Skip to main content
Log in

Superhydrophilic Modification of Magnetic Fe3o4 Nanoparticles Assisted by Low-Temperature Atmosphere N2/H2 Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Superhydrophilic modification of magnetic Fe3O4 nanoparticles (MNPs) assisted by low-temperature atmosphere N2/H2 plasma was proposed in this work to enhance the dispersion and stability of Fe3O4 nanoparticles in aqueous solution. A detailed plasma chemistry mechanism including a set of electron impact reactions, reactions involving excited species and radicals in a N2/H2 mixture was built to reveal the chemical nature of hydrophilic group generation. The ZDPlasKin-Chemkin coupling method was used to iteratively solve the energy loss fractions of electrons deposited into different molecular degrees as well as the concentration changes in hydrophilic radicals with time evolution. Scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy were used to characterize the before and after modification of MNPs and the change of surface tension in MNPs solution. The results show that the surface of the MNPs was successfully functionalized with NH radicals generated by the N2/H2 plasma, while the dispersion and stability of the modified MNPs in aqueous solution was significantly increased. The results further show that the saturation magnetization of MNPs modified by N2/H2 plasma decreased by 9 emu/g on average because of the reduced magnetic moment of the functionalized NH2-MNPs. The results also show that the morphology and lattice structure of the MNPs remain unchanged after plasma functionalization. This plasma-based method reported provides a new research idea for the modification of Fe3O4 nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang L, Housel LM, Bock DC et al (2019) Deliberate modification of Fe3O4 anode surface chemistry: impact on electrochemistry. ACS Appl Mater Interfaces

  2. Dormann JL, Fiorani D (2012) Magnetic properties of fine particles. Elsevier, Amsterdam, p 267

    Google Scholar 

  3. Demin AM, Mekhaev AV, Kandarakov OF, et al (2020)L-Lysine-modified Fe3O4 nanoparticles for magnetic cell labeling. Colloids Surf B: Biointerfaces 190:110879

  4. Lei P, Boies AM, Calder S et al (2012) Thermal plasma synthesis of superparamagnetic iron oxide nanoparticles. Plasma Chem Plasma Process 32(3):519–531

    Article  CAS  Google Scholar 

  5. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287(5460)

  6. Ping L, Liangliang et al (2016) Selective binding and magnetic separation of histidine-tagged proteins using Fe3O4/Cu-apatite nanoparticles. J Inorg Biochem 156:49–54

    Article  Google Scholar 

  7. Sadat ME, Patel R, Sookoor J et al (2014) Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications. Mater Sci Eng, C 42:52–63

    Article  CAS  Google Scholar 

  8. Noh J, Osman OI, Aziz SG et al (2015) Magnetite Fe3O4 (111) surfaces: impact of defects on structure, stability, and electronic properties. Chem Mater 27(17)

  9. An GS, Chae DH, Hur JU, Oh AH, Choi H-H, Choi S-C, Oh Y-S, Jung Y-G (2018) Hollow-structured Fe3O4 @SiO2 nanoparticles: novel synthesis and enhanced adsorbents for purification of plasmid DNA. Ceram Int 44(15)

  10. Mohamed Jaffer Sadiq M, Sandhya Shenoy U, Krishna Bhat D (2017) Enhanced photocatalytic performance of N-doped RGO-FeWO4/Fe3O4 ternary nanocomposite in environmental applications. Mater Today Chem 4

  11. Kim YS, Kim YH (2003) Application of ferro-cobalt magnetic fluid for oil sealing. J Magn Magn Mater 267(1):105–110

    Article  CAS  Google Scholar 

  12. Maleki A, Alrezvani Z, Maleki S (2015) Design, preparation and characterization of urea-functionalized Fe3O4/SiO2 magnetic nanocatalyst and application for the one-pot multicomponent synthesis of substituted imidazole derivatives. Catal Commun 69(5):29–33

    Article  CAS  Google Scholar 

  13. Kuroki T, Tahara M, Kuwahara T et al (2014) Microfabrication and metal plating technologies on polytetrafluoroethylene film surface treated by atmospheric-pressure nonthermal-plasma graft polymerization process. IEEE Trans Ind Appl 50(1):45–50

    Article  CAS  Google Scholar 

  14. Okubo M, Onji T, Kuroki T et al (2016) Molecular-level reinforced adhesion between rubber and PTFE film treated by atmospheric plasma polymerization. Plasma Chem Plasma Process 36(6):1–18

    Article  Google Scholar 

  15. Zanini S, Müller M, Riccardi C et al (2007) Polyethylene glycol grafting on polypropylene membranes for anti-fouling properties. Plasma Chem Plasma Process 27(4):446–457

    Article  CAS  Google Scholar 

  16. Shao D, Jiang Z, Wang X et al (2009) Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO(2)(2+) from aqueous solution. J Phys Chem B 113(4):860

    Article  CAS  Google Scholar 

  17. Seebock R, Esrom H, Charbonnier M et al (2000) Modificationof polyimide in barrier discharge air-plasmas: chemical and morphological effects. Plasmas Polym 5(2):103

