Skip to main content
Log in

Fungal Community Diversity in Solonchaks of Gansu Province in China

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

We collected solonchaks samples of 5 subtypes and 13 genera from Gansu Province in China and analyzed the diversity of fungal communities with the methods of ITS sequencing. We found that ACE, Chao 1, Simpson and Shannon indices of the fungal community varied significantly in soil samples and were generally inversely correlated with pH. The dominant fungal groups were Ascomycota and Basidiomycota among the different solonchaks. Redundancy analysis revealed that soil organic matters was the most important driving force for fungal composition (29.9%), and the second most influencing factor was sulfate ion (9.1%). Our results suggest that Ascomycota was the main indicator phylum reflecting changes of the microbial groups and soil organic matter as a key factor drove the composition of fungal community in 5 subtypes and 13 genera of solonchaks in Gansu Province.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. D. Bao, Soil Agricultural Chemistry Analysis (China Agriculture Press, Beijing, 2000) [in Chinese].

    Google Scholar 

  2. R. D. Bardgett and W. H. van der Putten, “Belowground biodiversity and ecosystem functioning,” Nature 515, 505–511 (2014). https://doi.org/10.1038/nature13855

    Article  Google Scholar 

  3. N. A. Bokulich, S. Subramanian, J. J. Faith, et al., “Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing,” Nat. Methods 10, 57–59 (2012). https://doi.org/10.1038/nmeth.2276

    Article  Google Scholar 

  4. G. Bradfield, P. Somerfield, T. Meyn, M. Holby, D. Babcock, and B. I. H. Segel, “Regulation of sulfate transport in filamentous fungi,” Plant Physiol. 46, 720–727 (1970). https://doi.org/10.2307/4262253

    Article  Google Scholar 

  5. M. Buée, M. Reich, C. Murat, et al., “454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity,” New Phytol. 184, 449–456 (2010). https://doi.org/10.1111/j.1469-8137.2009.03003.x

    Article  Google Scholar 

  6. J. G. Caporaso, J. Kuczynski, J. Stombaugh, et al., “QIIME allows analysis of high-throughput community sequencing data,” Nat. Methods 7, 335–336 (2010).

    Article  Google Scholar 

  7. Z. Cheng, Y. Chen, and F. Zhang, “Effect of reclamation of abandoned salinized farmland on soil bacterial communities in arid northwest China,” Sci. Total Environ. 630, 799–808 (2018).

    Article  Google Scholar 

  8. E. Coller, A. Cestaro, R. Zanzotti, et al., “Microbiome of vineyard soils is shaped by geography and management,” Microbiome 7, 140 (2019). https://doi.org/10.1186/s40168-019-0758-7

    Article  Google Scholar 

  9. A. M. Cupples, “Principles and applications of soil microbiology,” J. Environ. Qual. 34, 11–68 (2005). https://doi.org/10.2134/jeq2005.0731dup

    Article  Google Scholar 

  10. B. W. De, L. B. Folman, R. C. Summerbell, and L. Boddy, “Living in a fungal world: impact of fungi on soil bacterial niche development,” FEMS Microbiol. Rev. 4, 795–811 (2005). https://doi.org/10.1016/j.femsre.2004.11.005

    Article  Google Scholar 

  11. R. E. Drenovsky, D. Vo, K. J. Graham, and K. M. Scow, “Soil water content and organic carbon availability are major determinants of soil microbial community composition,” Microb. Ecol. 48, 424–430 (2004). https://doi.org/10.1007/s00248-003-1063-2

    Article  Google Scholar 

  12. R. C. Edgar, “MUSCLE: multiple sequence alignment with high accuracy and high throughput,” Nucleic Acids Res. 32, 1792–1797 (2004). https://doi.org/10.2460/ajvr.69.1.82

    Article  Google Scholar 

  13. R. C. Edgar, B. J. Haas, J. C. Clemente, C. Quince, and R. Knight, “UCHIME improves sensitivity and speed of chimera detection,” Bioinformatics 27 (16), 2194–2200 (2011). https://doi.org/10.1093/bioinformatics/btr381

    Article  Google Scholar 

  14. R. C. Edgar, “UPARSE: highly accurate OTU sequences from microbial amplicon reads,” Nat. Methods 10, 996–998 (2013). https://doi.org/10.1038/NMETH.2604

    Article  Google Scholar 

  15. E. Egidi, M. Delgado-Baquerizo, J. M. Plett, et al., “A few ascomycota taxa dominate soil fungal communities worldwide,” Nat. Commun. 10, 2369 (2019). https://doi.org/10.1038/s41467-019-10373-z

