Skip to main content
Log in

pH Switchable LLC Nanoparticles Targeting Colon: Optimization Using D-Optimal Design

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

To design pH switchable LLC (lyotropic liquid crystal) nanoparticles with the goal of exclusively delivering 5-Fluorouracil (5-FU) in the colonic region of GIT for the treatment of colon cancer.

Methods

The proportions of monoolein (MO), oleic acid (OA), and pluronic F127 were chosen using the quadratic model of D-optimal mixture design for LLC nanoparticle batches. The formulations were characterized and evaluated for (i) adhesion work at porcine stomach, (ii) adhesion work at porcine large intestine, (iii) drug release up to pH 6.8, and (iv) drug release at pH 7.4. The models developed during data analysis were optimized and subjected to pharmacokinetic and in vivo scintigraphic study.

Results

The design proposed three optimal formulations OLN1, OLN2, and OLN3, where OLN3 outperformed the rest in terms of 5-FU release profile as well as comparable work of adhesion at porcine stomach and large intestine. The gamma scintigraphic images and pharmacokinetic results of OLN3 with 30% MO, 62.565% OA, and 7.435% pluronic F127 indicated that the hexagonal configuration of the system prevented 5-FU absorption from the upper GIT and no substantial release of the drug occurred within 6-h period. However, there was considerable release from the system due to hexagonal structure converting to cubic structure at colonic pH.

Conclusions

Upon oral administration, OLN3 preserved its integrity during its passage through stomach, successfully entered, and was evenly spread in the colon during the 12-h study period demonstrating the required properties in terms of drug targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Singh BN. Modified release solid formulations for colonic delivery. Recent Pat Drug Deliv Formul. 2007;1:53–63.

    Article  CAS  PubMed  Google Scholar 

  2. Sinha VR, Kumria R. Microbially triggered drug delivery to the colon. Eur J Pharm Sci. 2003;18:3–18.

    Article  CAS  PubMed  Google Scholar 

  3. Grem JL. 5-Fluorouracil: forty-plus and still ticking. A review of its preclinical and clinical development. Invest New Drugs. 2000;18:299–313.

  4. Malet-Martino M, Martino RL. Clinical studies of three oral prodrugs of 5-fluorouracil capecitabine, UFT, S-1: a review. Oncologist. 2002;7:288–323.

    Article  CAS  PubMed  Google Scholar 

  5. Guo C, Wang J. Lyotropic liquid crystal systems in drug delivery. Drug Discov Today. 2010;15(23–24):1032–40.

    Article  CAS  PubMed  Google Scholar 

  6. Wallin R, Arnebrant T. The activity of lipase at the cubic liquid crystalline phase/water interface. J Colloid Interface Sci. 1994;164:16–20.

    Article  CAS  Google Scholar 

  7. Shah JC, Sadhale Y, Chilukuri DM. Cubic phase gels as drug delivery systems. Adv Drug Deliv Rev 200;47:229–250.

  8. Rajak P, Nath LK, Bhuyan B. Liquid crystals: an approach in drug delivery. Indian J Pharm Sci. 2019;81(1):11–21.

    Article  CAS  Google Scholar 

  9. Engstrom E, Lindahl L, Wallin R, Engblom JA. Study of polar lipid drug carrier system undergoing a thermoreversible lamellar to cubic phase transformation. Int J Pharm. 1992;86:137–45.

    Article  Google Scholar 

  10. Wyatt D, Dorschel D. A cubic-phase delivery system composed of glyceryl monooleate and water for sustained release of water-soluble drugs. Pharm Technol. 1992;16:116–30.

    CAS  Google Scholar 

  11. Chen Y, Ma P, Gui S. Cubic and hexagonal liquid crystals as drug delivery systems. BioMed Res Int. 2014;8:1–12. https://doi.org/10.1155/2014/8.

