Zhao K, Shi Z, Gu Z, Xu S (2010) Synthesis of single-wall carbon nanohorns by arc-discharge in air and their formation mechanism. Carbon 48(5):1580–1585. https://doi.org/10.1016/j.carbon.2009.12.055

    Article  CAS  Google Scholar 

  20. Sun L, Wang C, Zhou Y, Zhang X, Cai B, Qiu J (2013) Flowing nitrogen assisted-arc discharge synthesis of nitrogen-doped single-walled carbon nanohorns. Appl Surf Sci 277:88–93. https://doi.org/10.1016/j.apsusc.2013.04.006

    Article  CAS  Google Scholar 

  21. Zhang D et al (2019) Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber. Carbon 142:278–284. https://doi.org/10.1016/j.carbon.2018.10.062

    Article  CAS  Google Scholar 

  22. C. Pagura, S. Barison, S. Battiston, and M. Schiavon, “Synthesis and characterization of single wall carbon nanohorns produced by direct vaporization of graphite,” p. 3.

  23. S. Mauro, “Device and method for production of carbon nanotubes, fullerene and their derivatives,” US7125525B2, Oct. 24, 2006 Accessed: Jun. 12, 2019. [Online]. Available: https://patents.google.com/patent/US7125525B2/en.

  24. Boulos MI (1985) The inductively coupled R.F. (radio frequency) plasma. Pure Appl Chem 57(9):1321–1352. https://doi.org/10.1351/pac198557091321

    Article  CAS  Google Scholar 

  25. M. I. Boulos and J. Jurewicz, “High performance induction plasma torch with a water-cooled ceramic confinement tube,” US5200595A, Apr. 06, 1993 Accessed: Apr. 22, 2020. [Online]. Available: https://patents.google.com/patent/US5200595A/en

  26. Kim KS, Cota-Sanchez G, Kingston CT, Imris M, Simard B, Soucy G (2007) Large-scale production of single-walled carbon nanotubes by induction thermal plasma. J Phys D Appl Phys 40(8):2375–2387. https://doi.org/10.1088/0022-3727/40/8/S17

    Article  CAS  Google Scholar 

  27. Pristavita R, Mendoza-Gonzalez N-Y, Meunier J-L, Berk D (2011) Carbon nanoparticle production by inductively coupled thermal plasmas: controlling the thermal history of particle nucleation. Plasma Chem Plasma Process 31(6):851–866. https://doi.org/10.1007/s11090-011-9319-y

    Article  CAS  Google Scholar 

  28. Chen X, Wang C, Song M, Ma J, Ye T, Xia W (2019) The morphological transformation of carbon materials from nanospheres to graphene nanoflakes by thermal plasma. Carbon 155:521–530. https://doi.org/10.1016/j.carbon.2019.08.077

    Article  CAS  Google Scholar 

  29. Aissou T, Braidy N, Veilleux J (2022) A new one-step deposition approach of graphene nanoflakes coating using a radio frequency plasma: Synthesis, characterization and tribological behaviour. Tribol Int 167:107406. https://doi.org/10.1016/j.triboint.2021.107406

    Article  CAS  Google Scholar 

  30. Boulos MI (1991) Thermal plasma processing. IEEE Trans Plasma Sci 19(6):1078–1089. https://doi.org/10.1109/27.125032

    Article  CAS  Google Scholar 

  31. Kim KS, Kingston CT, Ruth D, Barnes M, Simard B (2014) Synthesis of high quality single-walled carbon nanotubes with purity enhancement and diameter control by liquid precursor Ar–H2 plasma spraying. Chem Eng J 250:331–341. https://doi.org/10.1016/j.cej.2014.03.117

    Article  CAS  Google Scholar 

  32. Pfender E (1989) Particle behavior in thermal plasmas. Plasma Chem Plasma Process. https://doi.org/10.1007/BF01015878

    Article  Google Scholar 

  33. Ricolleau C et al (2013) Performances of an 80–200 kV microscope employing a cold-FEG and an aberration-corrected objective lens. Microscopy 62(2):283–293. https://doi.org/10.1093/jmicro/dfs072

    Article  CAS  PubMed  Google Scholar 

  34. Bandow S et al (2000) Evidence for anomalously small charge transfer in doped single-wall carbon nanohorn aggregates with Li, K and Br. Appl Phys A Mater Sci Process 71(5):561–564. https://doi.org/10.1007/s003390000681

    Article  CAS  Google Scholar 

  35. Peña-Álvarez M, del Corro E, Langa F, Baonza VG, Taravillo M (2016) Morphological changes in carbon nanohorns under stress: a combined Raman spectroscopy and TEM study. RSC Adv 6(55):49543–49550. https://doi.org/10.1039/C5RA27162B

    Article  CAS  Google Scholar 

  36. Peña-Álvarez M, del Corro E, Baonza VG, Taravillo M (2014) Probing the stress effect on the electronic structure of graphite by resonant raman spectroscopy. J Phys Chem C 118(43):25132–25140. https://doi.org/10.1021/jp505730v

    Article  CAS  Google Scholar 

  37. Fujimori T, Radovic LR, Silva-Tapia AB, Endo M, Kaneko K (2012) Structural importance of Stone–Thrower–Wales defects in rolled and flat graphenes from surface-enhanced Raman scattering. Carbon 50(9):3274–3279. https://doi.org/10.1016/j.carbon.2011.12.010