    Article  Google Scholar 

  16. Soil Challenge Badge (UN Food and Agriculture Organization, Rome, 2014).

  17. J. C. Frankland, N. Magan, and G. M. Gadd, Fungi and Environmental Change (Cambridge University Press, Cambridge, 1996). https://doi.org/10.1016/s0269-915x(98)80116-x

  18. M. Frąc, S. E. Hannula, M. Bełka, and M. Jędryczka, “Fungal biodiversity and their role in soil health,” Front. Microbiol. 9, 707 (2018). https://doi.org/10.3389/fmicb.2018.00707

    Article  Google Scholar 

  19. Gansu Province Soil Survey Office, Gansu Soil (China Agricultural Press, Beijing, 1993) [in Chinese].

    Google Scholar 

  20. R. Jeewon, Q. S. Yeung, D. N. Wannasinghe, et al., “Hidden mycota of pine needles: molecular signatures from PCR-DGGE and ribosomal DNA phylogenetic characterization of novel phylotypes,” Sci. Rep. 8, 18053 (2018). https://doi.org/10.1038/s41598-018-36573-z

    Article  Google Scholar 

  21. A. Kumar and J. P. Verma, “Does plant-microbe interaction confer stress tolerance in plants: a review?” Microbiol. Res. 207, 41–52 (2018). https://doi.org/10.1016/j.micres.2017.11.004

    Article  Google Scholar 

  22. U. Kõljalg, R. H. Nilsson, K. Abarenkov, et al., “Towards a unified paradigm for sequence-based identification of fungi,” Mol. Ecol. 22, 5271–5277 (2013). https://doi.org/10.1111/mec.12481

    Article  Google Scholar 

  23. C. L. Lauber, M. S. Strickland, M. A. Bradford, and N. Fierer, “The influence of soil properties on the structure of bacterial and fungal communities across land-use types,” Soil Biol. Biochem. 40, 2407–2415 (2008). https://doi.org/10.1016/j.soilbio.2008.05.021

    Article  Google Scholar 

  24. C. Loredana, L. P. Giuseppe, V. A. Livia, et al., “Spatial microbial community structure and biodiversity analysis in “extreme” hypersaline soils of a semiarid Mediterranean area,” Appl. Soil Ecol. 93 (10), 120–129 (2015). https://doi.org/10.1016/j.apsoil.2015.04.014

    Article  Google Scholar 

  25. P. D. Li, R. Jeewon, B. Aruna, et al., “Metabarcoding reveals differences in fungal communities between unflooded versus tidal flat soil in coastal saline ecosystem,” Sci. Total Environ. 690 (1), 911–922 (2019). https://doi.org/10.1016/j.scitotenv.2019.06.473

    Article  Google Scholar 

  26. W. Li, M. M. Wang, X. M. Bian, J. J. Guo, and L. Cai, “A high-level fungal diversity in the intertidal sediment of Chinese seas presents the spatial variation of community composition,” Front. Microbiol. 7, 2098 (2016). https://doi.org/10.3389/fmicb.2016.02098

    Article  Google Scholar 

  27. C. Liu, J. Xu, N. Ding, et al., “The effect of long-term reclamation on enzyme activities and microbial community structure of saline soil at Shangyu, China,” Environ. Earth Sci. 69, 151–159 (2013). https://doi.org/10.1007/s12665-012-1943-1

    Article  Google Scholar 

  28. F. T. Maestre, M. Delgado-Baquerizo, T. C. Jeffries, et al., “Increasing aridity reduces soil microbial diversity and abundance in global drylands,” Proc. Natl. Acad. Sci. U.S.A. 112, 15684–15689 (2015). https://doi.org/10.1073/pnas.1516684112

    Article  Google Scholar 

  29. R. Munns and M. Tester, “Mechanisms of salinity tolerance,” Annu. Rev. Plant Biol. 59, 651–681 (2008). https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  Google Scholar 

  30. Z. Mustafa, M. A. Pervez, C. M. Ayyub, et al., “Morpho-physiological characterization of chilli genotypes under NaCl salinity,” Plant, Soil Environ. 33 (2), 133–141 (2014).