    Article  Google Scholar 

  12. Lancelot A, Sierra T, Serrano JL. Nanostructured liquid-crystalline particles for drug delivery. Expert Opin Drug Deliv. 2014;11(4):1–18.

    Article  Google Scholar 

  13. Boyd BJ, Whittaker DV, Khoo SM, Davey G. Lyotropic liquid crystalline phases formed from glycerate surfactants as sustained release drug delivery systems. Int J Pharm. 2006;309:218–26.

    Article  CAS  PubMed  Google Scholar 

  14. Fraser S, Separovic F. Cubic phases of ternary amphiphile-water systems. Eur Biophys J. 2009;39(1):83–90.

    Article  PubMed  Google Scholar 

  15. Fong WK, Hanley T, Boyd BJ. Stimuli responsive liquid crystals provide ‘on-demand’ drug delivery in-vitro and in-vivo. J Control Release. 2009;135(3):218–26.

    Article  CAS  PubMed  Google Scholar 

  16. Angelov B, Angelova A, Garamus VM, Lebas G, Lesieur S, Ollivon M, Sergio S, Willumeit FR, Couvreur P. Small-angle neutron and X-ray scattering from amphiphilic stimuli-responsive diamond-type bicontinuous cubic phase. J Am Chem Soc. 2007;129(44):13474–9.

    Article  CAS  PubMed  Google Scholar 

  17. Renata N, Raffaele M. pH-responsive lyotropic liquid crystals for controlled drug delivery. Langmuir. 2011;27:5296–303.

    Article  Google Scholar 

  18. Chang CM, Bodmeier R. Swelling of and drug release from monoglyceride-based drug delivery systems. J Pharm Sci. 1997;86(6):747–52.

    Article  CAS  PubMed  Google Scholar 

  19. Kwon TK, Kim JC. Monoolein cubic phase containing acidic proteinoid: pH-dependent release. Drug Dev Ind Pharm. 2011;37(1):56–61.

    Article  CAS  PubMed  Google Scholar 

  20. Rajak P, Nath LK, Mazumder B. Evaluation of pH responsive flipping mechanism of 5-fluorouracil loaded LLC system for colon targeting. J Pharm Innov. 2021;16:99–109.

    Article  Google Scholar 

  21. Alakhov V, Pietrzynski G, Patel K, Kabanov A, Bromberg L, Hatton TA. Pluronic block copolymers and pluronic poly (acrylic acid) microgels in oral delivery of megestrol acetate. J Pharm Pharmacol. 2004;56:1233–41.

    Article  CAS  PubMed  Google Scholar 

  22. Cabana A, Ait-Kadi A, Juhasz J. Study of the gelation process of polyethylene oxide copolymer (poloxamer 407) aqueous solutions. J Colloid Interface Sci. 1997;190:307–12.

    Article  CAS  PubMed  Google Scholar 

  23. Gryze SD, Langhans I, Vandebroek M. Using the correct intervals for prediction: a tutorial on tolerance intervals for ordinary least-squares regression. Chemometr Intell Lab. 2007;87(2):147–54.

    Article  Google Scholar 

  24. Chong JYT, Mulet X, Waddington LJ, Boyd BJ, Drummond CJ. High-throughput discovery of novel steric stabilizers for cubic lyotropic liquid crystal nanoparticle dispersions. Langmuir. 2012;28(25):9223–32.

    Article  CAS  PubMed  Google Scholar 

  25. Nasr M, Ghorab MK, Abdelazem A. In-vitro and in-vivo evaluation of cubosomes containing 5- fluorouracil for liver targeting. Acta Pharm Sin B. 2015;5(1):79–88.

    Article  PubMed  Google Scholar 

  26. Mandell L, Fontell K, Ekwall P. Occurrence of different mesomorphous phases in ternary systems of amphiphilic substances and water. In: Porter, D.S., Johnson, J.F. (Eds.) Ordered Fluids and Liquid Crystals. Advances in Chemistry Series, vol. 63. Was DC: Am Chem Soc. 1967:pp. 89–124.