    Article  CAS  Google Scholar 

  38. Ertekin E, Chrzan DC, Daw MS (2009) Topological description of the Stone-Wales defect formation energy in carbon nanotubes and graphene. Phys Rev B 79(15):155421. https://doi.org/10.1103/PhysRevB.79.155421

    Article  CAS  Google Scholar 

  39. Dresselhaus MS, Jorio A, Souza Filho AG, Saito R (2010) Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Phil Trans R Soc A 368:5355–5377

    Article  CAS  Google Scholar 

  40. Yuge R, Yudasaka M, Toyama K, Yamaguchi T, Iijima S, Manako T (2012) Buffer gas optimization in CO2 laser ablation for structure control of single-wall carbon nanohorn aggregates. Carbon. https://doi.org/10.1016/j.carbon.2011.12.043

    Article  Google Scholar 

  41. Irie M, Nakamura M, Zhang M, Yuge R, Iijima S, Yudasaka M (2010) Quantification of thin graphene sheets contained in spherical aggregates of single-walled carbon nanohorns. Chem Phys Lett 500(1):96–99. https://doi.org/10.1016/j.cplett.2010.10.018

    Article  CAS  Google Scholar 

  42. Utsumi S et al (2005) Opening mechanism of internal nanoporosity of single-wall carbon nanohorn. J Phys Chem B. https://doi.org/10.1021/jp0512661

    Article  PubMed  Google Scholar 

  43. Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA (2011) Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. https://doi.org/10.1021/jp110895z

    Article  PubMed  Google Scholar 

  44. Utsumi S et al (2007) Direct evidence on C−C single bonding in single-wall carbon nanohorn aggregates. J Phys Chem C. https://doi.org/10.1021/jp071273k

    Article  Google Scholar 

  45. L.-T. Hsieh, W.-J. Lee, C.-Y. Chen, M.-B. Chang, and H.-C. Chang, “Converting methane by using an RF plasma reactor,” p. 25, 1998.

  46. Vlassiouk I et al (2011) Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5(7):6069–6076. https://doi.org/10.1021/nn201978y

    Article  CAS  PubMed  Google Scholar 

  47. Fan J et al (2005) Micrometer-sized graphitic balls produced together with single-wall carbon nanohorns. J Phys Chem B. https://doi.org/10.1021/jp050548y

    Article  PubMed  Google Scholar 

  48. Bandow S, Kokai F, Takahashi K, Yudasaka M, Qin LC, Iijima S (2000) Interlayer spacing anomaly of single-wall carbon nanohorn aggregate. Chem Phys Lett. https://doi.org/10.1016/S0009-2614(00)00353-5

    Article  Google Scholar 

  49. Tamura G, Yudasaka M, Iijima S (2009) Efficient separation of giant graphite balls from as-grown single-wall carbon nanohorns. Jpn J Appl Phys 48(1R):015003. https://doi.org/10.1143/JJAP.48.015003

    Article  CAS  Google Scholar 

  50. Fauchais PL, Heberlein JVR, Boulos MI (2014) Thermal Spray Fundamentals: From Powder to Part. Springer Science & Business Media, US

    Book  Google Scholar 

  51. Mohanta A, Lanfant B, Asfaha M, Leparoux M (2017) Methane dissociation process in inductively coupled Ar/H 2 /CH 4 plasma for graphene nano-flakes production. Appl Phys Lett 110(9):093109. https://doi.org/10.1063/1.4977568

    Article  CAS  Google Scholar 

  52. Pristavita R, Meunier J-L, Berk D (2011) Carbon nano-flakes produced by an inductively coupled thermal plasma system for catalyst applications. Plasma Chem Plasma Process. https://doi.org/10.1007/s11090-011-9289-0

    Article  Google Scholar 

  53. Gaufrès E et al (2014) Giant Raman scattering from J-aggregated dyes inside carbon nanotubes for multispectral imaging. Nat Photonics. https://doi.org/10.1038/nphoton.2013.309

    Article  Google Scholar 

  54. Gaufrès E et al (2016) Aggregation control of α-Sexithiophene via isothermal encapsulation inside single-walled carbon nanotubes. ACS Nano. https://doi.org/10.1021/acsnano.6b05660

    Article  PubMed  Google Scholar 

  55. Meunier J-L, Mendoza-Gonzalez N-Y, Pristavita R, Binny D, Berk D (2014) Two-dimensional geometry control of graphene nanoflakes produced by thermal plasma for catalyst applications. Plasma Chem Plasma Process 34(3):505–521. https://doi.org/10.1007/s11090-014-9524-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Natural Sciences, Engineering Research Council, the Centre Québécois pour les Matériaux Fonctionnels (Fonds Nature et Technologie) and the Quebec Centre for Advanced Materials (QCAM) are acknowledged for funding this work. R.M. and N.B. acknowledge financial support from the Canada Research Chair programs. We thank Kossi Eyadéma Béré and André Bilodeau for their help during experiments. We would like to thank Charles Bertrand and Carl Saint-Louis from the Plateforme de Recherche et d’Analyse des Matériaux (PRAM) of Université de Sherbrooke for their help in the acquisition of data related to material characterization. We are very grateful to the MEANS team (Microscopie Electronique Avancée et Nano-Structures) of University of Paris, especially Guillaume Wang for helping us on the JEOL microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadi Braidy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2554 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casteignau, F., Aissou, T., Allard, C. et al. Synthesis of Carbon Nanohorns by Inductively Coupled Plasma. Plasma Chem Plasma Process 42, 465–481 (2022). https://doi.org/10.1007/s11090-022-10240-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-022-10240-8

Keywords

Navigation