    Article  CAS  Google Scholar 

  18. Hernandez-Hernandez E, Neira-Velazquez MG, Guerrero-Alvarado H, Hernandez-Gamez JF, Gonzalez-Morones P, Avila-Orta CA, Perera-Mercado YA, Borjas-Ramos JJ, Perez-Alvarez M, Ilina AD, Bartolo-Perez P (2015) Plasma functionalization of carbon nanofibers with vapors of ammonia/water. Plasma Chem Plasma Process 35(4):757–768

    Article  CAS  Google Scholar 

  19. Massines F, Gouda G, Gherardi N, Duran M, Croquesel E (2001) The role of dielectric barrier discharge atmosphere and physics on polypropylene surface treatment. Plasmas Polym 6(1):35–49

    Article  CAS  Google Scholar 

  20. Inagaki N, Tasaka S, Goto Y (1997) Surface modification of poly (tetrafluoroethylene) film by plasma graft polymerization of sodium vinylsulfonate. J Appl Polym Sci 66(1):77–84

    Article  CAS  Google Scholar 

  21. Li J, Chen C, Zhao Y, Hu J, Shao D, Wang X (2013) Synthesis of water-dispersible Fe3O4@ β-cyclodextrin by plasma-induced grafting technique for pollutant treatment. Chem Eng J 229:296–303

    Article  CAS  Google Scholar 

  22. Pancheshnyi S, Eismann B, Hagelaar GJM et al (2008) Computer code ZDPlasKin. http://www.zdplaskin.laplace.univ-tlse.fr (University of Toulouse, LAPLACE, CNRS-UPS-INS, Toulouse, France, 2008)

  23. Lutz AE, Kee RJ, Miller JA (1987) SENKIN: a Fortran program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis. Sandia National Labs., Livermore, CA (USA)

  24. Faingold G, Lefkowitz JK (2021) A numerical investigation of NH3/O2/He ignition limits in a non-thermal plasma. Proc Combust Inst 38(4):6661–6669

    Article  CAS  Google Scholar 

  25. Glarborg P, Miller JA, Ruscic B et al (2018) Modeling nitrogen chemistry in combustion. Prog Energy Combust Sci 67:31–68

    Article  Google Scholar 

  26. Han X, Wang Z, Costa M et al (2019) Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames. Combust Flame 206:214–226

    Article  CAS  Google Scholar 

  27. Bian J (1990) Mécanisme de formation et de disparition des oxydes d'azote dans les flammes: étude expérimentale et modélisation. UCL-Université Catholique de Louvain

  28. Hagelaar GJM, Pitchford LC (2005) Solving the Boltzmann equation to obtain electron transport coefficients for fluid models. Plasma Sources Sci Technol 14:722–733

  29. Morgan database.www.lxcat.net/Morgan

  30. Phelps database.www.lxcat.net/Phelps

  31. Itikawa database.www.lxcat.net/Itikawa

  32. An GS, Chae DH, Hur JU et al (2018) Hollow-structured Fe3O4@SiO2 nanoparticles: novel synthesis and enhanced adsorbents for purification of plasmid DNA. Ceram Int 44(15):18791–18795

    Article  CAS  Google Scholar 

  33. Hur JU, Choi JS, Choi SC et al (2020) Highly dispersibleFe3O4 nanoparticles via anionic surface modification. J Korean Ceram Soc 57(1):80–84

    Article  CAS  Google Scholar 

  34. Cheng-Kui LI, Yan B, Chun-Feng DU et al (2010) Synthesis and property analysis of PEI-coated Fe3O4 nanoparticles. Metall Funct Mater

  35. Fan HL, Li L, Zhou SF et al (2016) Continuous preparation of Fe3O4 nanoparticles combined with surface modification by L-cysteine and their application in heavy metal adsorption. Ceram Int 42(3):4228–4237

    Article  CAS  Google Scholar 

  36. Sudo S, Hashimoto H, Ikeda A (1989) Measurements of the surface tension of a magnetic fluid and interfacial phenomena. JSME international journal. Ser. 2, Fluids engineering, heat transfer, power, combustion, thermophysical properties 32(1):47–51

  37. Yanqin L (2016) The research of ferrofluid's magnetic surface tension coefficient in the external uniform magnetic field. Phys Eng 01

  38. Lefkowitz JK, Guo P, Rousso A, Ju Y (2015) Species and temperature measurements of methane oxidation in a nanosecond repetitively pulsed discharge. Philos Trans R Soc A Math Phys Eng Sci 373(2048):20140333

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the GF Special Administrative Region Foundation and the National Natural Science Foundation of China (Grant Nos. 21975018, 21676024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Chen or Decai Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Figure 

Fig. 12
figure 12

The concentrations of the main radicals(-NH2) production and consumption pathways are about a 300 Td; b 150 Td

12 shows the changes in concentration of radicals (-NH2) in the main production and consumption pathways at 150 Td and 300 Td. Figure 12a shows that the total production of radicals (-NH2) is greater than the total consumption in the first phase and the total production of radicals (-NH2) is less than the total consumption in the second phase; Fig. 12b shows that the total production of radicals (-NH2) is consistently greater than the total consumption in all phases of the reaction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Chen, Q., Li, D. et al. Superhydrophilic Modification of Magnetic Fe3o4 Nanoparticles Assisted by Low-Temperature Atmosphere N2/H2 Plasma. Plasma Chem Plasma Process 42, 641–656 (2022). https://doi.org/10.1007/s11090-022-10232-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-022-10232-8

Keywords

Navigation