    Google Scholar 

  31. L. L. Nan and Q. E. Guo, “Soil properties under major halophytic vegetation communities in arid regions,” Wuhan Univ. J. Nat. Sci. 23 (5), 376–386 (2018). https://doi.org/10.1007/s11859-018-1337-7

    Article  Google Scholar 

  32. L. L. Nan and Q. E. Guo, “Soil properties of Alhagi sparsifolia community in saline-sodic badlands in west China,” Acta Ecol. Sin. 38 (5), 339–344 (2018). https://doi.org/10.1016/j.chnaes.2018.01.010

    Article  Google Scholar 

  33. L. L. Nan, Q. E. Guo, and S. Y. Cao, “Archaeal community diversity in different types of saline-alkali soil in arid regions of Northwest China,” J. Biosci. Bioeng. 130 (4), 382–389 (2020). https://doi.org/10.1016/j.jbiosc.2020.06.001

    Article  Google Scholar 

  34. T. Nemse, B. Colomb, P. Hinsinger, and C. A. Watson, “Soil phosphorus management in organic cropping systems: From current practices to avenues for a more efficient use of p resources”, in Organic Farming, Prototype for Sustainable Agricultures (Springer-Verlag, New York, 2014), pp. 22–25. https://doi.org/10.1007/978-94-007-7927-3_2

  35. R. H. Nilsson, L. Tedersoo, M. Ryberg, et al., “A comprehensive, automatically updated fungal ITS sequence dataset for reference-based chimera control in environmental sequencing efforts,” Microb. Environ. 30 (2), 145–150 (2015). https://doi.org/10.1264/jsme2.ME14121

    Article  Google Scholar 

  36. I. H. Segel and M. J. Johnson, “Accumulation of intracellular inorganic sulfate by Penicillium chrysogenum,” J. Bacteriol. 81, 91–106 (1961). https://doi.org/10.1002/path.1700810111

    Article  Google Scholar 

  37. L. Tedersoo, M. Bahram, S. Põlme, et al., “Global diversity and geography of soil fungi,” Science 346, 1256688 (2014). https://doi.org/10.1126/science.1256688

    Article  Google Scholar 

  38. M. G. A. van der Heijden, R. D. Bardgett, and N. M. van Straalen, “The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems,” Ecol. Lett. 11, 296–310 (2008). https://doi.org/10.1111/j.1461-0248.2007.01139.x

    Article  Google Scholar 

  39. D. Vu, M. Groenewald, M. de Vries, et al., “Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation,” Stud. Mycol. 92, 135–154 (2019). https://doi.org/10.1016/j.simyco.2018.05.001

    Article  Google Scholar 

  40. S. Wang, L. Sun, N. Ling, et al., “Exploring soil factors determining composition and structure of the bacterial communities in saline-alkali soils of Songnen Plain,” Front. Microbiol. 10, 2902 (2020). https://doi.org/10.3389/fmicb.2019.02902

    Article  Google Scholar 

  41. T. J. White, T. Bruns, S. Lee, et al., “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in PCR Protocols: A Guide to Methods and Applications (Academic, San Diego, 1990), pp. 315–322.

    Google Scholar 

  42. J. J. Worrall, S. E. Anagnost, and R. D. Zabel, “Comparison of wood decay among diverse lignicolous fungi,” Mycologia 89 (2), 199–219 (1997).

    Article  Google Scholar 

  43. F. G. Zhang, Y. Q. Huo, X. X. Xu, et al., “Trichoderma improves the growth of Leymus chinensis,” Biol. Fertil. Soils 54, 685–696 (2018). https://doi.org/10.1007/s00374-018-1292-7

    Article  Google Scholar 

  44. M.-M. Zhang, N. Wang, Y.-B. Hu, and G.-Y. Sun, “Changes in soil physicochemical properties and soil bacterial community in mulberry (Morus alba L.)/alfalfa (Medicago sativa L.) intercropping system,” MicrobiologyOpen 7 (2), e00555 (2018). https://doi.org/10.1002/mbo3.555

    Article  Google Scholar 

Download references

Funding

The study was supported by Project of Department of Science and Technology of Gansu Province (Nos. 20YF3FA011), National Natural Science Foundation of China (nos. 41363004 and 31460630), and the Key Research and Development Program of Gansu Academy of Agricultural Sciences (no. 2019GAAS24).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanen Guo.

Ethics declarations

All the authors certify that all co-authors have read the manuscript and agreed with its submission.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quanen Guo, Nan, L., Cao, S. et al. Fungal Community Diversity in Solonchaks of Gansu Province in China. Eurasian Soil Sc. 55, 511–519 (2022). https://doi.org/10.1134/S106422932204010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106422932204010X

Keywords:

Navigation