  27. Rosevear FB. The microscopy of the liquid crystalline neat and middle phases of soaps and synthetic detergents. J Am Oil Chem Soc. 1954;3:628–39.

    Article  Google Scholar 

  28. Gao M, Kim YK, Zhang C. Direct observation of liquid crystals using cryo-TEM: specimen preparation and low-dose imaging. Microsc Res Tech. 2014;77(10):754–72.

    Article  CAS  PubMed  Google Scholar 

  29. Chung H, Kim J, Um JY, Kwon IC, Jeong SY. Self-assembled “nanocubicle” as a carrier for peroral insulin delivery. Diabetologia. 2002;45:448–51.

    Article  CAS  PubMed  Google Scholar 

  30. Teagarden DL, Anderson BD, Petre WJ. Determination of the pH-dependent phase distribution of prostaglandin E1 in a lipid emulsion by ultrafiltration. Pharm Res. 1988;5:482–7.

    Article  CAS  PubMed  Google Scholar 

  31. Tobyn MJ, Johnson JR, Dettmar PW. Factors affecting in-vitro gastric mucoadhesion. I. Test conditions and instrumental parameters. Eur J Pharm Biopharm. 1995;41:235–241.

  32. Ponchel G, Touchard F, Duchene D, Peppas NA. Bioadhesive analysis of controlled release systems. I. Fracture and interpenetration analysis in poly (acrylic acid) containing systems. J Contr Rel 1987;5:129–141.

  33. Jain A, Jain SK, Ganesh N, Barve J, Aadil M. Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer. Nanomed Nanotechnol Biol Med. 2010;6:179–90.

    Article  CAS  Google Scholar 

  34. Shargel L, Wu P, Susanna Y, Andrew BC. Bioavailability and bioequivalence. In: Applied Biopharmaceutics and Pharmacokinetics, Chapter-15, 5th edn. India: Tata McGraw Hill Inc. 2005:pp. 453–477.

  35. Yoshio AN, Shu JL, Masahito Y. Effects of electrostatic interaction on the phase stability and structures of cubic phases of monoolein/oleic acid mixture membranes. BBA Gen Subjects. 1999;14:96–102.

    Google Scholar 

  36. Sayed AI, Ismail AS, Ruksana S, Shakeel AA. In-vitro assessment of pharmaceutical potential of ethosomes entrapped with Terbinafine HCL. J Adv Res. 2016;7(3):453–61.

    Article  Google Scholar 

  37. Ghareb MS. Nanoparticles as safe and effective delivery systems of antifungal agent: achievement and challenges. Int J Pharm. 2017;523:15–32.

    Article  Google Scholar 

  38. Dongarra JJ, Moler CB, Bunch JR, Stewart GW. Linpack user’s guide. Philadelp: Soc Indus Appl Math. 1979:pp. 9.1–9.25.

  39. Negrini R, Mezzenga R. pH-Responsive lyotropic liquid crystals for controlled drug delivery. Langmuir. 2011;27:5296–303.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors like to thankfully acknowledge Mrs. Pratibha Omray, Technical director, Khandelwal Laboratories Pvt. Ltd. for providing 5-Fluorouracil as gift sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Rajak.

Ethics declarations

Ethics Approval

All procedures of the studies involving animals were in agreement with the recommendation of IAEC of Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam consistent with the guidelines of “Committee for the Purpose of Control and Supervision of Experiments on Animals” (CPCSEA, registration no: 1576/GO/Ere/S/11/ CPCSEA) with approval no. IAEC/DU/101 dated: 06/08/2015.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajak, P., Nath, L.K. & Bhuyan, B. pH Switchable LLC Nanoparticles Targeting Colon: Optimization Using D-Optimal Design. J Pharm Innov 18, 128–143 (2023). https://doi.org/10.1007/s12247-022-09628-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-022-09628-y

Keywords

Navigation